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Abstract

Globally, pollinators affect 35% of agricultural land and

play a key role in food production. Consequently, monitor-

ing is useful to understand the contribution insects make

towards crop pollination. Traditional sampling techniques

used in insect monitoring have several drawbacks, includ-

ing that they are labour intensive and potentially unreli-

able. Some of these drawbacks may be overcome using

computer vision and deep learning-based approaches to au-

tomate pollination monitoring. In this paper, we present

a pipeline for computer vision-based pollination monitor-

ing and propose a novel algorithm, Polytrack, that tracks

multiple insects simultaneously in complex agricultural en-

vironments. Our algorithm uses deep learning and fore-

ground/background segmentation to detect and track in-

sects. We achieved precision and recall rates of 0.975 and

0.972 respectively when monitoring honeybees foraging in

our test sites within the polytunnels of an industrial straw-

berry farm. Polytrack includes a flower identification mod-

ule to automate collection of insect-flower interaction data,

and a low-resolution processing mode that reduces compu-

tational demands placed on the processor to bring the soft-

ware towards the requirements of low-powered monitoring

hardware.

1. Introduction

Pollination is an integral requirement for food produc-

tion and management of global ecosystems. Pollinators af-

fect 35% of global agricultural land [15], supporting over

87 food crops worldwide [2]. The annual market value of

animal pollination in global crop production is estimated to

be around $235-577 billion USD [33]. Numerous insects

including bees, flies, butterflies and ants contribute to crop

pollination [33, 35]. However, insect species may vary in

their pollination efficiency. In many instances, crop yield is

directly correlated with pollinator population size [39] and

improved pollinator habitat management can increase crop

yield by as much as 25% [16]. Hence, understanding the

pollinator communities of a particular crop and their effec-

tiveness is essential in improving crop yield and the long

term viability of a farming project [17].

Insect monitoring and sampling can be used to under-

stand the role of pollination services of different species

to a crop or an ecosystem. The economic benefits associ-

ated with pollination monitoring are estimated to exceed the

costs incurred in implementing such services [9]. The im-

portance of pollination monitoring has become more critical

than ever because of increased insect population declines

[34] caused by climate change [23] and other human activ-

ities [43, 29].

Direct observations and pan-traps are two widely used

insect pollinator monitoring techniques [49]. Direct obser-

vation is an active method of surveying where observers

conduct transect walks or observe a fixed area to count and

identify insect visitors. Although direct observations are of-

ten straightforward to conduct, they may be unintentionally

biased [14, 41] and the quality of observations may depend

on the expertise of the observer [44]. Also, as the sources

of observations are not preserved, the accuracy of data may

later be questioned [13], especially because human attention

can be poor for non-foveal visual tasks and moving objects

[20].

Pan-traps are a passive method of insect sampling where

painted water-filled bowls are used to trap insects. Com-

pared to direct observations, pan-traps can sample more in-

sect species [49] and are better suited to taxonomic cate-

gorisation since the insects themselves are retained for later

examination. But results of pan-trapping may be biased as

some insect species are unlikely to get caught [10], and pan

traps provide no functional evidence that an insect does visit

or pollinate flowers.

Researchers and agriculturists use data from pan-



trapping and observations to predict the value of insect

species to crop pollination. However, these sampling tech-

niques can only be used to collect data related to insect

abundance, not pollination behaviour. This might prompt

researches to incorrectly identify plant visitors as pollina-

tors [28]. Computer vision and deep learning-based tech-

niques can be used to overcome these drawbacks with tra-

ditional surveying techniques by analysing insect behaviour

and maintaining event and interaction records [13, 30, 21].

Computer vision can be used to monitor pollination by

tracking insect pollinators in high spatiotemporal resolution

[21]. Previously, computer vision-based tracking programs

have been developed to research the behavioural traits of

insects [8, 32, 47]. However, their application is often con-

fined to laboratories and controlled environments, and many

require human intervention [19]. Tracking insect pollina-

tors in natural environments is complex because these are

highly dynamic and subject to changes in illumination and

movements caused by wind and animals. The insect be-

haviour itself may further complicate tracking as they may

leave or enter a video frame arbitrarily or crawl behind

leaves. To be of practical value a computer vision-based

pollination monitoring system should be robust enough to

track insects through the aforementioned complexities with-

out human intervention.

Previous research has proposed a Hybrid Detection and

Tracking (HyDaT) algorithm [36] to track individual hon-

eybees foraging among wildflowers. HyDaT tracks one in-

sect at a time and requires preprocessing of videos to track

multiple insects. This makes it unsuitable for pollination

monitoring as often multiple insects forage in an area simul-

taneously, and preprocessing hours of videos can be labori-

ous and prohibits time-sensitive real world interventions to

modulate and improve pollination outcomes.

In the current work, we extend the methods of HyDaT

and propose a novel algorithm ”Polytrack” capable of track-

ing multiple insects simultaneously, to facilitate automa-

tion.

The primary contributions of this work are:

• A computer vision-based pollination monitoring

pipeline.

• An algorithm (Polytrack) to track multiple insects si-

multaneously in agricultural setups.

• A flower identification module and low-resolution pro-

cessing mode.

• Pretrained YOLOv4 model and Polytrack software 1.

2. Related Work

In this section, we summarise computer vision-based in-

sect tracking focusing on suitability for pollinator monitor-

1https://github.com/malikaratnayake/Polytrack_v1
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Figure 1: Difficulty associated with detecting the posi-

tion of an insect (honeybee) in a windy environment.

(a) RGB image of the video frame. (b) Foreground masks

obtained using foreground/background segmentation (KNN

background subtractor [53]). Pixels belonging to moving

objects are indicated in white. Position of the insect is

marked with a red circle.

ing. Tracking insects consists of two main components, de-

tecting the position of the insect in a frame, and building a

coherent trajectory by linking positional data across frames

[13].

Previous algorithms have used invasive and non-invasive

methods to detect and track insects. Invasive methods that

mark insects with tags are unsuitable for pollination moni-

toring as tagging insects is laborious and unrealistic, in agri-

cultural setups. Therefore, non-invasive techniques with un-

marked insects are more suitable for pollinator monitoring.

Segmentation methods such as foreground/background

(FG/BG) segmentation and thresholding are widely used in

unmarked insect tracking to identify the position of insects

in a video frame [32, 8, 26, 50, 31, 37, 47]. FG/BG segmen-

tation or colour thresholding techniques are efficient in con-

trolled environments where background and illumination

are constant and a significant contrast exists between ob-

jects and their background [13]. However, pollinator moni-



toring in semi-controlled or uncontrolled dynamic environ-

ments makes the application of background-subtraction for

pollinator monitoring highly challenging (Figure 1).

Deep learning facilitated detection and tracking tech-

niques help to overcome drawbacks associated with FG/BG

segmentation techniques. Convolutional Neural Networks

(CNN) can be used in taxonomic identification [27, 42]

and detection of insects in individual frames irrespective of

inter-frame changes and complex patterns in the frame[38,

4, 42, 6, 22, 12]. However, deep learning-based techniques

require training with a large dataset to work efficiently [5]

and require relatively high computational resources.

The drawbacks of the above detection methods are

overcome to some extent by the hybrid detection algo-

rithm, HyDaT [36]. It uses both FG/BG segmentation and

deep learning-based models for detection and intelligently

switches between the two detection models based on the

variations in the background of the video. The modular de-

sign of HyDaT enables the use of different detection mod-

els. In the current work, we adopt the main working princi-

ples of HyDaT algorithm to track multiple insects simulta-

neously in an agricultural environment.

3. Methods

3.1. Computer Vision­based Pollination Monitoring

In this section, we propose a pipeline for computer

vision-based pollination monitoring that consists of three

stages (Figure 2). The initial stage is for data acquisition

where cameras or IoT-based devices such as a Raspberry

Pi are deployed to record videos of pollinators. In the

data extraction stage, recorded videos are processed using

tracking algorithms such as Polytrack to extract pollinator

movements and flower positions. In the third stage of the

pipeline, extracted tracks are analysed to draw conclusions

on pollination levels of flowers, pollinator abundance and

pollination efficiency of insects.

3.2. Polytrack Algorithm

Polytrack is designed to extract pollination related data

from video recordings. These data include the position of

flowers and insect movement trajectories. To enable effi-

cient pollination monitoring Polytrack is equipped with: (i)

a flower identification component to analyse video frames

and detect fully open flowers; (ii) a detection and tracking

component to track pollinators from their first appearance

in the video to their exit; (iii) a low-resolution mode to ac-

celerate video processing when there are no insects in the

camera view. An overview of Polytrack is shown in Figure

3. The rest of this section presents each component.

Figure 2: Proposed pipeline for computer vision-based

pollination monitoring.

3.2.1 Flower Identification

Locating the positions of flowers is important when moni-

toring pollinators and assessing their efficiency. At the start

of each video sequence, Polytrack uses the deep learning-

based detection model (Section 3.2.2) to identify the posi-

tion of flowers in the frame. The position and area of each

fully open flower is recorded for later analysis.

3.2.2 Detection and Tracking

We extend the methods presented in HyDaT [36] to track

multiple insects simultaneously from their first appearance

in the video to their exit. Like HyDaT, Polytrack is designed

with a modular architecture, where any detection model

can be used based on the application and current state of

the art. For the current implementation, we used YOLOv4

as the deep learning-based detection model and K-nearest

neighbours-based (KNN) segmentation algorithm [53] as

the foreground/background segmentation-based detection

model.

Deep learning-based detection model. We use a Convo-

lutional Neural Network (CNN)-based YOLOv4 object de-

tection algorithm [3] for its speed and accuracy [3]. The use

of a deep learning model enables important taxonomic iden-

tification of specific insects, enabling species-wise pollina-

tion evaluations. In the current implementation, YOLOv4

model will be used to identify a specific insect species. De-

tails on the dataset preparation and training are provided in

Section 4.1.



Figure 3: Overview of the proposed Polytrack algorithm. Methods adopted from HyDaT [36] are highlighted in brown.

Foreground/background (FG/BG) segmentation-based

detection model. We use K-nearest neighbours (KNN)-

based foreground/background segmentation [53] (OpenCV

3.4.1 [7]) to detect foreground changes in the video. The

resulting binary image is passed through a median filter

and an erosion-based morphological filter to remove noise.

Next, contours of the foreground detections are extracted

from the binary image and filtered based on their enclosing

area to remove areas of movement less than a predetermined

minimum pixel count covered by the focal insect.

At the start of each video sequence, Polytrack uses the

deep learning-based detection model to identify and record

the position of flowers in the frame. After the flower identi-

fication, the algorithm processes the video in low-resolution

(Section 4.3) until an insect is detected.

When an insect appears in the frame, the deep learning-

based model detects its position and then identifies the

species. If multiple insects are detected simultaneously, the

algorithm evaluates the accuracy of each respective detec-

tion and identification based on the associated confidence

of detection and the distance between each. This approach

ensures individual insect tracking with a low probability

of false positives. When an insect is detected, Polytrack

switches to full-resolution processing to enhance accuracy.

After the initial detection of an insect, if there are a low

number of regions of inter-frame change apparent within the

frame, FG/BG segmentation is used to identify the position

of the insect in subsequent frames, otherwise deep-learning

is used to minimise false-positive detections. Whenever

FG/BG segmentation is unable to locate the position of an

insect, deep learning is used for individual detection.

When multiple insects are being tracked simultaneously,

Polytrack first utilises FG/BG segmentation to identify their

positions. If the positions of one or more insects are not de-

tected using this model, deep learning-based detection will

be used to detect the remaining insects. If any detections

cannot be associated with a given track, the deep learning

model is used to identify the possible appearance of a new

insect.

Missing insects. When both detection models fail to de-

tect the position of an insect being tracked, it will be consid-

ered a “missing” insect. If the last detected position of the

insect is at the edge of the frame and the predicted position

for the current frame is out of the frame border, the track is

terminated assuming the insect to have left the frame. How-

ever, if the insect last appeared in the middle of the frame,

the algorithm waits for the insect to be re-detected within a

predefined radius from its predicted position. (This models

predictive behaviour that helps allow human brains to solve

occlusion problems [46].) If the insect is not detected within

a predefined number of frames, the track is terminated.



Data association. Polytrack is designed to track multi-

ple insects simultaneously from their first appearance in

the video until they exit the camera’s view. A “predict

and detect” approach based on a constant velocity model

is used to calculate an insect’s track over successive frames.

This method was considered over the Kalman filter [48] ap-

proach due to the high variability in insect movement across

successive frames. Using the constant velocity model, in a

set of three successive frames, the predicted position of the

insect in the third is calculated from the detected positions

in the first two frames, assuming constant insect velocity

over the three frames [51, 25]. The predicted position Pk of

the insect in frame k of the video is defined as:

Pk = [xpk, ypk]
T = A ∗ [Dk−1, Dk−2]

T (1)

where,

A =

[

2 0 −1 0
0 2 0 −1

]

In equation 1, xpk and ypk refer to coordinates of

the predicted position of the insect in frame k and

[Dk−1, Dk−2] are the detected positions of the insect in the

two previous frames.

When an insect is first detected, the predicted position

for the next frame is assumed to be the same as its current

position (as there are no preceding frames). We used the

Hungarian algorithm [24] to associate predicted positions

of insects with detections to form a track. The Hungarian

algorithm requires a square cost matrix for accurate asso-

ciation. However, due to missing insects and false-positive

detections caused by changes in the environment, the result-

ing cost matrix might not be square. In such instances, the

cost matrix of the Hungarian algorithm is padded with zeros

to construct a square matrix.

3.2.3 Low-resolution processing

Video sequences recorded in agricultural setups may con-

tain extended periods where no pollinator is present within

the camera field of view. Processing videos in high-quality

during these periods wastes computer resources. As a solu-

tion, we introduced a low-resolution processing mode that

processes video in low-resolution when no insects are be-

ing tracked. (This mirrors how the primate visual system

efficiently solves detection and tracking tasks [52].)

In low-resolution processing mode, the resolution of the

original video is reduced and processed using the FG/BG

segmentation-based detection model. If there are significant

changes in the foreground, corresponding pixel blobs will

be analysed based on their area. The minimum area covered

by an insect in the low-resolution mode (areaLR) is defined

as follows.

areaLR =

[

wLR × hLR

wFR × hFR

]

× areaFR (2)

where, wLR and hLR are the frame width and height in

the low-resolution mode, wFR and hFR are the frame width

and height of the original video and areaFR is the mini-

mum area covered by the insect in the original video. If the

FG/BG segmentation-based model detects blobs of moving

with an area greater than areaLR, frames will be processed

using the deep learning-based detection model to identify

insects. Upon detection of an insect, Polytrack switches to

full-resolution processing to track it.

4. Experimental Evaluation

In this section, we present implementation details (Sec-

tion 4.1), compare the performance of our algorithms

against state-of-the-art methods and ground observations to

evaluate its tracking accuracy (Section 4.2) and the perfor-

mance of the low-resolution mode (Section 4.3). Finally,

we present an example data analysis to demonstrate the ca-

pabilities of our methods in pollination monitoring (Section

4.4).

4.1. Implementation details

Data acquisition. Data required for the study was

recorded at Sunny Ridge strawberry farm, Victoria, Aus-

tralia in March 2020. Honeybees (Apis mellifera) were used

as the study subject since they are a pollinator of strawberry

[17] and are used around the world as managed pollinators.

49 videos, each five minutes long, totalling up to four hours

in length, were recorded between the hours of 10am and

2pm in a strawberry polytunnel at the farm. We used a

Raspberry Pi Camera v2 with video resolution 1920×1080,

30 fps. The camera was set approximately 70 cm above the

strawberry flowers. Dimensions of the area covered by the

camera were 600mm× 340mm (width of a planted hydro-

ponic strawberry row), the average area covered by a hon-

eybee at this range was 1001 ± 475.3 pixels.

Dataset preparation and training the YOLOv4 model.

We created a custom dataset of 411 images with 456 hon-

eybee instances and 87 strawberry flowers. The prepared

dataset was annotated with bounding boxes using the Com-

puter Vision Annotation Tool [40]. The YOLOv4 model

was then trained using Tensorflow [1] with a learning rate

of 0.001. The Mean Average Precision (mAP) of the trained

model was 94.9%.

Development of software. The software was developed

in Python (3.7.0) with Computer Vision Library (OpenCV)

3.4.2 and Tensorflow 2.3.0. Experiments were conducted

in MASSIVE high computing infrastructure [18] with Intel



Xeon Gold 6150 (2.70 GHz) CPU, 55 GB RAM, NVIDIA

Tesla P4 GPU and CentOS Linux (7). Data analysis was

conducted using NumPy 1.16.2, Pandas 0.24.2 and Mat-

plotlib 3.0.3.

4.2. Detection rate and tracking accuracy

The detection rate and tracking accuracy of the Polytrack

algorithm were evaluated for 5 test videos by using preci-

sion (Equation 3) and recall (Equation 4) rates as evaluation

matrices.

Precision =
TruePositive

TruePositive+ FalsePositive
(3)

Recall =
TruePositive

TruePositive+ FalseNegative
(4)

where TruePositive is the total number of correct de-

tections in all frames; FalseNegative is the total num-

ber of undetected honeybees in frames and FalsePositive

is the total number of incorrectly detected positions of

honeybees. Identity swaps in tracks were recorded as

FalsePositives. Test videos comprised of instances where

no honeybees, one honeybee or multiple honeybees were

present simultaneously in a video frame. All videos con-

tained natural variations in background and foreground il-

lumination and foliage movement (Figure 4).

We compared the performance of the Polytrack algo-

rithm against HyDaT [36] and stand-alone YOLOv4 [3] de-

tection. We found it meaningless to compare our results

with other existing insect tracking software as they were de-

signed to track insects in controlled environments and failed

to differentiate background movement from insect move-

ment during pilot studies. Table 1 presents details of test

videos and tracking results.

In our test videos, Polytrack was able to track honey-

bees with an overall precision of 0.975 and a recall of

0.972. Compared to HyDaT and YOLOv4 model, Poly-

track achieved higher recall rates for four test videos and

the overall increase in recall value was 18% and 14% re-

spectively, which was an 84% and an 81% relative reduc-

tion in error compared to HyDaT and YOLOv4 respec-

tively. Polytrack uses a combination of deep learning and

FG/BG segmentation-based detection models to identify in-

sect position. This enables Polytrack to be used with a

deep learning model trained with a small training dataset

and still achieve higher recall compared to stand-alone deep

learning-based detection. YOLOv4 detected insect posi-

tions with higher precision for 3 test videos. However,

the overall precision of YOLOv4 was 0.846 due to iden-

tity swaps. Polytrack obtained an overall precision score

of 0.975, which was a 15% improvement (84% relative re-

duction in error) compared to the second best stand-alone

Figure 4: Box plot showing the distribution of the num-

ber of image region changes per frame in test videos.

The number of image regions is the number of non-

intersecting regions of area greater than that of the honey-

bee. The red diamond indicates the mean value and orange

line shows the median.

YOLOv4. In most cases, Polytrack was able to track insects

from their first appearance in the frame to the exit without

breaking the track and while maintaining their identities.

The HyDat algorithm partially or completely missed track-

ing when multiple honeybees were present inside the frame.

4.3. Low­resolution mode

We evaluated the effectiveness of the low-resolution pro-

cessing mode to increase tracking speed for five test videos.

All videos consisted of periods where there was no hon-

eybee present inside the frame. We compared the total

processing time and average processing speed (frames per

second) with and without using low-resolution processing

mode. A resolution of 852×480 was used in low-resolution

mode to process videos. Results are shown in Table 2.

The low-resolution mode reduced total processing time by

61.2% and increased processing speed by a factor of 2.58

(258%) in our sample videos.

4.4. Example data analysis

In this section we present an example data analysis

demonstrating the application of our methods for pollina-

tion monitoring. We used Polytrack to extract flower po-

sitions and movement trajectories of honeybees from the



Table 1: A quantitative comparison of the Polytrack algorithm’s tracking performance against HyDaT [36] and stand-

alone YOLOv4 [3]. Algorithm performance is assessed using precision and recall matrices. # HBs in video denotes total

number of honeybees recorded in the video sequence and the maximum number of honeybees recorded simultaneously is

presented in brackets. The best performing algorithm is presented in bold.

Video
Total

frames

# frames

with HBs

# HBs in

video

No. of tracks generated Precision Recall

Polyt. HyDaT YOLO Polyt. HyDaT YOLO Polyt. HyDaT YOLO

V1 8078 650 2 (1) 2 2 41 0.995 0.992 1.000 0.980 1.000 0.784

V2 7541 398 2 (2) 2 2 31 0.997 0.994 1.000 1.000 0.884 0.857

V3 7895 564 5 (1) 62 62 241,2 0.857 0.793 0.882 0.986 0.890 0.656

V4 8183 2106 3 (2) 3 4 1 3 0.999 0.997 0.999 0.996 0.961 0.934

V5 8212 1573 6 (3) 8 3 3 4 8 3 0.977 0.440 0.497 0.925 0.447 0.823

Overall 39909 5291 18 21 17 42 0.975 0.831 0.846 0.972 0.826 0.852

1 Multiple tracklets generated by a single honeybee.
2 New track generated by false-positive detections.
3 Honeybee(s) occluded from the view generated multiple tracklets.
4 Completely missed honeybees.

Table 2: An analysis of processing speed of the Polytrack

algorithm with and without the low-resolution process-

ing mode. Processing time denotes the time taken by the al-

gorithm to process a video and the processing speed shows

the average number of frames processed in a second.

Video
Processing Time (sec) Processing Speed (fps)

With

Low-Res

Without

Low-Res

With

Low-Res

Without

Low-Res

V1 283.08 797.35 28.54 10.13

V2 225.31 701.56 33.47 10.75

V3 272.85 748.41 28.94 10.55

V4 366.21 754.85 22.35 10.84

V5 343.79 839.36 23.89 9.78

Overall 1491.24 3841.53 26.76 10.39

dataset (Section 4.1). Figure 5a shows the field of view of

the camera and position of flowers automatically extracted.

Polytrack processed 4 hours of video at 31.12 fps and ex-

tracted 85 honeybee tracks (Figure 5b).

In strawberry, cross-pollination leads to a higher qual-

ity fruit set [45]. To encourage cross-pollination, different

varieties of strawberries are planted in adjacent rows. The

level of cross-pollination can be estimated through the gen-

eral pollen flow direction, which is usually dictated by the

pollinator movement direction. Figure 5b shows a map of

honeybee trajectories extracted using Polytrack and calcu-

lations of general pollen flow direction.

The number of visits to a flower is an important indica-

tor of its pollination level. Research shows that strawberry

flowers required at least 4 visits from pollinators to fully

fertilise a flower [17, 11]. Similarly, time spent by pollina-

tors on flowers increases the level of pollen dispersal, and

the quality of pollination [11]. Figures 5c and 5d show the

number of honeybee visits each flower in the field of view

of the camera received and the distribution of time spent by

honeybees on each flower during the study period.

5. Future Work

We identify several improvements to our methodology

for future work. Currently, Polytrack requires several pre-

defined parameters to facilitate the tracking process. Au-

tomating parameter selection will enable wide use of our

methods with minimum setup. Also, we plan to develop

a lighter version of the algorithm which can run on IoT de-

vices such as Raspberry Pi and NVIDIA Jetson. This would

enable real-time processing of video data, giving access to

instantaneous pollination information. The current imple-

mentation works with a fixed camera setup. However most

commercial agriculture extends over large areas and mon-

itoring pollinators using fixed cameras would not be prac-

tical or cost-effective. Therefore, as future work, we plan

to extend our methods to monitor pollinators with moving

cameras. Furthermore, the current implementation of the al-

gorithm works well in crops with flowers arranged in essen-

tially a two-dimensional carpet. Nevertheless, some crops

are more three dimensional in structure, and it would be

beneficial for future work to extend the methods to accom-

modate three-dimensional tracking.

6. Conclusions

With the increase in global food demand and the de-

cline of pollinator populations, it has become very impor-

tant to monitor and manage insect pollinators carefully to

maximise food production. Although currently, traditional



(a) (b)

(c) (d)

Figure 5: Pollination monitoring analysis conducted on trajectories extracted using Polytrack. (a) The field of view

of the camera and the flowers identified through the algorithm, (b) Extracted honeybee trajectories. The blue arrow shows

the general direction of the pollen flow calculated as the mean direction of travel vector for all honeybee travel segments in

the sequence, (c) the Number of visits made by honeybees to each flower in the video frame. Redline shows the minimum

number of visits required to fertilise a strawberry flower [17, 11], (d) The box plot shows the distribution of time honeybees

spent foraging on flowers. The red diamond indicates the mean value and orange line shows the median.

insect sampling techniques such as pan-traps and visual

observations are used for this purpose, there are several

drawbacks associated with them. The use of computer vi-

sion techniques in pollinator monitoring has the potential

to overcome most of these drawbacks. In this research,

we propose a pipeline for computer vision-based pollina-

tion monitoring. To facilitate extracting pollination related

data from videos we present a novel pollinator monitoring

algorithm, Polytrack, capable of tracking multiple insect

pollinators simultaneously in complex agricultural setups.

Polytrack consist of components to (i) identify the position

of flowers in a frame; (ii) detect and track insect pollina-

tors; (iii) accelerate the tracking process. Our algorithm

achieved a precision rate of 0.975 and a recall rate of 0.972

in our experiments, which is an improvement over the avail-

able alternatives. We demonstrate the use of our algorithm

by analysing the pollination behaviour of honeybees forag-

ing in a strawberry polytunnel. We calculated pollination

related matrices such as pollen flow direction, flower vis-

its and foraging time on flowers, which would have been

infeasible with other pollination monitoring techniques.
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