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Abstract

Batch normalization (BN) is a key facilitator and con-

sidered essential for state-of-the-art binary neural networks

(BNN). However, the BN layer is costly to calculate and is

typically implemented with non-binary parameters, leaving

a hurdle for the efficient implementation of BNN training.

It also introduces undesirable dependence between samples

within each batch. Inspired by the latest advance on Batch

Normalization Free (BN-Free) training [7], we extend their

framework to training BNNs, and for the first time demon-

strate that BNs can be completely removed from BNN train-

ing and inference regimes. By plugging in and customiz-

ing techniques including adaptive gradient clipping, scale

weight standardization, and specialized bottleneck block, a

BN-free BNN is capable of maintaining competitive accu-

racy compared to its BN-based counterpart. Extensive ex-

periments validate the effectiveness of our proposal across

diverse BNN backbones and datasets. For example, af-

ter removing BNs from the state-of-the-art ReActNets [38],

it can still be trained with our proposed methodology to

achieve 92.08%, 68.34%, and 68.0% accuracy on CIFAR-

10, CIFAR-100, and ImageNet respectively, with marginal

performance drop (0.23% ∼ 0.44% on CIFAR and 1.40%
on ImageNet). Codes and pre-trained models are available

at: https://github.com/VITA-Group/BNN_NoBN .

1. Introduction

Despite widespread success [59, 24, 53, 52, 40, 11, 45],

state-of-the-art deep networks usually have hundreds of

millions of parameters [7, 33, 47], and suffer from bur-

densome computational cost. It is questionable how prac-

tical they are when it comes to deployment on real-world

resource-constrained platforms, e.g., FPGA, ASICs, and

mobile devices. Binary neural network (BNN) [14, 13, 50,

51, 73] are therefore proposed for the efficiency purpose.

It takes only 1-bit with two discrete values, i.e., {−1, 1} to

represent networks’ weights and activations, leading to sig-

30 40 50 60 70
Top-1 Accuracy (%)

BNNs

PCNN

XNOR-Net

Bi-RealNet-18

Real-to-Binary Net

(BN) ReActNet-A

(w/o BN) ReActNet-A

(BN-Free) ReActNet-A

Bi
na

ry
 N

eu
ra

l N
et

wo
rk

s

42.2

57.3

51.2

56.4

65.4

69.4

34.1

68.0

Figure 1. Top-1 accuracies of different binary neural networks

(BNN) evaluated on ImageNet. Blue bars denote previous BNN

methods. The orange bar presents the existing state-of-the-art

(SOTA) method, i.e., ReActNet [38]. The green bar shows the

performance of ReActNet if naively dropping Batch Normaliza-

tion (BN) modules. The red bar indicates our proposed Batch Nor-

malization Free (BN-Free) binary neural network, which reaches

competitive performance compared to its counterpart with BN.

nificantly accelerated and energy-efficient inference as the

1-bit convolution operation can be efficiently implemented

with XNOR and Bitcount operations [51].

Despite these appeals, BNNs are notoriously difficult to

train, and undergo performance degradation. Particularly,

[55] shows that the Batch Normalization (BN) [31] is crit-

ical to train BNNs successfully, allowing for stable train-

ing under larger learning rates, from both theoretical and

empirical perspectives. Unfortunately, the batch normal-

ization implementation [31] hinges on high precision val-

ues to compute the sum of squares, square-root and re-

ciprocal. Therefore, it comes as no surprise that most

BNNs [51, 73, 39, 38] kept BN layers in full precision

during training, and some used reduced-precision such as
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8-bit [4]. Although BNs can be absorbed into the BNN

weights (e.g., scaling factors) post-training, their presence

becomes a bottleneck for BNNs training efficiency on hard-

ware [65]. Moreover, BNs often account for a substantial

fraction of run-time, are hard to accelerate [17], and in-

curs memory overhead [9]. That applies to both inference

and the feedforward stage of a training pass. Besides, BN

causes discrepant behaviors between the network training

and inference stages [58], which may break down the inde-

pendence assumption between samples within each batch.

We hence anticipate finding an alternative to eliminate

the unwanted properties of BNs in BNNs, while maintain-

ing competitive performance. Motivated by the recent ad-

vance [6, 7], we propose Batch Normalization Free (BN-

Free) binary neural networks. Specifically, we leverage the

adaptive gradient clipping to constraining BNN’s gradient

distribution and mitigate gradient explosion due to remov-

ing BNs [55]. Then, the scaled weight standardization and

specialized bottleneck block [7] are integrated for preserv-

ing the variances and preventing the mean shifts of activa-

tions. Our contributions are outlined as follows:

• We provide the first proof-of-concept study that gen-

eral BNNs can be successfully trained without BNs but

maintain competitive performance.

• We introduce adaptive gradient clipping, scaled weight

standardization, and specialized block to BNNs, and

show these techniques can be easily plugged in various

BNN backbones to make them BN-Free.

• Comprehensive experiments validate the effectiveness

of our proposed mechanisms. For example, BN-Free

ReActNet achieves 92.08%, 68.34%, and 68.0% accu-

racy on CIFAR-10, CIFAR-100, and ImageNet respec-

tively, with only marginal performance drops com-

pared to state-of-the-arts.

2. Related Work

Binary neural networks. Numerous model compression

and acceleration algorithms have been proposed to reduce

the latency of models while maintaining comparable accu-

racy performance. General model compression approaches

fall under multiple forms [12]: pruning [21, 63], quantiza-

tion [64, 56, 16], knowledge distillation [27, 44], as well as

their compositions [61, 69, 71].

A Binary Neural Network (BNN) [13, 14, 34, 73, 51,

14, 36, 48, 44, 29, 72, 39, 25, 37, 10, 57, 20, 66] rep-

resents the most extreme form of model quantization as

it quantizes weights in convolution layers to only 1 bit,

enjoying great speed-up compared with its full-precision

counterpart. [50] roughly divides previous BNN literature

into two categories: (i) native BNN [13, 14, 34] which di-

rectly applies binarization to a full-precision model by a

pre-defined binarization function. Straight-through estima-

tor (STE) [26, 5] is usually adopted to enable the back-

propagation in binarized models [13]. (ii) optimization-

based BNNs techniques, including minimizing the quanti-

zation error [73, 51, 14, 36], improving the network loss

function [48, 44, 29, 72], and reducing the gradient error

[39, 25, 37, 10].

However, such aggressive quantization usually results

in severe accuracy decline. To tackle this limitation, [14]

proposes an end-to-end gradient back-propagation frame-

work for training the discrete binary weights and activa-

tions, establishing great successes on small datasets, such

as MNIST [60] and CIFAR10 [62], while still has unsatis-

factory performance on large datasets like ImageNet [38].

Follow-up researches [8, 19, 42, 39, 38] devote themselves

to build state-of-the-art (SOTA) accuracies on ImageNet.

Among these works, ReActNet [38] proposes generalized

activation functions and a distributional loss, reaching the

superior performance which reduces the gap to its full-

precision counterpart within 3.0% accuracy on ImageNet.

Note that, all mentioned SOTA BNNs are not sustained

without batch normalization.

Batch normalization and normalization-free networks.

Batch normalization (BN) [31] is a well-known and widely

used technique to stabilize model training. It also plays

a critical role in the BNN training, as evidenced by [55].

However, bath normalization is an expensive computational

primitive [17], and its inefficiency is further amplified in

low bits precision context which hinders the deployment of

BNN to resource-limited hardware [65].

To seek a simple and effective alternative for batch nor-

malization, various studies [70, 2, 22, 49, 6, 7] are pro-

posed. [70] introduces an initialization and rescaling rule

(i.e., fixed-update initialization) to stabilizes the training

of very deep models in place of BN. [2, 22] share simi-

lar observations that appropriately initializing weights and

scaling residual modules benefit avoiding the gradient ex-

ploding and vanishing, leading to a stabilized training. An-

other promising substitution is weight standardization [49],

which subtracts the mean from weights and divides weights

by their standard deviation. [6] proposes a modified variant,

i.e., scaled weight standardization, to suppresses the quickly

enlarging of the mean in hidden activations. Recently, [7]

proposes Adaptive Gradient Clipping (AGC) to enable the

larger batch size training of normalization-free networks,

and to overcome the instabilities from eliminating BN.

3. Technical Approach

In this section, we present the detailed normalization-

free methodologies for binary neural networks (BNN) in

Section 3.1 and adopt BNN backbone architecture in Sec-
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Figure 2. The architecture overview of baseline network block (a) and proposed BN-Free network block (b). The baseline network blocks

are inherited from the recent state-of-the-art (SOTA) BNN framework, i.e., ReActNet [38], which are modified from MobileNetV1 [30]

and have the same configuration of channel and layer numbers. For the reduction block, [38] duplicates the input activation and concatenate

the outputs to increase the channel number, which is also maintained in our proposed BN-Free network block. The most important thing

is that all original Batch Normalization modules are removed, replaced by scaling factors (e.g., α, 1/β1, 1/β2) and adjusted convolutional

layers with scaled weight standardization (i.e., WS-Conv).

tion 3.2. Before that, we briefly list the main Batch Normal-

ization benefits from previous literature.

Understanding Batch Normalization. The Batch Nor-

malization (BN) can (i) reduces the scale of hidden acti-

vations on the residual branches [15, 3, 22, 68], and main-

tains well-behaved gradients early in training; (ii) elimi-

nates mean-shift by enforcing the mean activation of each

channel to zero across the current training batch [15, 32, 6];

(iii) serves an implicit regularization [41] and enhances the

models’ generalization [28]; (iv) enables large-batch train-

ing [18] and smoothens the loss landscapes [55].

Removing batch normalization directly usually leads to

an inferior performance [31, 7]. It is further aggravated

in training the binary neural network, due to its challenge

regime with discrete values of variables [55]. Particularly,

[55] provides both theoretical and empirical analyses to

demonstrate the critical role of BN is to alleviate explod-

ing gradients in the case of binary neural networks, which

motivates us the introduce adaptive gradient clipping to es-

tablish the framework of BN-Free BNN.

3.1. Normalization­free Training Methodology

Adaptive gradient clipping (AGC). Gradient clipping is

typically adopted to constrain the norm of gradients [46],

leading to stabilized training [43]. Recently [7] proposes

adaptive gradient clipping (AGC) to ameliorate the NF-

ResNets [6]’s performance, which clips gradients based on

the unit-wise ratios of gradient norms to parameter norms.

It can be described as follows:

Gl
i →











λ
‖W l

i ‖∗F
‖Gl

i‖F
Gl

i if
‖Gl

i‖F
‖W l

i ‖∗F
> λ

Gl
i otherwise.

(1)

Where Gl
i denotes the ith row of gradient matrix Gl;

similarly, W l
i is the ith row of weight matrix W l; l is

the layer index of the considered network; ‖W l
i ‖∗F =

max{‖Wi‖F , ǫ}, ǫ = 10−3 and ‖·‖F is the Frobenius norm.

The clipping threshold λ is a crucial hyperparameter,

which is usually tuned by a grid search. Equipped with

AGC, BNN training tends to have a constrained gradient

distribution as evidenced in Figure 8, avoiding the gradient

explosion issue.

Scaled weight standardization. To deal with the mean-

shift in the hidden activation distributions caused by remov-

ing BN, we also introduced the Scaled Weight Standard-

ization from [6]. Specifically, we modify all convolutional

layers in BNN backbones as follows:

Ŵi,j = γ · Wi,j − µi√
Nσi

(2)
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where µi = (1/N)ΣjWi,j , σ2
i = (1/N)Σj(Wi,j − µi)

2,

N is the fan-in, and Ŵi,j is the corresponding standardized

weights. γ is a fixed scalar for variance preserving, and has

diverse values for different adopted activation functions [6].

For example, γ =
√

2/(1− (1/π)) for the ReLU activation

function [1]. We name the modified convolutional layer as

WS-Conv for simplicity. Note that, such WS-Conv has con-

sistent performance between training and inference, miti-

gating the discrepancy behaviour of the batch normaliza-

tion [7] and leading to a hardware-friendly implementation

of BN-Free binary neural networks.

Specialized bottleneck block. For the batch normaliza-

tion benefits preserving purpose, we inherit the specialized

bottlenecks block from [6, 7] that applies input/output nor-

malization with hand-crafted scaling factor (e.g., α, β). As

shown in Figure 2, we utilize xi0 and xi1 to present the in-

put of the ith BN-Free block and activation after the ReAct

PReLU function. In order to normalize the input variance,

β1 =
√

Var(xi0) is adopted before the 3x3 WS-Conv oper-

ation. We then multiply it with a scalar α and feed it to the

ReAct PReLU. Similarly, we divide the obtain activation

xi1 with β2 =
√

Var(xi1) and multiply it with α. Blessed

by the variance preserving design [6, 7], the output variance

of the ith BN-Free block is Var(xi1)+α2. Note that, β1 and

β2 are usually the expected empirical standard deviation of

the corresponding activation at initialization [7].

3.2. The Backbone Architecture of BNN

Generalized activation functions. [51, 67, 8, 38] advo-

cate that enforcing binary neural networks to learn simi-

lar distribution as full-precision (i.e., real-valued or 32 bits)

networks plays a significant role in the final achievable per-

formance of BNN. Specifically, XNOR-Net [51] pursues

close logits distribution as real-valued ones by calculating

analytical real-valued scaling factors and multiplying them

with the activations. [67, 8] introduce further improvements

by learning these factors through back-propagation. Re-

ActNet [38] explores an orthogonal perspective that mimics

the activation distribution from a pre-trained full precision

model. However, it is challenging for binary neural net-

works with a highly limited capacity to learn appropriate

activation distribution, since even small variations to their

activation distribution can substantially affect the feature

representations in BNNs [38].

To tackle this issue, [38] proposes the generalized ac-

tivation functions with learnable parameters, for sign and

PReLU [23] functions, which are termed as RSign and

RPReLU respectively. Such learnable parameters enable

the adaptive reshape and shift of BNNs’ activation to match

the desired distributions. Following [38]’s definition, we in-

troduce adopted activation functions.

(RSign) xb
i = h(xr

i ) =

{

+1, if xr
i > αi

−1, if xr
i ≤ αi

(3)

where xr
i is full-precision input of the RSign function h(·)

on the ith channel, xb
i is the binary output and αi is a learn-

able coefficient controlling the threshold. The superscripts

b and r above xi denote the corresponding binary and full-

precision values.

(RPReLU) f(xi) =

{

xi − γi + ζi, if xi > γi

βi × (xi − γi) + ζi, if xi ≤ γi
(4)

In RPReLU function f(·), xi is the input in the ith channel,

γi and ζi are learnable shifts, and βi is a learnable coeffi-

cient determines the slope of the negative half.

Meanwhile, we also use the default setting that adding

parameter-free shortcuts to blocks, similar to [39] and [38].

As shown in Figure 2, our proposed Batch Normalization

free (BN-Free) network block maintains the duplication of

input activation from [38], replaces by scaling factors (e.g.,

α, 1/β1, 1/β2) and adjusts convolutional layers with scaled

weight standardization (i.e., WS-Conv).

Distillation loss functions. To establish the state-of-the-

art BNN results, we also introduce the distribution loss

function [38] to enforce the similarity of distributions be-

tween full-precision networks and binary neural networks.

It can also be regarded as a knowledge distillation tech-

nique. Specifically, the formulation is depicted as follows:

LDis = − 1

n

∑

c

n
∑

i=1

ρRc (Xi)× log(
ρBc (Xi)

ρRc (Xi)
) (5)

where LDis is the Kullback–Leibler (KL) divergence, Xi

is the input image, c represents classes and n denotes the

batch size. ρRc is the softmax output of the full-precision

(i.e., real-valued) model and ρBc is the softmax output of the

binary neural network. With the assistance of introduced

distribution loss, BNN is capable of imitating the prediction

distribution from full-precision models, leading to a supe-

rior performance. In the implementation, the full-precision

NFNet [6, 7] is utilized, which is also a BN-Free network.

4. Experiments

4.1. Setup

We conduct experiments on three binary models, i.e.,

XNOR-Net [51], Bi-RealNet [39], and ReActNet [38] with

two widely used backbones, i.e., ResNet-18 [24] and Mo-

bileNetV1 [30]. Meanwhile, we evaluate their BN-free
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counterparts and report the performance on three represen-

tative classification datasets, i.e., CIFAR-10 [35], CIFAR-

100 [35], and ILSVRC12 ImageNet [54].

Implementation details on ImageNet. We use the Ima-

geNet dataset with 1000 classes. There are 1, 281, 167 im-

ages for training and 50, 000 images for validation. Consid-

ering the superior performance of ReActNet [37] on the Im-

ageNet classification task, we apply our BN-Free network

design on ReActNet-18 and ReActNet-A, which are the

modifications of ResNet-18 and MobileNetv1 respectively.

We also adopt the adaptive gradient clipping (AGC) [7]

in the back-propagation when training our BN-Free BNNs

with the upper bound value set to 0.02.

When training the model, We follow the original two-

step training strategy [38], where we only binarize the acti-

vations and train the network from scratch in the first step,

then we fine-tune the network with both binary activations

and weights in the second step. In both steps, we train the

network for 120 epochs with the Adam optimizer and an

initial learning rate of 5 × 10−4, which follows a linear

decreasing scheduler to zero. The weight decay is set to

1×10−5 for the first step and 0 for the second. Besides, the

data augmentation method we used in our experiments fol-

lows [30], which contains random cropping, lighting, and

random horizontal flipping. The input resolution is 224 and

the top-1 accuracy on the validation set will be reported in

the following section.

Implementation details on CIFAR-10 and CIFAR-100.

Both CIFAR-10 and CIFAR-100 contain 50, 000 training

images and 10, 000 testing images from 10 and 100 classes

respectively. To comprehensively investigate the effective-

ness of BN-Free networks, We conduct the classification

experiments with four binary networks: XNORNet-18, Bi-

RealNet-18, ReActNet-18, and ReActNet-A on CIFAR-10

and CIFAR-100. The first three networks all have a modi-

fied ResNet-18 backbone while ReActNet-A is constructed

on MobileNetv1. We follow the two-step training strategy

consistent with the ImageNet experiments and train the net-

work for 256 epochs in each step. The upper bound of clip-

ping value in AGC is set to 0.001 by default, according to

the grid searching in Section 4.3. Additionally, other train-

ing hyperparameters remain the same as those in the Ima-

geNet experiments. Differently, we use only random crop-

ping and horizontal flipping for data augmentation.

4.2. Comparison to State­of­the­art networks

We begin by investigating the performance of batch nor-

malization free BNN (BN-Free BNNs). For each network,

we apply the Scaled Weight Standardization [7] to all con-

volution layers and replace the basic blocks with our BN-

Free blocks after removing all batch normalization (BN)

layers. We report the accuracy between its three variants:

the baseline network with BN, the network without BN, and

the BN-Free network.

Results on ImageNet. We first evaluate our proposed

BN-Free (BF) BNN on ImageNet. Specifically, the BN-

Free versions of ReActNet-18 and ReActNet-A are con-

structed to compare with other existing state-of-the-art

BNNs (with BN). Top-1 accuracies are collected in Table 1

and Figure 3.

Table 1. Comparison of the top-1 accuracy with state-of-the-

art binary methods on ImageNet. The accuracy of other bi-

nary networks are collected from the original papers, which in-

clude BNN [14], PCNN [19], XNOR-Net [51], Bi-RealNet [39],

Real-to-Binary Net [42], ReActNet-18 (BN) and ReActNet-A

(BN) [38]. “w/o BN” denotes the version without batch normal-

ization; “BN-Free” represents our proposed BN-Free BNNs.

Binary Network Top-1 Acc (%)

BNN [14] 42.2
PCNN [19] 57.3
XNORNet-18 [51] 51.2
Bi-RealNet-18 [39] 56.4
Real-to-Binary Net [42] 65.4

ReActNet-18 (BN) [38] 65.5
ReActNet-18 (w/o BN) 44.6
ReActNet-18 (BN-Free) 61.1

ReActNet-A (BN) [38] 69.4
ReActNet-A (w/o BN) 34.1
ReActNet-A (BN-Free) 68.0
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Figure 3. Results of validation accuracy over epochs on ImageNet

with ReActNet-18/A. The green background represents the first

training step, in which only activations are binarized. And in the

orange part, both activations and weights are binary.

As shown in Table 1, compared with the binary neu-

ral network without BatchNorm layers, our BN-Free binary

neural networks achieve substantial performance improve-

ments. Specifically, we obtain 16.5% and 33.9% accuracy

gains for the ReActNet-18 and ReActNet-A on ImageNet,

respectively. Note that, our BN-Free ReActNet-A achieves

a 68.0% top-1 accuracy, which only has marginal gap
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Figure 4. Results of testing accuracy over epochs on CIFAR-10/100 with ReActNet-18/A. The green background represents the first training

step, in which only activations are binarized. And in the orange part, both activations and weights are binary.

(i.e.,1.4%) compared to the state-of-the-art ReActNet [38]

with batch normalization. Detailed training dynamics are

presented in Figure 3. We observe that the proposed BN-

Free BNN not only reaches a superior performance, but also

leads to more stable training.

Results on CIFAR-10 and CIFAR-100. To further eval-

uate the effectiveness of BN-Free modules in BNN, we im-

plement the three binary networks mentioned in section 4.1,

i.e., XNORNet, Bi-RealNet, ReActNet, and compare the

performance of their three variants (i.e., BN, w/o BN, BN-

Free) on CIFAR-10 and CIFAR-100. With the results in

Table 2 and Figure 4, several consistent observations could

be drawn as the following:

• The proposed BN-Free approach serves as a remedy

for the accuracy degradation caused by the absence of

BN layers across all datasets and networks. Specifi-

cally, when compared with their counterparts without

BN, BN-Free BNNs achieve accuracy improvements

of 1.75% ∼ 8.29%, 5.74% ∼ 15.63% for different

binary networks on CIFAR-10 and CIFAR-100.

• Accuracy achieved by BN-Free ReActNet-A surpasses

its BN counterpart surprisingly by 0.96% and 4.70%
on CIFAR-10 and CIFAR-100, respectively. And BF-

ReActNet-18 also achieves comparable performance

with its BN version. However, for XNORNet-18 and

Bi-RealNet-18, there remains a moderate performance

gap between the BN and BN-Free networks.

• Training curves of BN-Free ReActNet on CIFAR-10 in

Figure 4, almost overlaps (BN) ReActNet’s curves in

both training steps. This indicates our BF networks not

only can achieve comparable accuracy but also ensure

a stable training process, especially on small datasets.

4.3. Ablation Study

In the previous section, we empirically evaluate the ef-

fectiveness of BN-Free modules and verify that our BF-

ReActNet-A can reach competitive state-of-the-art perfor-

Table 2. Comparison of the top-1 accuracy between the three vari-

ants (i.e., BN, w/o BN, BN-Free) of binary networks on CIFAR-10

and CIFAR-100. All networks are modified from ResNet-18 ex-

cept for ReActNet-A, which is constructed from MobileNetv1.

Binary Network
CIFAR-10 (%) CIFAR-100 (%)

BN w/o BN BN-Free BN w/o BN BN-Free

XNORNet-18 90.21 71.75 79.67 65.35 45.30 53.76

Bi-RealNet-18 89.12 71.30 79.59 63.51 47.72 54.34

ReActNet-18 92.31 90.33 92.08 68.78 62.60 68.34

ReActNet-A 82.95 77.60 83.91 50.30 39.37 55.00

Table 3. Ablation Study of clipping threshold values in AGC on

CIFAR-10/100 with ReActNet-18 and ReActNet-A.

Clipping Value
ReActNet-18 ReActNet-A

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

w/o AGC 91.08 66.15 82.39 48.12

1× 10−2 91.23 65.38 82.61 49.46

5× 10−3 91.03 66.03 83.10 48.69

1× 10−3 92.08 68.34 83.91 51.32

8× 10−4 91.54 67.95 83.58 52.27

5× 10−4 91.39 67.36 83.31 53.60

2× 10−4 90.43 67.07 83.03 55.00

1× 10−4 89.62 62.45 80.81 52.28

mance. To further investigate the effects of different clip-

ping thresholds in AGC strategy and different components

in the proposed BN-Free framework, we provide an ablation

study on CIFAR-10 and CIFAR-100 with ReActNet-18 and

ReActNet-A as the backbone BNNs.

Clipping threshold in AGC. The clipping threshold λ
plays an important role in the effectiveness of AGC [7].

In this paragraph, we empirically analyze how does the

threshold values affect the training process and final perfor-

mance. As shown in Table 3, the results indicate that with

the growth of the clipping threshold, the final test accuracy

first increases to the peak then begins to decline. The results

also show that we can get an extra accuracy improvement of

1.00% ∼ 6.88% by using an appropriate threshold. In addi-

6



0 100 200 300 400
30
40
50
60
70
80

To
p-

1 
Ac

cu
ra

cy
 (%

)

CIFAR-10, ReActNet-A

w/o AGC
1e-2
5e-3
1e-3

0 100 200 300 400
20
30
40
50
60
70
80
90

CIFAR-10, ReActNet-18

0 100 200 300 400
10

20

30

40

50

CIFAR-100, ReActNet-A

0 100 200 300 400

20
30
40
50
60
70

CIFAR-100, ReActNet-18

0 100 200 300 400
Epochs

30
40
50
60
70
80

To
p-

1 
Ac

cu
ra

cy
 (%

)

8e-4
5e-4
2e-4
1e-4

0 100 200 300 400
Epochs

20
30
40
50
60
70
80
90

0 100 200 300 400
Epochs

10

20

30

40

50

0 100 200 300 400
Epochs

20
30
40
50
60
70

Figure 5. Results of testing accuracy curves of different clipping values in AGC on CIFAR-10/100 with ReActNet-18/A. The green back-

ground represents the first training step, where only activations are binarized. In the orange part, both activations and weights are binary.

Table 4. Ablation study of the separate effect of scaled weight stan-

dardization and normalizer-free block on CIFAR-10 and CIFAR-

100 with two binary networks based on ReActNet. Test accuracies

are reported.

Settings
ReActNet-18 (%)

CIFAR-10 CIFAR-100

BN 92.31 68.79
w/o BN 90.33 62.60

WS-Conv 91.91 68.20
Specialized Block (i.e., α, 1

β
) 91.44 63.63

BN-Free 92.08 68.34

Settings
ReActNet-A (%)

CIFAR-10 CIFAR-100

BN 82.95 50.30
w/o BN 77.60 39.37

WS-Conv 82.34 52.37
Specialized Block (i.e., α, 1

β
) 80.45 54.44

BN-Free 83.91 55.00

tion, the performance of BN-Free networks on CIFAR-10 is

less affected by the clipping values. A possible explanation

is that the performance on the simple CIFAR-10 classifica-

tion is saturated and less sensitive. Furthermore, Figure 5

demonstrates that the training process becomes less stable

when the threshold in AGC is extremely small. It comes

as no surprise that aggressive gradient clipping introduces

undesired noise and causes instability.

Different components in the BN-Free framework. As

described in Section 3.1, the BN-Free module is constructed

with a specialized block for the variance normalization, and

a scaled weight standardization technique that is applied to

all convolution layers (WS-Conv). To study the effects of

different components in the BN-Free framework, we con-

struct five variants on top of baseline BNNs (ReActNet-18

and ReActNet-A): a) original baseline (with BN); b) base-

line (w/o BN); c) baseline (w/o BN) + WS-Conv; d) base-

line (w/o BN) + specialized block; e) baseline (w/o BN)

+ WS-Conv + specialized block which is equivalent to

the complete BN-Free setup. AGC with the best clipping

threshold is adopted. The results are collected in Table 4

and their corresponding training dynamics are presented in

Figure 6, from which several observations could be drawn:

• Either specialized block or WS-Conv can improve the

performance of binary networks independently, specif-

ically, the separate improvement achieved by WS-

Conv ranges from 1.58% to 13.00% and the sepa-

rate improvement of the specialized block ranges from

1.03% to 15.07%. In addition, the combination of

these two approaches can further benefit the BN-Free

binary neural networks.

• WS-Conv benefits more than the specialized bottle-

neck by 0.47% ∼ 4.57% performance gains, except

the experiment of ReActNet-A on CIFAR-100.

4.4. Visualization

In this section, we provide the visualization of gradi-

ent, latent weight, and activation distributions. Three vari-

ants of ReActNet-A (i.e., BN, w/o BN, BN-Free) trained on

CIFAR-10 are considered.

Activation distribution. We visualize the activation dis-

tribution in Figure 7. Compared with the network without
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Figure 6. Results of testing accuracy over epochs on CIFAR-10/100 with ReActNet-18/A. The green background represents the first training

step, in which only activations are binarized. And in the orange part, both activations and weights are binary.
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Figure 7. Histogram of the activation distribution inside three vari-

ants of ReActNet-A on CIFAR-10: with BN (top), without BN

(middle) and BN-Free (bottom).

BN, the values of the activation inside the BN-Free network

are consistently concentrated in a smaller region, which pro-

vides some insights into the training stability.
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Figure 8. Visualization of gradient distributions of the three vari-

ants of ReActNet-A on CIFAR-10: with BN (blue), without BN

(green) and BN-Free (red).

Gradient distribution. In figure 8, we show histogram

visualizations of the gradient distribution. Our proposed

BN-Free BNNs (red bars) tend to have a smaller range for

gradients, which potentially prevents the emergence of gra-
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Figure 9. Visualization of latent weight distributions of the three

variants of ReActNet-A on CIFAR-10: with BN (blue), without

BN (green) and BN-Free (red).

dient exploration caused by training without batch normal-

ization [55].

Latent weight distribution. Figure 9 present the latent

weight distribution of three variants of ReActNet-A. We

observe that BN-Free BNNs have a more zero-centralized

weight distribution, which mainly stems from the weight

standardization process.

5. Conclusions

In this paper, we for the first time propose a frame-

work for training binary neural networks without batch nor-

malization, i.e., BN-Free BNN, which achieves competi-

tive state-of-the-art performance compared to its BN-based

counterpart. Specifically, We introduce the scaled weight

standardization to deal with the mean-shift in the hidden

activation distributions caused by removing BN and ap-

ply a specialized bottleneck block for the purpose of vari-

ance preserving. Moreover, adaptive gradient clipping is

adopted to mitigate the gradient exploration issue and stabi-

lize training, for the BN-Free BNN. With the contributions

jointly achieved by these techniques, our BN-Free ReAct-

Net achieves 92.08%, 68.34%, and 68.00% on CIFAR-10,

CIFAR-100, and ImageNet, respectively. Note that our BN-

Free BNN totally gets rid of batch normalization in both

training and inference regimes. In the future, we would be

interested to examine the speedup and energy-saving results

of the BNN training/inference on a hardware platform.
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