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Abstract

Timely and accurate crop type classification plays an es-
sential role in the study of agricultural application. How-
ever, large area or cross-regional crop classification con-
fronts huge challenges owing to dramatic phenology dis-
crepancy among training and test regions. In this work,
we propose a novel framework to address these challenges
based on deep recurrent network and unsupervised domain
adaptation (DA). Specifically, we firstly propose a Tempo-
ral Spatial Network (TSNet) for pixelwise crop classifica-
tion, which contains stacked RNN and self-attention module
to adaptively extract multi-level features from crop samples
under various planting conditions. To deal with the cross-
regional challenge, an unsupervised DA-based framework
named Phenology Alignment Network (PAN) is proposed.
PAN consists of two branches of two identical TSNet pre-
trained on source domain; one branch takes source sam-
ples while the other takes target samples as input. Through
aligning the hierarchical deep features extracted from two
branches, the discrepancy between two regions is decreased
and the pre-trained model is adapted to the target domain
without using target label information. As another contri-
bution, a time series dataset based on Sentinel-2 was an-
notated containing winter crop samples collected on three
study sites of China. Cross-regional experiments demon-
strate that TSNet shows comparable accuracy to state-of-
the-art methods, and PAN further improves the overall ac-
curacy by 5.62%, and macro average F1 score by 0.094
unsupervisedly.

1. Introduction

Time series crop classification aims to depict the type
and distribution of crops over the research area accurately,
which is fundamental to agricultural resources allocation
and policy decision [12]. With the advent and develop-

ment of machine learning algorithms, multiple temporal and
spectral information can be extracted automatically from
satellite imagery time series (SITS) and the classification
maps are produced without labor-intensive ground survey
work [5, 16, 21]. However, current researches are highly lo-
calized and confront huge challenges including invalid fea-
tures and model failure problem in cross-regional crop clas-
sification.

There are mainly two reasons resulting in the model fail-
ure of cross-regional mapping. Firstly, the phenology char-
acteristic of a same crop type considerably differs between
regions owing to different climate conditions and plant
patterns, referred as phenology discrepancy phenomenon.
Specifically, the spectral appearance and phenology stages
of a same crop change, making hand-made features and the
pre-trained classifier invalid. Figure 1 illustrates this phe-
nomenon explicitly with the visual maps and the phenolog-
ical curves obtained from three study areas. Secondly, the
temporal discriminability of different region’s samples is in-
consistent. Typically, uniform image acquisition over large
area is impossible due to inevitable partial cloud, breed-
ing noise and missing information in time sereis imageries,
which aggravates the heterogeneity of crop samples from
different regions. The prior knowledge learnt from one
place, such as designed features and pre-trained models,
cannot reflect the distribution of samples in a new region,
causing enormous reduction of model’s performance. In
summary, it is necessary to develop a cross-regional crop
classification framework to extract generalized phenologi-
cal features from crop samples and adapt knowledge to new
regions.

In this work, we propose a generalized model, named
Temporal Spatial Network (TSNet) for time series crop
classification. To further tackle the cross-domain chal-
lenges, we propose a framework named Phenology Align-
ment Network (PAN) on the basis of TSNet. Specifi-
cally, the TSNet is formed by stacked Gated Recurrent
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Figure 1. The locations of our study sites are denoted by red dots in the left image and huge cross-regional phenological difference can be
observed. Clipped blocks of satellite images of three sites at the same date are listed on top right, where spectral differences exist in winter
crop samples. Furthermore, the mean temporal NDVI curves of winter wheat and rape in three regions are also compared on lower right,
showing that cross-regional phenology discrepancy exists in the same crop type.

Unit (GRU) layers combined with self-attention mecha-
nism. The deep recurrent network is to excavate the multi-
level features and temporal dependency from SITS which is
often ignored in machine learning methods and the attention
module is to handle heterogeneous crop samples under var-
ious environmental conditions adaptively. The PAN frame-
work aims to improve the accuracy of the pre-trained model
on the target region without additional labels. PAN consists
of two branches of pre-trained TSNet with shared parame-
ters for the source and target samples respectively as input.
The hierarchical phenological features of two domains are
aligned by Maximum Mean Discrepancy (MMD) loss [2] to
minimize the distance of feature distribution. By doing this,
the TSNet of target domain is fine-tuned by PAN and can
map the target domain’s data into the same feature space
as that of the source domain. In summary, the proposed
PAN can mitigate the regional discrepancy and improve the
cross-domain classification accuracy.

It is worth noting that the proposed PAN employs a to-
tal unsupervised strategy, merely making source and target
crop samples similar in the feature space without using
any annotation information of the target domain. And we
hope to offer a novel framework for large-area, national or
even global agricultural applications.

Contributions of this work are three-fold:

e We propose a generalized deep model named TSNet
for time series crop classification. Stacked GRU lay-
ers are utilized to extract robust phenological features
automatically from SITS and self-attention mechanism
is used to handle the heterogeneous input samples in a
data-driven way.

e We propose an unsupervised DA-based framework
named PAN to address the cross-regional crop clas-
sification challenges. MMD loss is used to decrease
the discrepancy of deep features between two domains,
adapting invalid models to new regions.

e Additionally, we annotated a time series crop dataset
based on Sentinel-2 images, which contains winter
crop samples with high intra-class variance from three
geo-scattered study sites of China. The cross-regional
experiments on this dataset verify the effectiveness of
our TSNet and PAN to tackle the challenges aforemen-
tioned.

The rest of paper is organized as follows. In Section 2,
we briefly review the related works. The detail of our anno-
tated dataset is introduced in Section 3. In Section 4, TSNet
and PAN framework are introduced systematically, and the
experiments are presented in Section 5. Finally, we con-
clude our work in Section 6.

2. Related Works

In this section, recent crop type classification researches
based on time series multi-spectral images are reviewed
firstly. Subsequently, related works about cross-regional or
large area classification are also summarized.

2.1. Time series crop type classification

Researches based on low and medium spatial resolution
satellites (from 10m to 100m) are inclined to use pixel-
based or patch-based methods instead of fully convolution
network [11, 15, 37]. The reason is that the convolution ker-
nel of large size is beyond the scope of a single field, leading



to mixed pixel noise and information confusion. The lack in
spatial information is compensated with temporal informa-
tion [4, 8]. [10] concluded that using multi-temporal satel-
lite images helps to achieve higher classification accuracy
compared to using merely single temporal image. Hence,
numerous researches aimed to exploit the rich information
in SITS to map crops.

Over recent years, many traditional machine learning
(ML) algorithms have been adopted by remote sensing com-
munity for the analysis and classification of SITS. Hand-
made features were designed and fed into ML classifier such
as decision tree [6, 23], support vector machine [19] and
random forest [7]. However, these methods are not designed
for time series analysis task, and only take the temporal fea-
tures as separate inputs without analyzing the sequential re-
lationship between different time stamps. Thus, these meth-
ods are not robust enough for cross-regional classification.
Besides, feature engineering turns out to be a challenging
task and heavily relies on expertise; designed features are
not representative enough when applying in large area.

Currently, with the success in all walks of research fields,
deep learning (DL) also aroused great interest in remote
sensing community [33, 36]. In view of its capability to
extract high level structural information, the feature engi-
neering work can be performed in a data-driven way. DL
models used in researches of time series crop classifica-
tion include two main architectures: convolutional neural
network (CNN) [17] and recurrent neural network (RNN)
[14]. [31] used modified pyramid scene parsing network
(PSPNet) to conduct the land cover classification on Gaofen
series satellite images. Yet under most cases, spatial con-
volutions are unsuitable as explained before. TempCNN
model [22] applied convolutions in both temporal and spec-
tral domains to take full advantage of temporal structure of
SITS. As another common structure, RNN is specialized for
comprehending sequential input data, thereby adopted more
widely. [34] explored Long Short-Term Memory (LSTM)’s
viability for identifying time series phenology curves de-
rived from Landsat satellite. Deep Crop Mapping (DCM)
model [30] added self-attention structure to LSTM for the
in-season classification in U.S. corn belt. Besides, [20, 24]
combined CNN and RNN to excavate spectral and tempo-
ral information simultaneously for classification and change
detection task. Furthermore, with the boom of Transformer
[28] in NLP, some up-to-date works employed such stacked
multi-head self-attention model to time series crop mapping
task [25, 26].

2.2. Large area or cross-regional classification

In a small area, the growth status and life cycle of a cer-
tain crop type will not change intensely, offering adequate
prior to infer most samples. However, outside the labelled
region, huge phenological difference exists in a same crop

type owing to different soil conditions and accumulated
temperatures, making cross-regional classification a chal-
lenging task. The existing works tackle the cross-regional
challenge from three perspectives:

Works from perspective of model aim to modify baseline
models in order to extract domain-insensitive and general-
ized features. [3 1] modified traditional PSPNet for cropland
extraction under various landscape. [30] adapted LSTM to
better integrate spectral and temporal information for large
area dynamic crops mapping. However, when enormous
discrepancy occurs between two regions, this strategy may
fail given that the discrepancy problem has not been solved
intrinsically.

Works from perspective of samples aim to finetune the
pre-trained model with a few high-quality samples in tar-
get domain, so that the new distribution can be learnt by
the original model. In [27], pseudo-labels with high confi-
dence were used to finetune deep models for country-wide
land cover classification. In [13], new samples from target
domains were annotated to adapt RF classifiers by active
learning. However, this approach involved in labeling a fi-
nite number of samples additionally, which is often imprac-
tical in large area researches. Besides, ample annotations
are demanded to finetune deep networks, consuming con-
siderable labor and time.

Works from perspective of features aim to map different
regions’ samples into the same feature subspace to reduce
the gap between deep features. [!8] introduced a domain
adaptation method to improve the overall accuracy of cross-
domain hyperspectral image classification. [I] and [35]
combined DA and adversarial learning for cross-regional
land cover classification, and both obtained accuracy im-
provement. To the best of our knowledge, we are the first
to apply unsupervised DA technique to cross-regional time
series crop classification.

3. Research Area

In this section, we prepare the time series Sentinel-2
imagery for the experiment. In Section 3.1, we describe
the study areas with various environmental conditions, and
the image acquisition and annotation procedure. The pre-
processing operation on the acquired image is introduced in
Section 3.2. Finally, the detailed information of our dataset
is displayed in Section 3.3.

3.1. Data collection

Our study sites locate in three geo-scattered plains of
China which are displayed in the left image of Figure 1.
We collected Sentinel-2 imagery time series over these sites
and created three subsets for each site. It is worth noting
that the three sites display different environmental condi-
tions and planting patterns, and crop samples in three sites
also exhibit different phenological characteristics.
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Figure 2. R-G-B composite of our study site A based on single
date Sentinel-2 image.
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Figure 3. Corresponding annotation map of study site A. Four
classes, winter wheat, winter rape, fallow and other were labelled
with the help of wide ground survey and high-resolution remote
sensing imagery.
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e Site A locates in Jianghan Plain with the elevation of
~30m. Land parcels have averaging bigger size and
are more regular.

e Site B locates in Chengdu Plain with the elevation of
~600m. Land parcels have averaging smaller size and
are irregular; dataset has imbalance classes.

e Site C locates in Wuhu Plain with the elevation of
~100m. The size of land parcels is moderate; crops
samples have sparse distribution.

A rectangle of approximate 1200x1200 pixels was se-
lected as study area at each site to ensure sufficient train-
ing samples for deep networks. We downloaded Sentinel-2
L2A products from Google Earth Engine directly to save the

repeated atmospheric correction work. Clear images (cloud
coverage < 20%) between October 2019 to May 2020 were
collected and cropped to the scope of our predetermined
study area. We kept ten spectral bands contributing to de-
picting planting crops the most, which are RGB bands, four
Red Edge bands, NIR band and two SWIR bands.

In each subset, four classes (winter wheat, winter rape,
fallow and other) are manually annotated with the aid of
wide ground surveys in study site A and B. We deliberately
avoided the labeling of field boundaries and mixed pixels to
ensure the high-quality and purity of samples. The fallow
class are labelled for its significance to planting structure
analysis. Figure 2 and 3 demonstrate the RGB composite
and our annotated map of site A.

3.2. Preprocessing procedure

Owing to partial cloud noise, the temporal stamp of three
study areas is mismatched, making the direct reuse of deep
model impossible. Thus, in each study site, linear interpo-
lation was applied to unify time series images to a same
time interval, 10 days. Minimum composition was also
conducted to reduce cloud noise if two images existing in
one interval. Finally, three multiple temporal-spectral data
cubes of size (M;,21,10) were obtained for the follow-
ing cross-regional experiments, where M is the number of
samples of site 7. Each data cube has a temporal dimension
of 21 and a spectral dimension of 10. All the preprocessing
work was performed locally using MATLAB R2019a on a
windows operating system.

3.3. Dataset details

Our dataset contains three subsets and has 2.33 million
labelled samples in total. High intra-class variance of same
crop type exists between subsets owing to the phenologi-
cal discrepancy. Each subset is further divided into three
irrelevant parts by ratio of 70% / 15% / 15% for training,
validation and test. In cross-regional experiments, taking
task site A — site B for example, deep models are firstly
trained on training set of site A. Then the pre-trained mod-
els are adapted to site B by PAN; the accuracy of adapted
models on the whole subset of site B is reported at last. The
detailed information of dataset is listed in Table 1.

4. Methodology

Figure 4 illustrates our proposed model TSNet and the
overall framework of PAN. TSNet serves as a robust classi-
fier for time series crop classification, taking temporal data
as input and predicted labels as output. The accuracy of pre-
trained TSNet decreases on the target region due to the phe-
nology discrepancy. To tackle this cross-regional problem,
PAN finetunes the pre-trained TSNet to map the source and
target domain samples into the same feature space, obtain-
ing a high-performance model on unlabelled target regions.
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Figure 4. The overall architecture of PAN framework. TSNet is denoted within the red dotted box. Initially, PAN consists of two branches
of pre-trained TSNet with same weights. Then the MMD loss is applied to hierarchical features of source and target domain, aligning
the feature distribution of samples in two regions. Finetuned by PAN, the source TSNet is adapted to the target domain and can provide

reliable predictions.

Table 1. The elaborate information of our dataset which consists of three subsets

. Sentinel-2 Count of Size of image Number of Proportion of four classes (%)
Site . . S
footprint clear images block valid pixels wheat rape fallow other
A T49RFP 14 1400x 1200 1049327 399 122 138 341
B T48RVV 18 1200% 1200 621402 546 4.6 7.7 33.1
C T50RPV 17 1000 1300 659357 13.6 213 175 476

In Section 4.1, we firstly present our backbone TSNet in
detail. Then in Section 4.2, we introduce the transfer proce-
dure conducted by PAN.

4.1. The backbone TSNet

To conduct time series crop classification, TSNet is
formed by four bidirectional GRU layers and a self-
attention module, illustrated within the red dotted box in
Figure 4.

Let X denote the time series input data and Y denote
the ground truth, and each sample x can be expressed as
a temporal form [x1, o, ..., 2], where x; represents input
at time ¢. x; can be further expanded as [xp1, Tp2, ..., Tps),
containing multi-spectral bands information from band 1 to
band s. The first GRU layer can successively accept in-
put [x1, X2, ..., 2¢], and encode them into hidden states H7,
which can be unfolded as [h1 1, b1 2, ..., b1 ¢]. The follow-
ing layer takes the hidden states H; as new input and en-
code them into Hb, i.e. [ha1, o2, ..., hoy]. Finally, four
stacked GRU are capable of yielding deep features contain-
ing temporal-spectral information.

In time series crop classification task, the interaction of
different time nodes of crop life circle is critical, and the

key phenology stage need to be paid more attention. Non-
local mechanism [29] was proposed to capture long-range
dependency, and widely applied in computer vision filed
[9, 32]. The traditional non-local module is modified to
fit our 2-D input data. The hidden state output H, of size
(T, d) is transposed as H} , where d denotes the dimension
of hidden vector. The attention map A of size (7,7 is
calculated by the dot product of Hy and HY. A is then
sent to softmax layer and dot multiplied with H, to ac-
quire weighted hidden state H}Y. H}" is added to original
hidden state H, through a residual structure, as the deep
phenology features, H 4, generated by TSNet. The features
are then flattered and sent to linear layer for the final label
predicting. The explicit production of attention map and
hidden features can be formulated as (1).

A=H,H'
H}V = softmaz(A)H,
H,=H,+H)Y

e))

In summary, stacked GRU structure is able to extract var-
ious phenology features from low-level to high-level, and
attention module enables the TSNet to exploit the temporal
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Figure 5. The results of image blocks in cross-regional experiment A—B and A—C. When the TSNet pre-trained on A is directly used
to classify region B and C, wide misclassification occurs. Fine-tuned by our proposed PAN, the accuracy improves considerably and the
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Table 2. OA comparison between our methods and other SOTA methods (higher is better) of six transfer experiment set. The Avg. column

indicates the average result of six transfer scenarios.

OA (%) A—-B A—-C B—=A B—C C—=A C—B Avg.

RF [3] 88.01  76.96 82.56 73.01 86.20 88.21 82.49
Transformer [28] 81.83 75.10 73.93 76.65 80.20 75.82 77.26
TempCNN [22] 77.37 77.40 83.70  76.83 80.99 89.07 80.89
DCM [30] 78.00 79.24 79.79 73.46 82.30 85.43 79.70
TSNet (ours) 81.43 81.74 82.17 76.00 82.89 87.61 81.97
PAN (ours) 89.18 83.55 8277  81.66 88.08 88.97 85.70

correspondence in a data-driven way, adaptively focusing
on key phenology stage under various climate conditions.

4.2. Cross-regional adaptation by PAN

To adapt the source model to the unlabelled target region,
PAN aims to finetune the pre-trained model by aligning the
multi-level deep features extracted from two branches, map-
ping both source and target data into the same feature space
without using the target labels. The overall structure and
details of PAN are depicted in Figure 4.

Specifically, source and target data are respectively per-
muted in a random but unchanged order and paired and fed
to two identical TSNet pre-trained on source domain.

Let X5 = {x?,y’li = 1,2,..,n5} denote source
data and labels, and X7 = {zl|i = 1,2,...nr} de-
note target data without annotation information. The two
branches of PAN accept data pair (z7,y;,x!) as input
and hierarchical features {HY, HY, HY, H , HS} and
{HF HI HT HT H? } are extracted. We deem hid-
den states Hy outputted from the second GRU layer as
middle-level feature while the H 4 outputted from the fi-
nal attention module as high-level feature, and both of them
have strong discriminability and complementary informa-
tion for each other. MMD loss of phenology feature pair
(Hs, HT) and (H%, HY) is calculated. We define the hi-

erarchical alignment loss by

1 n 1 n
EAlign = ﬁ Z (I)(h’g,z) - ; Z (I)(hg,z)
=1 =1
2
1< s 1< T
T Z ®(h,;) — o Z (hy,)
i=1 i=1

where ® indicates the multi-kernel gaussian function and
the total loss function is defined by

ETotal = /\EAlign + £Src 3)

where Lg,. is the NLL loss calculated by source data and
labels by

1 n
Lsre = — > (@) log(g(w)) “4)
i=1

In summary, by optimizing the weighted loss defined by
(3), the proposed PAN aligns the feature distribution of two
domains, transferring the TSNet trained on the source sam-
ples to the target domain.

5. Experiment

In this section, we compare our proposed TSNet and
PAN with other SOTA on six experiments of cross-regional



Table 3. Macro F1 score comparison between our methods and other SOTA methods (higher is better) of six transfer experiment set. The
Avg. column indicates the average result of six transfer scenarios.

Macro F1 score A—-B A—-C B—A B—-C C—=A C—B Avg.
RF [3] 0.6741 0.6947 0.7104 0.5983 0.8163 0.7205 0.7024
Transformer [28]  0.6810 0.7041 0.6390 0.6777 0.7465 0.6264 0.6791
TempCNN [22] 0.7065 0.7365 0.7214 0.6523 0.7552 0.8010 0.7288
DCM [30] 0.7038 0.7689 0.6827 0.6157 0.7414 0.7333  0.7076
TSNet (ours) 0.7434 0.8077 0.7118 0.6683 0.7645 0.7858 0.7469
PAN (ours) 0.8248 0.8123 0.7082 0.7861 0.8517 0.8103 0.7989

Table 4. OA comparison of three aligning strategies of six transfer
experiment sets. The results before PAN (the TSNet column) are
also listed.

OA (%)  TSNet S1 S2 S3
A—B 81.43 8378  89.18  89.64
A—C 8174 82.13 83.55  83.10
BoA 8217 83.34 82.77  83.27
B—C 7600  79.73 81.66  80.84
C—A 8289 87.78 88.08  87.83
C—B 87.61 8825  88.97  89.11
Avg. 81.97 85.00  85.70  85.63

Table 5. Macro F1 score comparison of three aligning strategies of
six transfer experiment sets. The results before PAN (the TSNet
column) are also listed.

Macro TSNet S1 S2 S3
F1 score
A—B 0.7434 0.8225 0.8248 0.8315
A—C 0.8077 0.7925 0.8123 0.8083
B—A 0.7118 0.7328 0.7082 0.7276
B—C 0.6683 0.7546 0.7861 0.7769
C—A 0.7645 0.8460 0.8517 0.8462
C—B 0.7858 0.7984 0.8103 0.8149
Avg. 0.7469 0.7911 0.7989 0.8009

time series crop classification, including random forest (RF)
[3], Transformer [28], TempCNN [22] and DCM [30].
Firstly, we pre-train our TSNet and other state-of -the-art
(SOTA) algorithms on source domain and apply them to
target domain directly. Furthermore, we fine-tune the pre-
trained TSNet by the unsupervised PAN framework and
present the evaluation indices after adaptation.

5.1. Training setup

Pre-training phase. In this phase, all methods are
trained solely on each site’s training set to acquire pre-
trained models of three regions. To be fair, every com-
pared method was repeated trained on each subset from
scratch 15 times with the same training configuration. That
is, we saved 45 pre-trained models for each method. RF

classifier was trained with parameter tree_num = 50 and
leaf_size = 15. For DCM, we grid-searched the best pa-
rameters and set hidden_dim = 256 and num_layer = 3
for all six transfer sets. For TempCNN, we modified the
dropout to 0.5 and kept other parameters as the original
paper. For the Transformer model, we grid-searched the
best parameters and set d,,0qe; = 64 and the network in-
ner dimensionality d;, . = 128 given that the complexity
of pixelwise classification task is relatively low. The stack
number of multi-head attention module was set as N = 4.
For TSNet, the dimensionality of hidden states of GRU
was 128, and with a dropout of 0.5 between each layer.
The optimizer of all deep learning methods was replaced
with Adam optimizer with initial learning rate of 0.001 and
B =(0.9,0.998). The RF classifier was trained using MAT-
LAB R2019a, and all deep models were implemented by
PyTorch and trained on an NVIDIA Tesla V100 until the
end of 100 epochs or convergence.

Fine-tuning phase. Three study sites are combined in
two pairs to get six transfer settings: A—B, A—C, B—A,
B—C, C—A, C—B. Taking the task A—B for example,
data pair containing samples from A and B is sent to two
TSNet which are pre-trained on A’s training set. Then
the overall loss defined by (3) is back-propagated using
Adam optimizer with initial learning rate of 0.0001 and
B8 = (0.9,0.998). By the end of 20 epochs, the source
TSNet is finetuned to target domain, site B, and the pre-
dicting labels of B are reported. We need to emphasize that
in this procedure, we didn’t use the label information from
site B.

5.2. Results

Two indexes, overall accuracy (OA) and macro F1 score,
are used to evaluate the performance of proposed TSNet and
PAN framework. OA is calculated by the ratio of number of
samples predicting right by number of all samples. Macro
F1 score is the average F1 scores of all classes, which eval-
uates the general model performance on each class and is
commonly adopted by dataset with imbalance classes.

Table 2 and 3 displays the OA and macro F1 score re-
sults of our method compared to SOTA. In inference stage,
our TSNet shows OA increase over deep learning methods
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Figure 6. Visual maps of deep features before and after DA. The final OA are also presented.

and macro F1 increase over all compared methods, which
demonstrates that our proposed backbone can extract gen-
eralized and domain-robust features from SITS. It is worth
noting that the RF acquires a relative higher OA but a rel-
ative lower macro F1 score. By analyzing the confusion
matrix, we find that the RF has higher accuracy on other
class which occupies a large proportion in total, but has
lower accuracy on crop types, resulting in lower F1 score
index. In fine-tuning stage, our PAN framework further im-
proves the overall accuracy by 3.73% and macro F1 score
by 0.052 without using any label information in target do-
main. In case A—B and B—C, the average increase of OA
even reaches 7.75% and 5.66%. To verify the effectiveness
more intuitively, visual results of experiment set A—B and
A—C are listed in Figure 5. The experiment results demon-
strate that 1) the regional phenology discrepancy is miti-
gated by aligning the hierarchical phenology features; 2)
our unsupervised DA-based framework improves the over-
all accuracy of cross-regional crop type classification, and
has the potential to be applied to other large area classifica-
tion or mapping tasks.

5.3. Ablation study of the PAN framework

The TSNet can extract hierarchical deep features, yet the
contribution of different levels of phenology features to the
transfer procedure need to be explored. We analyze this
problem with an ablation experiment. Scenario 1 (S1): cal-
culate MMD loss of only high-level feature, i.e. H 4. Sce-
nario 2 (S2): calculate MMD loss of the high-level feature
and the mid-level feature, i.e. Hy + H 4. Scenario 3 (S3):
calculate MMD loss of low, middle and high-level features
which are outputted by every layer of GRU and the attention
module, i.e. H) + Ho + Hs + Hy + H 4.

Table 4 and 5 report the indices comparison of three sce-
narios. To better exhibit the improvement, the results of
pre-trained models without DA are also listed. Experiment
results show that all three strategies gain considerable im-
provement to baseline. The accuracy difference between S2
and S3 is negligible while the latter brings extra computa-

tional cost and is easier to overfit. Thus, we adopt S2 as the
default aligning strategy in proposed PAN framework.

5.4. Feature map visualization

To demonstrate how our framework alleviates the cross-
regional discrepancy problem more intuitively, we visualize
the hidden features before and after the transfer procedure.
We take transfer set C—A for example. 1000 samples in
site C and A are randomly selected and fed into pre-trained
and fine-tuned models. The final features yielded by at-
tention module are saved to local. The dimensionality of
hidden features is reduced from 128 to 2 for visualization,
and the overall accuracy is also reported in Figure 6. The
visual maps show that when applying model trained on C
directly to samples of A, confusions tend to occur and the
distance between rape and fallow class is close. Fine-tuned
by the PAN framework, the clustering centers of wheat, rape
and fallow class are more discriminative. The accuracy is
prominently improved even though certain confusion be-
tween fallow and other class still exists.

6. Conclusion

In this paper, we firstly propose a TSNet for time se-
ries crop classification to extract phenological features and
temporal dependencies from multi-temporal input data. To
address the cross-domain challenges, a novel framework
named PAN is further proposed to fine-tune the source
model to the target regions, improving the accuracy of
cross-regional classification based on an unsupervised strat-
egy. Besides, a challenging time series crop dataset is an-
notated to verify the effectiveness of our methods. The
experiment results of six transfer sets demonstrate that 1)
the TSNet is capable of extracting generalized and domain-
robust features and outperforms other SOTA methods and
2) our PAN framework noticeably improves the classifica-
tion results without using any label information in the target
domain. The visualization of deep features proves that the
advancement of indices is achieved by aligning hierarchical
phenology features effectively.
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