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Abstract

Timely and accurate crop type classification plays an es-

sential role in the study of agricultural application. How-

ever, large area or cross-regional crop classification con-

fronts huge challenges owing to dramatic phenology dis-

crepancy among training and test regions. In this work,

we propose a novel framework to address these challenges

based on deep recurrent network and unsupervised domain

adaptation (DA). Specifically, we firstly propose a Tempo-

ral Spatial Network (TSNet) for pixelwise crop classifica-

tion, which contains stacked RNN and self-attention module

to adaptively extract multi-level features from crop samples

under various planting conditions. To deal with the cross-

regional challenge, an unsupervised DA-based framework

named Phenology Alignment Network (PAN) is proposed.

PAN consists of two branches of two identical TSNet pre-

trained on source domain; one branch takes source sam-

ples while the other takes target samples as input. Through

aligning the hierarchical deep features extracted from two

branches, the discrepancy between two regions is decreased

and the pre-trained model is adapted to the target domain

without using target label information. As another contri-

bution, a time series dataset based on Sentinel-2 was an-

notated containing winter crop samples collected on three

study sites of China. Cross-regional experiments demon-

strate that TSNet shows comparable accuracy to state-of-

the-art methods, and PAN further improves the overall ac-

curacy by 5.62%, and macro average F1 score by 0.094

unsupervisedly.

1. Introduction

Time series crop classification aims to depict the type

and distribution of crops over the research area accurately,

which is fundamental to agricultural resources allocation

and policy decision [12]. With the advent and develop-

ment of machine learning algorithms, multiple temporal and

spectral information can be extracted automatically from

satellite imagery time series (SITS) and the classification

maps are produced without labor-intensive ground survey

work [5, 16, 21]. However, current researches are highly lo-

calized and confront huge challenges including invalid fea-

tures and model failure problem in cross-regional crop clas-

sification.

There are mainly two reasons resulting in the model fail-

ure of cross-regional mapping. Firstly, the phenology char-

acteristic of a same crop type considerably differs between

regions owing to different climate conditions and plant

patterns, referred as phenology discrepancy phenomenon.

Specifically, the spectral appearance and phenology stages

of a same crop change, making hand-made features and the

pre-trained classifier invalid. Figure 1 illustrates this phe-

nomenon explicitly with the visual maps and the phenolog-

ical curves obtained from three study areas. Secondly, the

temporal discriminability of different region’s samples is in-

consistent. Typically, uniform image acquisition over large

area is impossible due to inevitable partial cloud, breed-

ing noise and missing information in time sereis imageries,

which aggravates the heterogeneity of crop samples from

different regions. The prior knowledge learnt from one

place, such as designed features and pre-trained models,

cannot reflect the distribution of samples in a new region,

causing enormous reduction of model’s performance. In

summary, it is necessary to develop a cross-regional crop

classification framework to extract generalized phenologi-

cal features from crop samples and adapt knowledge to new

regions.

In this work, we propose a generalized model, named

Temporal Spatial Network (TSNet) for time series crop

classification. To further tackle the cross-domain chal-

lenges, we propose a framework named Phenology Align-

ment Network (PAN) on the basis of TSNet. Specifi-

cally, the TSNet is formed by stacked Gated Recurrent
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Figure 1. The locations of our study sites are denoted by red dots in the left image and huge cross-regional phenological difference can be

observed. Clipped blocks of satellite images of three sites at the same date are listed on top right, where spectral differences exist in winter

crop samples. Furthermore, the mean temporal NDVI curves of winter wheat and rape in three regions are also compared on lower right,

showing that cross-regional phenology discrepancy exists in the same crop type.

Unit (GRU) layers combined with self-attention mecha-

nism. The deep recurrent network is to excavate the multi-

level features and temporal dependency from SITS which is

often ignored in machine learning methods and the attention

module is to handle heterogeneous crop samples under var-

ious environmental conditions adaptively. The PAN frame-

work aims to improve the accuracy of the pre-trained model

on the target region without additional labels. PAN consists

of two branches of pre-trained TSNet with shared parame-

ters for the source and target samples respectively as input.

The hierarchical phenological features of two domains are

aligned by Maximum Mean Discrepancy (MMD) loss [2] to

minimize the distance of feature distribution. By doing this,

the TSNet of target domain is fine-tuned by PAN and can

map the target domain’s data into the same feature space

as that of the source domain. In summary, the proposed

PAN can mitigate the regional discrepancy and improve the

cross-domain classification accuracy.

It is worth noting that the proposed PAN employs a to-

tal unsupervised strategy, merely making source and target

crop samples similar in the feature space without using

any annotation information of the target domain. And we

hope to offer a novel framework for large-area, national or

even global agricultural applications.

Contributions of this work are three-fold:

• We propose a generalized deep model named TSNet

for time series crop classification. Stacked GRU lay-

ers are utilized to extract robust phenological features

automatically from SITS and self-attention mechanism

is used to handle the heterogeneous input samples in a

data-driven way.

• We propose an unsupervised DA-based framework

named PAN to address the cross-regional crop clas-

sification challenges. MMD loss is used to decrease

the discrepancy of deep features between two domains,

adapting invalid models to new regions.

• Additionally, we annotated a time series crop dataset

based on Sentinel-2 images, which contains winter

crop samples with high intra-class variance from three

geo-scattered study sites of China. The cross-regional

experiments on this dataset verify the effectiveness of

our TSNet and PAN to tackle the challenges aforemen-

tioned.

The rest of paper is organized as follows. In Section 2,

we briefly review the related works. The detail of our anno-

tated dataset is introduced in Section 3. In Section 4, TSNet

and PAN framework are introduced systematically, and the

experiments are presented in Section 5. Finally, we con-

clude our work in Section 6.

2. Related Works

In this section, recent crop type classification researches

based on time series multi-spectral images are reviewed

firstly. Subsequently, related works about cross-regional or

large area classification are also summarized.

2.1. Time series crop type classification

Researches based on low and medium spatial resolution

satellites (from 10m to 100m) are inclined to use pixel-

based or patch-based methods instead of fully convolution

network [11, 15, 37]. The reason is that the convolution ker-

nel of large size is beyond the scope of a single field, leading



to mixed pixel noise and information confusion. The lack in

spatial information is compensated with temporal informa-

tion [4, 8]. [10] concluded that using multi-temporal satel-

lite images helps to achieve higher classification accuracy

compared to using merely single temporal image. Hence,

numerous researches aimed to exploit the rich information

in SITS to map crops.

Over recent years, many traditional machine learning

(ML) algorithms have been adopted by remote sensing com-

munity for the analysis and classification of SITS. Hand-

made features were designed and fed into ML classifier such

as decision tree [6, 23], support vector machine [19] and

random forest [7]. However, these methods are not designed

for time series analysis task, and only take the temporal fea-

tures as separate inputs without analyzing the sequential re-

lationship between different time stamps. Thus, these meth-

ods are not robust enough for cross-regional classification.

Besides, feature engineering turns out to be a challenging

task and heavily relies on expertise; designed features are

not representative enough when applying in large area.

Currently, with the success in all walks of research fields,

deep learning (DL) also aroused great interest in remote

sensing community [33, 36]. In view of its capability to

extract high level structural information, the feature engi-

neering work can be performed in a data-driven way. DL

models used in researches of time series crop classifica-

tion include two main architectures: convolutional neural

network (CNN) [17] and recurrent neural network (RNN)

[14]. [31] used modified pyramid scene parsing network

(PSPNet) to conduct the land cover classification on Gaofen

series satellite images. Yet under most cases, spatial con-

volutions are unsuitable as explained before. TempCNN

model [22] applied convolutions in both temporal and spec-

tral domains to take full advantage of temporal structure of

SITS. As another common structure, RNN is specialized for

comprehending sequential input data, thereby adopted more

widely. [34] explored Long Short-Term Memory (LSTM)’s

viability for identifying time series phenology curves de-

rived from Landsat satellite. Deep Crop Mapping (DCM)

model [30] added self-attention structure to LSTM for the

in-season classification in U.S. corn belt. Besides, [20, 24]

combined CNN and RNN to excavate spectral and tempo-

ral information simultaneously for classification and change

detection task. Furthermore, with the boom of Transformer

[28] in NLP, some up-to-date works employed such stacked

multi-head self-attention model to time series crop mapping

task [25, 26].

2.2. Large area or cross­regional classification

In a small area, the growth status and life cycle of a cer-

tain crop type will not change intensely, offering adequate

prior to infer most samples. However, outside the labelled

region, huge phenological difference exists in a same crop

type owing to different soil conditions and accumulated

temperatures, making cross-regional classification a chal-

lenging task. The existing works tackle the cross-regional

challenge from three perspectives:

Works from perspective of model aim to modify baseline

models in order to extract domain-insensitive and general-

ized features. [31] modified traditional PSPNet for cropland

extraction under various landscape. [30] adapted LSTM to

better integrate spectral and temporal information for large

area dynamic crops mapping. However, when enormous

discrepancy occurs between two regions, this strategy may

fail given that the discrepancy problem has not been solved

intrinsically.

Works from perspective of samples aim to finetune the

pre-trained model with a few high-quality samples in tar-

get domain, so that the new distribution can be learnt by

the original model. In [27], pseudo-labels with high confi-

dence were used to finetune deep models for country-wide

land cover classification. In [13], new samples from target

domains were annotated to adapt RF classifiers by active

learning. However, this approach involved in labeling a fi-

nite number of samples additionally, which is often imprac-

tical in large area researches. Besides, ample annotations

are demanded to finetune deep networks, consuming con-

siderable labor and time.

Works from perspective of features aim to map different

regions’ samples into the same feature subspace to reduce

the gap between deep features. [18] introduced a domain

adaptation method to improve the overall accuracy of cross-

domain hyperspectral image classification. [1] and [35]

combined DA and adversarial learning for cross-regional

land cover classification, and both obtained accuracy im-

provement. To the best of our knowledge, we are the first

to apply unsupervised DA technique to cross-regional time

series crop classification.

3. Research Area

In this section, we prepare the time series Sentinel-2

imagery for the experiment. In Section 3.1, we describe

the study areas with various environmental conditions, and

the image acquisition and annotation procedure. The pre-

processing operation on the acquired image is introduced in

Section 3.2. Finally, the detailed information of our dataset

is displayed in Section 3.3.

3.1. Data collection

Our study sites locate in three geo-scattered plains of

China which are displayed in the left image of Figure 1.

We collected Sentinel-2 imagery time series over these sites

and created three subsets for each site. It is worth noting

that the three sites display different environmental condi-

tions and planting patterns, and crop samples in three sites

also exhibit different phenological characteristics.
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Figure 2. R-G-B composite of our study site A based on single

date Sentinel-2 image.
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Figure 3. Corresponding annotation map of study site A. Four

classes, winter wheat, winter rape, fallow and other were labelled

with the help of wide ground survey and high-resolution remote

sensing imagery.

• Site A locates in Jianghan Plain with the elevation of

∼30m. Land parcels have averaging bigger size and

are more regular.

• Site B locates in Chengdu Plain with the elevation of

∼600m. Land parcels have averaging smaller size and

are irregular; dataset has imbalance classes.

• Site C locates in Wuhu Plain with the elevation of

∼100m. The size of land parcels is moderate; crops

samples have sparse distribution.

A rectangle of approximate 1200×1200 pixels was se-

lected as study area at each site to ensure sufficient train-

ing samples for deep networks. We downloaded Sentinel-2

L2A products from Google Earth Engine directly to save the

repeated atmospheric correction work. Clear images (cloud

coverage ≤ 20%) between October 2019 to May 2020 were

collected and cropped to the scope of our predetermined

study area. We kept ten spectral bands contributing to de-

picting planting crops the most, which are RGB bands, four

Red Edge bands, NIR band and two SWIR bands.

In each subset, four classes (winter wheat, winter rape,

fallow and other) are manually annotated with the aid of

wide ground surveys in study site A and B. We deliberately

avoided the labeling of field boundaries and mixed pixels to

ensure the high-quality and purity of samples. The fallow

class are labelled for its significance to planting structure

analysis. Figure 2 and 3 demonstrate the RGB composite

and our annotated map of site A.

3.2. Preprocessing procedure

Owing to partial cloud noise, the temporal stamp of three

study areas is mismatched, making the direct reuse of deep

model impossible. Thus, in each study site, linear interpo-

lation was applied to unify time series images to a same

time interval, 10 days. Minimum composition was also

conducted to reduce cloud noise if two images existing in

one interval. Finally, three multiple temporal-spectral data

cubes of size (Mi, 21, 10) were obtained for the follow-

ing cross-regional experiments, where Mi is the number of

samples of site i. Each data cube has a temporal dimension

of 21 and a spectral dimension of 10. All the preprocessing

work was performed locally using MATLAB R2019a on a

windows operating system.

3.3. Dataset details

Our dataset contains three subsets and has 2.33 million

labelled samples in total. High intra-class variance of same

crop type exists between subsets owing to the phenologi-

cal discrepancy. Each subset is further divided into three

irrelevant parts by ratio of 70% / 15% / 15% for training,

validation and test. In cross-regional experiments, taking

task site A → site B for example, deep models are firstly

trained on training set of site A. Then the pre-trained mod-

els are adapted to site B by PAN; the accuracy of adapted

models on the whole subset of site B is reported at last. The

detailed information of dataset is listed in Table 1.

4. Methodology

Figure 4 illustrates our proposed model TSNet and the

overall framework of PAN. TSNet serves as a robust classi-

fier for time series crop classification, taking temporal data

as input and predicted labels as output. The accuracy of pre-

trained TSNet decreases on the target region due to the phe-

nology discrepancy. To tackle this cross-regional problem,

PAN finetunes the pre-trained TSNet to map the source and

target domain samples into the same feature space, obtain-

ing a high-performance model on unlabelled target regions.
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Figure 4. The overall architecture of PAN framework. TSNet is denoted within the red dotted box. Initially, PAN consists of two branches

of pre-trained TSNet with same weights. Then the MMD loss is applied to hierarchical features of source and target domain, aligning

the feature distribution of samples in two regions. Finetuned by PAN, the source TSNet is adapted to the target domain and can provide

reliable predictions.

Table 1. The elaborate information of our dataset which consists of three subsets

Site
Sentinel-2

footprint

Count of

clear images

Size of image

block

Number of

valid pixels

Proportion of four classes (%)

wheat rape fallow other

A T49RFP 14 1400×1200 1049327 39.9 12.2 13.8 34.1

B T48RVV 18 1200×1200 621402 54.6 4.6 7.7 33.1

C T50RPV 17 1000×1300 659357 13.6 21.3 17.5 47.6

In Section 4.1, we firstly present our backbone TSNet in

detail. Then in Section 4.2, we introduce the transfer proce-

dure conducted by PAN.

4.1. The backbone TSNet

To conduct time series crop classification, TSNet is

formed by four bidirectional GRU layers and a self-

attention module, illustrated within the red dotted box in

Figure 4.

Let X denote the time series input data and Y denote

the ground truth, and each sample x can be expressed as

a temporal form [x1,x2, ...,xt], where xi represents input

at time i. xi can be further expanded as [xb1,xb2, ...,xbs],
containing multi-spectral bands information from band 1 to

band s. The first GRU layer can successively accept in-

put [x1,x2, ...,xt], and encode them into hidden states H1,

which can be unfolded as [h1,1,h1,2, ...,h1,t]. The follow-

ing layer takes the hidden states H1 as new input and en-

code them into H2, i.e. [h2,1,h2,2, ...,h2,t]. Finally, four

stacked GRU are capable of yielding deep features contain-

ing temporal-spectral information.

In time series crop classification task, the interaction of

different time nodes of crop life circle is critical, and the

key phenology stage need to be paid more attention. Non-

local mechanism [29] was proposed to capture long-range

dependency, and widely applied in computer vision filed

[9, 32]. The traditional non-local module is modified to

fit our 2-D input data. The hidden state output H4 of size

(T, d) is transposed as HT
4

, where d denotes the dimension

of hidden vector. The attention map A of size (T, T ) is

calculated by the dot product of H4 and H
T
4

. A is then

sent to softmax layer and dot multiplied with H4 to ac-

quire weighted hidden state H
W
4

. HW
4

is added to original

hidden state H4 through a residual structure, as the deep

phenology features, HA, generated by TSNet. The features

are then flattered and sent to linear layer for the final label

predicting. The explicit production of attention map and

hidden features can be formulated as (1).

A = H4H
T
4

H
W
4

= softmax(A)H4

HA = H4 +H
W
4

(1)

In summary, stacked GRU structure is able to extract var-

ious phenology features from low-level to high-level, and

attention module enables the TSNet to exploit the temporal
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Figure 5. The results of image blocks in cross-regional experiment A→B and A→C. When the TSNet pre-trained on A is directly used

to classify region B and C, wide misclassification occurs. Fine-tuned by our proposed PAN, the accuracy improves considerably and the

misclassification is reduced which can be seen from subfigure (d,f,j,l)

Table 2. OA comparison between our methods and other SOTA methods (higher is better) of six transfer experiment set. The Avg. column

indicates the average result of six transfer scenarios.

OA (%) A→B A→C B→A B→C C→A C→B Avg.

RF [3] 88.01 76.96 82.56 73.01 86.20 88.21 82.49

Transformer [28] 81.83 75.10 73.93 76.65 80.20 75.82 77.26

TempCNN [22] 77.37 77.40 83.70 76.83 80.99 89.07 80.89

DCM [30] 78.00 79.24 79.79 73.46 82.30 85.43 79.70

TSNet (ours) 81.43 81.74 82.17 76.00 82.89 87.61 81.97

PAN (ours) 89.18 83.55 82.77 81.66 88.08 88.97 85.70

correspondence in a data-driven way, adaptively focusing

on key phenology stage under various climate conditions.

4.2. Cross­regional adaptation by PAN

To adapt the source model to the unlabelled target region,

PAN aims to finetune the pre-trained model by aligning the

multi-level deep features extracted from two branches, map-

ping both source and target data into the same feature space

without using the target labels. The overall structure and

details of PAN are depicted in Figure 4.

Specifically, source and target data are respectively per-

muted in a random but unchanged order and paired and fed

to two identical TSNet pre-trained on source domain.

Let XS = {xS
i , y

S
i |i = 1, 2, ..., nS} denote source

data and labels, and XT = {xT
i |i = 1, 2, ..., nT } de-

note target data without annotation information. The two

branches of PAN accept data pair (xS
i , y

S
i ,x

T
i ) as input

and hierarchical features {HS
1
,HS

2
,HS

3
,HS

4
,HS

A, } and

{HT
1
,HT

2
,HT

3
,HT

4
,HT

A , } are extracted. We deem hid-

den states H2 outputted from the second GRU layer as

middle-level feature while the HA outputted from the fi-

nal attention module as high-level feature, and both of them

have strong discriminability and complementary informa-

tion for each other. MMD loss of phenology feature pair

(HS
2
,HT

2
) and (HS

A,H
T
A) is calculated. We define the hi-

erarchical alignment loss by

LAlign =

∥

∥

∥

∥

∥

1

n

n
∑

i=1

Φ(hS
2,i)−

1

n

n
∑

i=1

Φ(hT
2,i)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

1

n

n
∑

i=1

Φ(hS
A,i)−

1

n

n
∑

i=1

Φ(hT
A,i)

∥

∥

∥

∥

∥

(2)

where Φ indicates the multi-kernel gaussian function and

the total loss function is defined by

LTotal = λLAlign + LSrc (3)

where LSrc is the NLL loss calculated by source data and

labels by

LSrc =
1

n

n
∑

i=1

p(xi) log(q(xi)) (4)

In summary, by optimizing the weighted loss defined by

(3), the proposed PAN aligns the feature distribution of two

domains, transferring the TSNet trained on the source sam-

ples to the target domain.

5. Experiment

In this section, we compare our proposed TSNet and

PAN with other SOTA on six experiments of cross-regional



Table 3. Macro F1 score comparison between our methods and other SOTA methods (higher is better) of six transfer experiment set. The

Avg. column indicates the average result of six transfer scenarios.

Macro F1 score A→B A→C B→A B→C C→A C→B Avg.

RF [3] 0.6741 0.6947 0.7104 0.5983 0.8163 0.7205 0.7024

Transformer [28] 0.6810 0.7041 0.6390 0.6777 0.7465 0.6264 0.6791

TempCNN [22] 0.7065 0.7365 0.7214 0.6523 0.7552 0.8010 0.7288

DCM [30] 0.7038 0.7689 0.6827 0.6157 0.7414 0.7333 0.7076

TSNet (ours) 0.7434 0.8077 0.7118 0.6683 0.7645 0.7858 0.7469

PAN (ours) 0.8248 0.8123 0.7082 0.7861 0.8517 0.8103 0.7989

Table 4. OA comparison of three aligning strategies of six transfer

experiment sets. The results before PAN (the TSNet column) are

also listed.
OA (%) TSNet S1 S2 S3

A→B 81.43 88.78 89.18 89.64

A→C 81.74 82.13 83.55 83.10

B→A 82.17 83.34 82.77 83.27

B→C 76.00 79.73 81.66 80.84

C→A 82.89 87.78 88.08 87.83

C→B 87.61 88.25 88.97 89.11

Avg. 81.97 85.00 85.70 85.63

Table 5. Macro F1 score comparison of three aligning strategies of

six transfer experiment sets. The results before PAN (the TSNet

column) are also listed.

Macro

F1 score

TSNet S1 S2 S3

A→B 0.7434 0.8225 0.8248 0.8315

A→C 0.8077 0.7925 0.8123 0.8083

B→A 0.7118 0.7328 0.7082 0.7276

B→C 0.6683 0.7546 0.7861 0.7769

C→A 0.7645 0.8460 0.8517 0.8462

C→B 0.7858 0.7984 0.8103 0.8149

Avg. 0.7469 0.7911 0.7989 0.8009

time series crop classification, including random forest (RF)

[3], Transformer [28], TempCNN [22] and DCM [30].

Firstly, we pre-train our TSNet and other state-of -the-art

(SOTA) algorithms on source domain and apply them to

target domain directly. Furthermore, we fine-tune the pre-

trained TSNet by the unsupervised PAN framework and

present the evaluation indices after adaptation.

5.1. Training setup

Pre-training phase. In this phase, all methods are

trained solely on each site’s training set to acquire pre-

trained models of three regions. To be fair, every com-

pared method was repeated trained on each subset from

scratch 15 times with the same training configuration. That

is, we saved 45 pre-trained models for each method. RF

classifier was trained with parameter tree num = 50 and

leaf size = 15. For DCM, we grid-searched the best pa-

rameters and set hidden dim = 256 and num layer = 3
for all six transfer sets. For TempCNN, we modified the

dropout to 0.5 and kept other parameters as the original

paper. For the Transformer model, we grid-searched the

best parameters and set dmodel = 64 and the network in-

ner dimensionality dinner = 128 given that the complexity

of pixelwise classification task is relatively low. The stack

number of multi-head attention module was set as N = 4.

For TSNet, the dimensionality of hidden states of GRU

was 128, and with a dropout of 0.5 between each layer.

The optimizer of all deep learning methods was replaced

with Adam optimizer with initial learning rate of 0.001 and

β = (0.9, 0.998). The RF classifier was trained using MAT-

LAB R2019a, and all deep models were implemented by

PyTorch and trained on an NVIDIA Tesla V100 until the

end of 100 epochs or convergence.

Fine-tuning phase. Three study sites are combined in

two pairs to get six transfer settings: A→B, A→C, B→A,

B→C, C→A, C→B. Taking the task A→B for example,

data pair containing samples from A and B is sent to two

TSNet which are pre-trained on A’s training set. Then

the overall loss defined by (3) is back-propagated using

Adam optimizer with initial learning rate of 0.0001 and

β = (0.9, 0.998). By the end of 20 epochs, the source

TSNet is finetuned to target domain, site B, and the pre-

dicting labels of B are reported. We need to emphasize that

in this procedure, we didn’t use the label information from

site B.

5.2. Results

Two indexes, overall accuracy (OA) and macro F1 score,

are used to evaluate the performance of proposed TSNet and

PAN framework. OA is calculated by the ratio of number of

samples predicting right by number of all samples. Macro

F1 score is the average F1 scores of all classes, which eval-

uates the general model performance on each class and is

commonly adopted by dataset with imbalance classes.

Table 2 and 3 displays the OA and macro F1 score re-

sults of our method compared to SOTA. In inference stage,

our TSNet shows OA increase over deep learning methods



(a) Samples of site C inferred on models

pre-trained on site C (OA: 94.39%)

(b) Samples of site A inferred on models

pre-trained on site C (OA: 81.76%)

(c) Samples of site A inferred on fine-tuned

models by PAN (OA: 87.84%)

Figure 6. Visual maps of deep features before and after DA. The final OA are also presented.

and macro F1 increase over all compared methods, which

demonstrates that our proposed backbone can extract gen-

eralized and domain-robust features from SITS. It is worth

noting that the RF acquires a relative higher OA but a rel-

ative lower macro F1 score. By analyzing the confusion

matrix, we find that the RF has higher accuracy on other

class which occupies a large proportion in total, but has

lower accuracy on crop types, resulting in lower F1 score

index. In fine-tuning stage, our PAN framework further im-

proves the overall accuracy by 3.73% and macro F1 score

by 0.052 without using any label information in target do-

main. In case A→B and B→C, the average increase of OA

even reaches 7.75% and 5.66%. To verify the effectiveness

more intuitively, visual results of experiment set A→B and

A→C are listed in Figure 5. The experiment results demon-

strate that 1) the regional phenology discrepancy is miti-

gated by aligning the hierarchical phenology features; 2)

our unsupervised DA-based framework improves the over-

all accuracy of cross-regional crop type classification, and

has the potential to be applied to other large area classifica-

tion or mapping tasks.

5.3. Ablation study of the PAN framework

The TSNet can extract hierarchical deep features, yet the

contribution of different levels of phenology features to the

transfer procedure need to be explored. We analyze this

problem with an ablation experiment. Scenario 1 (S1): cal-

culate MMD loss of only high-level feature, i.e. HA. Sce-

nario 2 (S2): calculate MMD loss of the high-level feature

and the mid-level feature, i.e. H2 +HA. Scenario 3 (S3):

calculate MMD loss of low, middle and high-level features

which are outputted by every layer of GRU and the attention

module, i.e. H1 +H2 +H3 +H4 +HA.

Table 4 and 5 report the indices comparison of three sce-

narios. To better exhibit the improvement, the results of

pre-trained models without DA are also listed. Experiment

results show that all three strategies gain considerable im-

provement to baseline. The accuracy difference between S2

and S3 is negligible while the latter brings extra computa-

tional cost and is easier to overfit. Thus, we adopt S2 as the

default aligning strategy in proposed PAN framework.

5.4. Feature map visualization

To demonstrate how our framework alleviates the cross-

regional discrepancy problem more intuitively, we visualize

the hidden features before and after the transfer procedure.

We take transfer set C→A for example. 1000 samples in

site C and A are randomly selected and fed into pre-trained

and fine-tuned models. The final features yielded by at-

tention module are saved to local. The dimensionality of

hidden features is reduced from 128 to 2 for visualization,

and the overall accuracy is also reported in Figure 6. The

visual maps show that when applying model trained on C

directly to samples of A, confusions tend to occur and the

distance between rape and fallow class is close. Fine-tuned

by the PAN framework, the clustering centers of wheat, rape

and fallow class are more discriminative. The accuracy is

prominently improved even though certain confusion be-

tween fallow and other class still exists.

6. Conclusion

In this paper, we firstly propose a TSNet for time se-

ries crop classification to extract phenological features and

temporal dependencies from multi-temporal input data. To

address the cross-domain challenges, a novel framework

named PAN is further proposed to fine-tune the source

model to the target regions, improving the accuracy of

cross-regional classification based on an unsupervised strat-

egy. Besides, a challenging time series crop dataset is an-

notated to verify the effectiveness of our methods. The

experiment results of six transfer sets demonstrate that 1)

the TSNet is capable of extracting generalized and domain-

robust features and outperforms other SOTA methods and

2) our PAN framework noticeably improves the classifica-

tion results without using any label information in the target

domain. The visualization of deep features proves that the

advancement of indices is achieved by aligning hierarchical

phenology features effectively.
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[10] Cristina Gómez, Joanne C White, and Michael A Wulder.

Optical remotely sensed time series data for land cover clas-

sification: A review. ISPRS Journal of Photogrammetry and

Remote Sensing, 116:55–72, 2016. 3

[11] Patrick Griffiths, Sebastian van der Linden, Tobias Kuem-

merle, and Patrick Hostert. A pixel-based landsat composit-

ing algorithm for large area land cover mapping. IEEE Jour-

nal of Selected Topics in Applied Earth Observations and

Remote Sensing, 6(5):2088–2101, 2013. 2

[12] Nancy B Grimm, Stanley H Faeth, Nancy E Golubiewski,

Charles L Redman, Jianguo Wu, Xuemei Bai, and John M

Briggs. Global change and the ecology of cities. science,

319(5864):756–760, 2008. 1

[13] Yousra Hamrouni, Eric Paillassa, Véronique Chéret, Claude
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