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Abstract

This paper presents a solution for mapping the location

of trees in an orchard and estimating the dendrometric data

of the trees. The combined solution consists of a mapping

and navigation algorithm, which allows for autonomous

data collection at an orchard with a regular rectangular

layout, and data processing for tree detection and dendro-

metric data estimation. The data collection is done using an

Intel RealSense D435i camera, which can obtain both RGB

and depth data. The paper presents a comparison between

the performance of point cloud processing (PCP) and con-

volutional neural networks (CNNs) on RGB data for tree

detection and dendrometric data estimation. The YOLOv3

CNN achieved a mAP50 of 63.53% with 65.5 FPS and a

mean error of 20.6 cm in height estimation. Point cloud pro-

cessing achieved a precision of 76.72% with 2.1 FPS and a

mean error of 20.4 cm in height estimation. In conclusion,

this work shows that point cloud processing shows compa-

rable results to convolutional neural networks for height es-

timation, but trades off processing time for better precision

in detection.

1. Introduction

Pesticide spraying is an essential part of agriculture to-

day, however, excessive spraying has both environmental

and economic costs [1]. Pesticide usage in citrus orchards in

Spain cover 30% of the total cost, while it accounts for 42%

in olive orchards [13, 23]. The field of Precision Agriculture

(PA) aims to combat this. PA covers many different aspects

Figure 1: Figure showing the three problems handled in this

paper: Automated mapping and data collection, and tree

detection and height estimation in RGB images and point

clouds, respectively.

of farming, such as field-, soil-, and crop-variability [24].

Tracking changes on the farm accurately and in small-scale

allows the farmer to vary the amount of fertiliser, pesticide,

or herbicide used, to the needs of individual plants or indi-



vidual areas of the farm. By reducing wasted product, PA

can greatly decrease the costs of farming [7]. PA is currently

used on 30-50% of corn and soybean acres in the US [21].

One way to automate PA is to use UAVs or drones. There

exists multiple solutions using GPS to control a drone, to

either survey or spray a field of crops [12]. In apple or-

chards, the dendrometry of the trees are important to deter-

mine how much water and pesticides each tree needs [18].

This paper proposes using a drone to autonomously map the

location of apple trees and collect dendrometry data, using

neural networks on RGB data and point cloud processing.

The proposed solution is intended to increase the level of

information gathered during automated PA, potentially fur-

ther reducing the use of pesticides in agriculture. The main

contributions of this paper are: (i) Performance compari-

son of point cloud processing and convolutional neural net-

works for both detection and height estimation of young ap-

ple trees in an orchard. (ii) Simulated proof of concept for

visualisation of the automated mapping and data gathering

solution proposed by this paper. Figure 1 illustrates the au-

tomated mapping process and the tree detection and height

estimation in RGB images and point clouds.

2. Related work

In the field of horticulture there has been introduced a

wide variety of robotic and automatic solutions for tasks

such as fruit harvesting, yield estimation, and pest control.

Zhang et et al. describes how different solutions take advan-

tage of sensors such as LiDARs and RGB cameras, which

gather point cloud data and RGB data respectively [25].

Point cloud data is more used for estimation of dendromet-

ric data and RGB data is often used in convolutional neural

networks (CNNs) for detection and classification.

Dyrmann et al. proposed a deep neural network capable

of classifying 22 different plants and crops in early growing

stages with a 86.2% precision [6]. Bodwhani et al. devel-

oped a deep neural network based on the ResNet50 frame-

work for classifying and distinguishing between 180 classes

of trees with an accuracy of 93.09% [3]. Iman Saedi and

Hossein Khosravi created a deep neural network for real-

time on-branch fruit detection. They achieved a recognition

accuracy of 99.76% with an average time per frame of 8.09

ms [20]. However, while neural networks have been widely

integrated for detection and classification in the field of hor-

ticulture, it is not commonly used for the estimation of den-

drometry information.

Point cloud processing (PCP) on the other hand is not

widely used in the field of horticulture, however, research

has been done in the area of dendrometry estimation of

trees using point cloud processing methods. Bienert et al.

developed a method for detecting trees and obtaining den-

drometry information such as diameter at breast height, and

height of the stem by processing the data obtained from ter-

Figure 2: Simple block diagram of the solution structure.

restrial laser scanning. They achieved a detection rate of

97.4%, a diameter estimation with a standard deviation of

2.48 cm, and a predicted trunk taper with 1.36 cm stan-

dard deviation [2]. Similar work was conducted by Cabo et

al. who also proposed an algorithm for terrain smoothing.

They achieved a detection rate of 99% after applying terrain

smoothing and a root mean square error ranging from 0.8-

1.3 cm for the estimation of diameter at breast height and

0.3-0.7 m for tree height estimation [4].

Despite the high detection rates and relatively accu-

rate estimations of dendrometric data using the point cloud

processing, these proposed methods are not applicable to

widely available spraying solutions, because they are based

on expensive terrestrial laser scanners [14]. Additionally,

the data gathering procedures described in Bienert et al. and

Cabo et al. are based on manually moving the sensor to cap-

ture the objects of interest [2, 4]. This is not considered to

be an option for all horticulture applications, hence this pa-

per will concern itself with automatic data gathering using a

drone. Different models of drones provide the opportunity

of mounting external devices, e.g., cameras or infrared sen-

sors, which can be used for data gathering.

Cameras such as the Intel RealSense are cheap alterna-

tives for point cloud gathering and could potentially be used

for detection and dendrometric data estimation in a spray-

ing solution [5].

Therefore, the objective of this paper is to explore the

possibilities of apple tree detection and dendrometry esti-

mation at an orchard by comparing results on RGB and

depth data.

3. General method

The proposed method consists of four different compo-

nents - mapping, drone navigation, data collection, and pro-

cessing of the acquired data. A simple block diagram in

figure 2 shows how these components are connected. Ini-

tially, a map of the orchard is created by flying the drone

automatically above the orchard. Using the RGB-D cam-

era on the drone, the placement of the trees are recorded

and mapped. Using this map, the drone will be able to

plan and fly between the rows of trees automatically, while

recording colour and depth images. This will give a one-

sided view of the trees to be used for the visual processing.

Both point cloud processing and neural networks are ap-

plied to separate the trees from the background as well as

determine the height of the trees, and the results are com-

pared. The method proposed in this paper could also be ex-



panded to measure other dendrometry parameters, and not

only height.

The position of the trees can be determined from the ini-

tial mapping of the orchard.

Due to practical reasons, it was not possible to imple-

ment the developed navigation onto the drone. Therefore,

the navigation was only tested in the simulated environ-

ment. Moreover, the navigation and the vision of the de-

veloped solution have been tested separately but with real

images captured at an orchard.

The solution aims to unify processing of the visual data

with drone navigation into a complete solution that can be

used to collect dendrometry data in the orchard. To do this,

the processing blocks of the vision and navigation are com-

bined using ROS framework.

4. Navigation

Simulated navigation takes place in Gazebo 7, ROS Ki-

netic, with the intention of positioning the drone for proper

data collection of trees within an orchard. For this, a sim-

ulated environment of 15 trees was developed. Navigation

is enabled through the use of the hector quadrotor pack-

age, the 3D motion planning framework MoveIt, and the

octomap mapping package for developing a 3D occupancy

grid map [11, 22, 8]. Two sets of waypoints are determined

with separate approaches and for different applications; the

first set is scouting waypoints for mapping the environment

from above the trees, and the second set is for further data

collection between the trees. Waypoints describe a desired

position and orientation in the orchard and are passed to the

drone. Figure 3 shows both the simulated environment and

its representation as a 3D occupancy grid map.

4.1. Creating scouting waypoints

An algorithm was developed for mapping a regular rect-

angular orchard, by flying over the trees and covering the

orchard in the shortest distance possible. This is done by

placing scouting waypoints the drone should follow. The

distance between scouting waypoints, or step length (SL),

is related to the area that the depth camera can cover in a

single frame. The covered area depends on the field of view

of the camera, the height of the tallest tree, and the desired

height of the drone, which is fixed at 0.5 m above the ap-

proximate height of the tallest tree. The value of 0.5 m was

chosen as it gives good image quality without sacrificing the

safety distance. This calculation is shown in eq. 1. The al-

gorithm for creating scouting waypoints requires the size of

the field (MxN) and the calculated step length. With these

two parameters, the algorithm can create a grid of scouting

waypoints covering the entire orchard. After that, it finds

the distance optimal path to visit all scouting waypoints, vi-

sualised in figure 4. The drone traverses along one row of

points, then it moves to the next row and moves in the oppo-

(a) Simulated environment in Gazebo.

(b) Map created by OctoMap.

Figure 3: Visualisation of the simulated environment and

the created map.

site direction. This process is repeated until the entire field

is covered.

SL = 2 tan(
FoVh

2
)

hd − htreemax

sin(gimbalangle)
(1)

FoVh = horizontal field of view angle [deg]

hd = desired height of the drone [m]

htreemax
= height of the tallest tree [m]

gimbalangle = camera angle respect horizontal axis [deg]

4.2. Mapping the environment

For creating a map of the environment, previously de-

termined scouting waypoints are sent to the drone in a go-

to-goal method using the /action/pose/goal topic. The hec-

tor quadrotor uses ROS Actions for navigating the drone to

the desired location. This mapping is performed at an al-

titude approx 0.5 m above the tallest tree. This procedure

will capture depth data from the attached simulated RGB-D

camera, to create a map of voxels and a downsampled point

cloud in the form of centres of occupied voxels. This map

is created using the OctoMap package and is visualised in

figure 3b [8].



Figure 4: Scouting waypoints and the optimal path used for

mapping the orchard.

Figure 5: Data collection waypoints used for flying between

the rows.

4.3. Estimating data collection waypoints and tree
position

From the downsampled point cloud obtained during

mapping, an algorithm is created to find each tree and de-

termine its centre position. First, the ground points are re-

moved using a threshold. The remaining points are then

projected onto a 2D plane and clustered into trees using

an algorithm based on the Euclidean distance between the

points. This algorithm operates using a fixed distance

threshold of 0.2 m. The centre of the tree is defined as the

centre of the bounding box around each tree. The algorithm

then clusters the trees into rows by assuming the distance

between rows is larger than the distance between neighbour-

ing trees. When the position of each tree and each row is

determined, the algorithm creates data collection waypoints

as shown in figure 5. This allows the drone to fly in between

the rows and gather data of each tree individually.

4.4. Autonomous navigation between rows

As the waypoints for data collection are now determined,

the drone will have to fly at a fixed altitude in between the

trees. This creates the necessity of obstacles avoidance, to

avoid collision and possible hardware disruption. Despite

the drone maintaining a constant height when capturing this

data, a 3D navigation method is implemented using MoveIt

and the created map.

5. Data collection and labeling

For the development of both the neural network and the

point cloud algorithm, prerecorded RGB-D data from a real

orchard was used. The images were resized to 416x416 pix-

els and then labeled using an online labeling tool [10]. The

labeling of the apple trees is made such that the bounding

box encapsulates the entire tree including minor branches.

The dataset for training contains a total of 900 images,

with 800 images containing instances of apple trees and 100

negative samples. Negative samples do not contain any part

of an apple tree, but instead contains ground vegetation and

background forest. The dataset collected for testing consists

of 214 images of apple trees and is collected on a different

day and of different trees than the training data. All the data

which has been gathered originates from the same orchard,

but are from three separate occasions, hence there is varia-

tion in lighting conditions and the appearance of the apple

trees.

The depth data was collected with an Intel RealSense

D435i. The resolution of the recorded depth data was set

to 1280x720p. The depth data is transformed from a depth

map to a point cloud using the RealSense SDK.

6. Point cloud processing (PCP)

The processing of the point cloud is done using the point

cloud library [19]. This library provides tools for filtering,

model fitting, segmentation, and extraction of point cloud

data.

The processing starts with the filtering of Not-A-Number

(NaN) points. Removing NaN points ensures the validity of

the data for further processing. After the removal, the data

is downsampled using a voxelized grid approach. Down-

sampling using the voxelized grid decreases the number

of points in the point cloud while preserving the underly-

ing geometrical information, thus decreasing the process-

ing time without compromising the quality of the data. Fol-

lowing the downsampling, the number of points is further

decreased by defining the region of interest (ROI). Because

only objects facing the approximate centre of the camera



Figure 6: The flowchart of the proposed PCP algorithm.

are suitable for the collection of dendrometry data, the ROI

is placed around the center of the point cloud. All the points

outside of the ROI are removed. Afterwards, the points

within the ROI are filtered again, using the filter of statis-

tical outliers.

The statistical outliers are calculated on a local scale.

The mean distance from the given point p to all its neigh-

bouring points is calculated. The distance is then assumed

to be Gaussian distributed. The points that are more than

1 standard deviation away from the mean are removed. In

the special case the point p itself is an outlier, the mean dis-

tance becomes large with the small variance. Under these

conditions, the point p is not identified as an outlier. How-

ever, the filtering process is iterated over all the points in the

point cloud. Therefore, the outlier in question is removed in

the next iterations. Currently, 50 neighbouring points are

used to determine the mean distance. This amount of points

was chosen as it was observed during the development that

it provides the best filtering.

Finally, the preprocessing of the point cloud ends with

the resampling of the data via the Moving Least Square

(MLS) method. Resampling is performed to improve the

overall smoothness of the data.

In order to detect apple trees in the point cloud, the as-

sumption is made that the point cloud only consists of points

that belong to a ground plane or an apple tree. There-

fore, removing points of the ground plane should leave only

apple trees in the point cloud. Random sample consen-

sus (RANSAC) is used for identifying the biggest plane in

the data, which is then removed as it is assumed to be the

ground plane. To collect the remaining points into clus-

ters, such that each cluster represents one tree, an algorithm

based on the Euclidean distance between points is deployed.

This algorithm operates using a fixed distance threshold of

0.1 m. The threshold of 0.1 m was chosen because it can

be observed that this value corresponds to the approximate

largest distance between points that should be collected into

one cluster. The result of the proposed point cloud algo-

(a) Point cloud input

(b) Point cloud output

Figure 7: The figure shows the input-output pair of the pro-

posed point cloud algorithm.

rithm is visualised in figure 7.

Before the dendrometry data is collected, each cluster is

analysed to ensure that the given cluster indeed contains a

tree. First, only clusters that have at least 250 points are

processed further. Clusters with less than 250 points are

considered too small to contain a model of an orchard tree.

Next, the clusters are investigated if they contain a full or

just a partial model of a tree. This is done by iterating over

all the points in the cluster and checking the distance of each

point from the boundaries of the ROI. If any of the points

is closer than 5 cm to the ROI boundary, it is assumed that

the object in the cluster continues behind the boundaries.

Therefore, the object in the cluster is only partial and thus

unsuitable for dendrometry collection.



Figure 8: Graph of mean average precision and loss during

500 epochs of training YOLOv3.

The last two checks evaluate the geometrical properties

of the cluster. The cluster has to be taller than 1.25 m, while

also being taller than it is wide. These two properties were

selected as it has become clear during the development of

the algorithm that they are commonly present in the clus-

ters containing trees. Finally, to collect the dendrometric

data, the height of each cluster is calculated. The height is

calculated as the difference between the maximum and min-

imum Y coordinate of the cluster. Moreover, the height is

then lengthened by 30 cm to compensate for the RANSAC

procedure and the possible loss created by multiple filtering

processes. The flowchart of the proposed algorithm can be

seen in figure 6.

7. RGB tree detection

The CNN approach for detecting apple trees in RGB im-

ages is based on the YOLOv3 object detection framework,

which is based on the Darknet-53 CNN architecture [16].

YOLOv3 was chosen as it is shown to have very good detec-

tion rate and performs well on live recording. The proposed

network is developed through transfer learning on the pre-

trained YOLOv3 weights from Joseph Redmon et al., which

has been trained on the COCO dataset [15]. A smaller 23

layer YOLOv3 implementation known as YOLOv3-tiny is

also proposed. It should provide faster processing time and

can work well when working with few classes [17]. The

YOLOv3-tiny is also developed with transfer learning from

weights pretrained on the COCO dataset.

8. Experiments and results

8.1. Experiments

The mapping was tested by autonomously mapping the

simulated orchard one time using the predetermined scout-

ing waypoints and the navigational system. This is to ensure

that the expected map in simulation covers the entire field.

The position of trees within the orchard is estimated

based on the point cloud created during the mapping pro-

cess. This estimated position will be compared to the actual

tree position from the simulated environment in Gazebo, to

evaluate the deviation from ground truth.

Precision and recall will be used to evaluate the proposed

CNN and PCP methods. The YOLOv3 and YOLOv3-tiny

framework is implemented using Erik Linder-Norén’s

GitHub repository [9] in a PyCharm environment, running

on a desktop PC with a RTX 3070 GPU. The training is

performed using the data as described in section 5 with a

80/20% distribution of training and validation data. For

YOLOv3, the batch size is constrained by the RAM of

the GPU and cannot be above 8, therefore 8 is chosen as

the batch size. For YOLOv3-tiny the batch size of 16 is

used for training. The learning rate is set to 0.0001 for

both implementations. The training is initialised with the

pretrained weights and is trained for 1000 epochs [15]. The

loss and mean average precision (mAP) of each epoch is

plotted and saved, such that the set of weights achieving

the highest mAP can be extracted and used for detection.

The loss and mean average precision during training can be

seen in figure 8.

During the detection of apple trees a bounding box is

created around each instance of the class. The placement of

the bounding box can then be used to estimate the propor-

tions of the tree by using the distance to the tree obtained

from the drone position and estimated tree position. These

metrics were selected so that the point cloud algorithm can

be directly compared with the performance of the neural

network.

Because no classification is done on the detected clusters

in the PCP algorithm, some of the terms related to the

precision and recall calculation must be slightly adapted.

These terms are true positives, false negatives, and false

positives. Clusters containing a single full tree model,

that can be used for estimating dendrometry data, will be

considered true positives. Full tree models, visible in the

input data, that were not segmented into any cluster will

be considered false negatives. Finally, any other type of

clusters will be considered false positives.

The CNNs which will be tested is YOLOv3 and

YOLOv3-tiny with 0.25, 0.50, and 0.75 intersection over

union(IoU). The recall and precision of methods are cal-

culated from testing on the testing dataset of 214 RGB-D

images. The equations for precision and recall are shown

in eq. 2 and eq. 3. The processing time during testing is

recorded.



Method Avg. Precision Recall Layers Parameters FPS

YOLOv3 IoU25 78.04% 81.42% 53 6.1·107 65.5

YOLOv3 IoU50 63.53% 70.09% 53 6.1·107 65.5

YOLOv3 IoU75 22.53% 29.58% 53 6.1·107 65.5

YOLOv3-tiny IoU25 76.55% 80.39% 23 8.6·106 104.2

YOLOv3-tiny IoU50 52.86% 63.99% 23 8.6·106 104.2

YOLOv3-tiny IoU75 3.31% 14.15% 23 8.6·106 104.2

Point Cloud Processing 76.72% 86.2% - - 2.1

Table 1: Table of tree detection results, comparing the CNN based method on RGB data with Point Cloud Processing.

YOLOv3 and YOLOv3-tiny were tested with 0.25, 0.50, and 0.75 intersection over union (IoU).

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

TP = True positives

FP = False positives

FN = False negatives

The PCP and CNN test will also be compared by evalu-

ating their ability to extract dendrometry data. 110 RGB-D

images containing 25 trees are used for testing. All trees are

present in more than one image. If a tree is detected more

than once, the average of the predicted height is used to

compare to the ground truth, which is measured manually.

8.2. Results

The mapping test shows that navigating the drone be-

tween the predetermined scouting waypoints in the simula-

tion enables the OctoMap package to create a map which

captures the entire field. This evaluation is based on visual

inspection of the map which was created during this pro-

cess. The map has some gaps in the ground plane, but the

trees appear to be mapped in full detail, including both the

canopy and the stem.

The results when comparing the estimated and actual

values of the (X,Y) tree centre position in the simulated

environment show a maximum deviation in estimated tree

centre position in both X and Y coordinates of 0.05m.

Results of the tree detection test can be reviewed in ta-

ble 1. Examples of good and bad detection results are

shown in figure 9. The number written in the corner of the

bounding box indicates the estimated tree height.

The compared results for tree height estimation can be

seen in table 2. All 25 trees where detected at least once,

with all three methods during the test.

Method Mean error[cm] σ Tree height [cm]

YOLOv3 20.6 15.16

YOLOv3-tiny 28.2 17.74

Point Cloud Processing 20.4 18.02

Table 2: Table showing the error of the height estimation

and standard deviation of the calculated tree height com-

pared to ground truth tree height.

(a) Good detections

(b) The three images show false positives, badly sized bounding

box, and false negative, respectively

Figure 9: The figure shows examples of good and bad detec-

tion results. The number written in the corner of the bound-

ing box indicates the estimated tree height.



9. Discussion

The obtained results of tree detection and dendrometry

are influenced by the data gathered for the training and test-

ing of both the RGB approach and the PCP approach. The

RGB data has a significant amount of noise from both back-

ground trees and ground vegetation, which influences the

results of the CNN.

The issue with the proposed PCP algorithm is the cho-

sen clustering method. Using the Euclidean distance be-

tween points is an effective condition for grouping, but it

fails once the tree branches become mixed or the ground

vegetation grows too close to the tree’s stem. Ground veg-

etation did not present problems for the CNNs. Moreover,

the PCP algorithm was developed to be used on the trees

with leaves. However, due to the change of season that oc-

curred during the development, all the apple trees in the or-

chard had dropped their leaves by the time of testing, leav-

ing the testing dataset of poor quality. If the testing was to

be performed on the dataset of trees with leaves, the mean

error in height estimation is expected to drop.

Looking at the raw data alone, the trees are much clearer

when captured with 3D data. This is mainly due to the

depth data being limited to 3 meters, where the RGB can

have several trees in the background. A problem observed

with the CNNs during testing was how the bounding boxes

were placed compared to the actual trees. A bounding box

was often too large due to including some parts from the

forest in the background. This gives the PCP an advantage

when segmenting, because the trees in the background are

not a factor as they are for the RGB detection. However,

the frame rate achieved by the neural network is consider-

ably higher than that achieved by the point cloud algorithm.

Furthermore, the same tree will appear in the data stream

several times, so a lower computation time will allow for

the algorithm to run detection more times and thereby in-

crease the chance of detection.

The mapping and estimation of tree position is accurate

when performed in simulation and on data gathered from

here. This indicates that both the developed navigational

system and the tree position algorithm are theoretically ap-

plicable when tested on simulated data. However, further

testing, under real-life conditions, is required to evaluate

said systems properly.

10. Conclusion

This paper examined two methods of detecting apple

trees at an orchard, and determining their dendrometry;

CNN on RGB images, and point cloud processing. Fur-

thermore, the paper examined the possibility of record-

ing RGB-D data automatically, using a drone to navigate

around an orchard based on the calculated waypoints. The

paper shows that it is possible to navigate a drone and col-

lect data in a simulated orchard environment based on the

navigational capabilities of the hector quadrotor, MoveIt,

and the 3D occupancy grid map created using OctoMap.

From the downsampled point cloud it is possible to accu-

rately estimate the position of the trees. In addition, it is

shown that the apple trees can be detected in RGB images

with 63.53% precision and 70.09% recall using YOLOv3

IoU50 and 76.72% precision and 86.2% recall using PCP.

Using YOLOv3, it was possible to calculate tree height with

a 20.6 cm mean error, while PCP estimated tree height with

a 20.4 cm mean error. Both methods show that they are vi-

able options for automatic collection of dendrometry data

from trees as they detected all 25 trees at least once during

dendrometry testing. PCP shows better results compared

to YOLOv3 for detection precision, but trades off process-

ing time. Further research could be done on developing

an approach that combines YOLOv3 and the proposed PCP

method. If a high FPS is needed, YOLOv3 can be used for

fast detection of trees, while PCP can perform more precise

detection at lower FPS. Additionally, dendrometry estima-

tion could be expanded to include other parameters like the

diameter of the stem and crown or the tree’s shape.
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