
“BNN - BN = ?”: Training Binary Neural Networks without Batch Normalization

Tianlong Chen1, Zhenyu Zhang2, Xu Ouyang3, Zechun Liu4, Zhiqiang Shen4, Zhangyang Wang1

1University of Texas at Austin, 2University of Science and Technology of China,
3Cornell University, 4Carnegie Mellon University

{tianlong.chen,atlaswang}@utexas.edu,zzy19969@mail.ustc.edu.cn,

xo28@cornell.edu,{zechunl,zhiqians}@andrew.cmu.edu

Abstract

Batch normalization (BN) is a key facilitator and con-

sidered essential for state-of-the-art binary neural networks

(BNN). However, the BN layer is costly to calculate and is

typically implemented with non-binary parameters, leaving

a hurdle for the efficient implementation of BNN training.

It also introduces undesirable dependence between samples

within each batch. Inspired by the latest advance on Batch

Normalization Free (BN-Free) training [7], we extend their

framework to training BNNs, and for the first time demon-

strate that BNs can be completely removed from BNN train-

ing and inference regimes. By plugging in and customiz-

ing techniques including adaptive gradient clipping, scale

weight standardization, and specialized bottleneck block, a

BN-free BNN is capable of maintaining competitive accu-

racy compared to its BN-based counterpart. Extensive ex-

periments validate the effectiveness of our proposal across

diverse BNN backbones and datasets. For example, af-

ter removing BNs from the state-of-the-art ReActNets [38],

it can still be trained with our proposed methodology to

achieve 92.08%, 68.34%, and 68.0% accuracy on CIFAR-

10, CIFAR-100, and ImageNet respectively, with marginal

performance drop (0.23% ∼ 0.44% on CIFAR and 1.40%
on ImageNet). Codes and pre-trained models are available

at: https://github.com/VITA-Group/BNN_NoBN .

1. Introduction

Despite widespread success [59, 24, 53, 52, 40, 11, 45],

state-of-the-art deep networks usually have hundreds of

millions of parameters [7, 33, 47], and suffer from bur-

densome computational cost. It is questionable how prac-

tical they are when it comes to deployment on real-world

resource-constrained platforms, e.g., FPGA, ASICs, and

mobile devices. Binary neural network (BNN) [14, 13, 50,

51, 73] are therefore proposed for the efficiency purpose.

It takes only 1-bit with two discrete values, i.e., {−1, 1} to

represent networks’ weights and activations, leading to sig-

30 40 50 60 70
Top-1 Accuracy (%)

BNNs

PCNN

XNOR-Net

Bi-RealNet-18

Real-to-Binary Net

(BN) ReActNet-A

(w/o BN) ReActNet-A

(BN-Free) ReActNet-A

Bi
na

ry
 N

eu
ra

l N
et

wo
rk

s

42.2

57.3

51.2

56.4

65.4

69.4

34.1

68.0

Figure 1. Top-1 accuracies of different binary neural networks

(BNN) evaluated on ImageNet. Blue bars denote previous BNN

methods. The orange bar presents the existing state-of-the-art

(SOTA) method, i.e., ReActNet [38]. The green bar shows the

performance of ReActNet if naively dropping Batch Normaliza-

tion (BN) modules. The red bar indicates our proposed Batch Nor-

malization Free (BN-Free) binary neural network, which reaches

competitive performance compared to its counterpart with BN.

nificantly accelerated and energy-efficient inference as the

1-bit convolution operation can be efficiently implemented

with XNOR and Bitcount operations [51].

Despite these appeals, BNNs are notoriously difficult to

train, and undergo performance degradation. Particularly,

[55] shows that the Batch Normalization (BN) [31] is crit-

ical to train BNNs successfully, allowing for stable train-

ing under larger learning rates, from both theoretical and

empirical perspectives. Unfortunately, the batch normal-

ization implementation [31] hinges on high precision val-

ues to compute the sum of squares, square-root and re-

ciprocal. Therefore, it comes as no surprise that most

BNNs [51, 73, 39, 38] kept BN layers in full precision

during training, and some used reduced-precision such as

1



8-bit [4]. Although BNs can be absorbed into the BNN

weights (e.g., scaling factors) post-training, their presence

becomes a bottleneck for BNNs training efficiency on hard-

ware [65]. Moreover, BNs often account for a substantial

fraction of run-time, are hard to accelerate [17], and in-

curs memory overhead [9]. That applies to both inference

and the feedforward stage of a training pass. Besides, BN

causes discrepant behaviors between the network training

and inference stages [58], which may break down the inde-

pendence assumption between samples within each batch.

We hence anticipate finding an alternative to eliminate

the unwanted properties of BNs in BNNs, while maintain-

ing competitive performance. Motivated by the recent ad-

vance [6, 7], we propose Batch Normalization Free (BN-

Free) binary neural networks. Specifically, we leverage the

adaptive gradient clipping to constraining BNN’s gradient

distribution and mitigate gradient explosion due to remov-

ing BNs [55]. Then, the scaled weight standardization and

specialized bottleneck block [7] are integrated for preserv-

ing the variances and preventing the mean shifts of activa-

tions. Our contributions are outlined as follows:

• We provide the first proof-of-concept study that gen-

eral BNNs can be successfully trained without BNs but

maintain competitive performance.

• We introduce adaptive gradient clipping, scaled weight

standardization, and specialized block to BNNs, and

show these techniques can be easily plugged in various

BNN backbones to make them BN-Free.

• Comprehensive experiments validate the effectiveness

of our proposed mechanisms. For example, BN-Free

ReActNet achieves 92.08%, 68.34%, and 68.0% accu-

racy on CIFAR-10, CIFAR-100, and ImageNet respec-

tively, with only marginal performance drops com-

pared to state-of-the-arts.

2. Related Work

Binary neural networks. Numerous model compression

and acceleration algorithms have been proposed to reduce

the latency of models while maintaining comparable accu-

racy performance. General model compression approaches

fall under multiple forms [12]: pruning [21, 63], quantiza-

tion [64, 56, 16], knowledge distillation [27, 44], as well as

their compositions [61, 69, 71].

A Binary Neural Network (BNN) [13, 14, 34, 73, 51,

14, 36, 48, 44, 29, 72, 39, 25, 37, 10, 57, 20, 66] rep-

resents the most extreme form of model quantization as

it quantizes weights in convolution layers to only 1 bit,

enjoying great speed-up compared with its full-precision

counterpart. [50] roughly divides previous BNN literature

into two categories: (i) native BNN [13, 14, 34] which di-

rectly applies binarization to a full-precision model by a

pre-defined binarization function. Straight-through estima-

tor (STE) [26, 5] is usually adopted to enable the back-

propagation in binarized models [13]. (ii) optimization-

based BNNs techniques, including minimizing the quanti-

zation error [73, 51, 14, 36], improving the network loss

function [48, 44, 29, 72], and reducing the gradient error

[39, 25, 37, 10].

However, such aggressive quantization usually results

in severe accuracy decline. To tackle this limitation, [14]

proposes an end-to-end gradient back-propagation frame-

work for training the discrete binary weights and activa-

tions, establishing great successes on small datasets, such

as MNIST [60] and CIFAR10 [62], while still has unsatis-

factory performance on large datasets like ImageNet [38].

Follow-up researches [8, 19, 42, 39, 38] devote themselves

to build state-of-the-art (SOTA) accuracies on ImageNet.

Among these works, ReActNet [38] proposes generalized

activation functions and a distributional loss, reaching the

superior performance which reduces the gap to its full-

precision counterpart within 3.0% accuracy on ImageNet.

Note that, all mentioned SOTA BNNs are not sustained

without batch normalization.

Batch normalization and normalization-free networks.

Batch normalization (BN) [31] is a well-known and widely

used technique to stabilize model training. It also plays

a critical role in the BNN training, as evidenced by [55].

However, bath normalization is an expensive computational

primitive [17], and its inefficiency is further amplified in

low bits precision context which hinders the deployment of

BNN to resource-limited hardware [65].

To seek a simple and effective alternative for batch nor-

malization, various studies [70, 2, 22, 49, 6, 7] are pro-

posed. [70] introduces an initialization and rescaling rule

(i.e., fixed-update initialization) to stabilizes the training

of very deep models in place of BN. [2, 22] share simi-

lar observations that appropriately initializing weights and

scaling residual modules benefit avoiding the gradient ex-

ploding and vanishing, leading to a stabilized training. An-

other promising substitution is weight standardization [49],

which subtracts the mean from weights and divides weights

by their standard deviation. [6] proposes a modified variant,

i.e., scaled weight standardization, to suppresses the quickly

enlarging of the mean in hidden activations. Recently, [7]

proposes Adaptive Gradient Clipping (AGC) to enable the

larger batch size training of normalization-free networks,

and to overcome the instabilities from eliminating BN.

3. Technical Approach

In this section, we present the detailed normalization-

free methodologies for binary neural networks (BNN) in

Section 3.1 and adopt BNN backbone architecture in Sec-

2



ReAct Sign

1-bit 3x3 Conv

BatchNorm

ReAct PReLU

ReAct Sign

1-bit 1x1 Conv

BatchNorm

ReAct PReLU

ReAct Sign

1-bit 3x3 Conv

BatchNorm

ReAct PReLU

ReAct Sign

1-bit 1x1 Conv

BatchNorm

ReAct PReLU

2x2 AvgPool
s=2

ReAct Sign

1-bit 1x1 Conv

BatchNorm

ReAct PReLU

Concatenate

Duplicate activation

ReAct Sign

1-bit 1x1 WS-Conv

ReAct PReLU

ReAct Sign

1-bit 3x3 WS-Conv

ReAct PReLU

ReAct Sign

1-bit 3x3 WS-Conv

ReAct PReLU

ReAct Sign

1-bit 1x1 WS-Conv

2x2 AvgPool
s=2

1-bit 1x1 WS-Conv

Concatenate

ReAct PReLU

ReAct Sign

Duplicate activation

(a) Baseline Network Block of ReActNet (b) Proposed BN-Free Network Block

Normal 
Block

Normal 
Block

Reduction 
Block

Reduction 
Block

Figure 2. The architecture overview of baseline network block (a) and proposed BN-Free network block (b). The baseline network blocks

are inherited from the recent state-of-the-art (SOTA) BNN framework, i.e., ReActNet [38], which are modified from MobileNetV1 [30]

and have the same configuration of channel and layer numbers. For the reduction block, [38] duplicates the input activation and concatenate

the outputs to increase the channel number, which is also maintained in our proposed BN-Free network block. The most important thing

is that all original Batch Normalization modules are removed, replaced by scaling factors (e.g., α, 1/β1, 1/β2) and adjusted convolutional

layers with scaled weight standardization (i.e., WS-Conv).

tion 3.2. Before that, we briefly list the main Batch Normal-

ization benefits from previous literature.

Understanding Batch Normalization. The Batch Nor-

malization (BN) can (i) reduces the scale of hidden acti-

vations on the residual branches [15, 3, 22, 68], and main-

tains well-behaved gradients early in training; (ii) elimi-

nates mean-shift by enforcing the mean activation of each

channel to zero across the current training batch [15, 32, 6];

(iii) serves an implicit regularization [41] and enhances the

models’ generalization [28]; (iv) enables large-batch train-

ing [18] and smoothens the loss landscapes [55].

Removing batch normalization directly usually leads to

an inferior performance [31, 7]. It is further aggravated

in training the binary neural network, due to its challenge

regime with discrete values of variables [55]. Particularly,

[55] provides both theoretical and empirical analyses to

demonstrate the critical role of BN is to alleviate explod-

ing gradients in the case of binary neural networks, which

motivates us the introduce adaptive gradient clipping to es-

tablish the framework of BN-Free BNN.

3.1. Normalization­free Training Methodology

Adaptive gradient clipping (AGC). Gradient clipping is

typically adopted to constrain the norm of gradients [46],

leading to stabilized training [43]. Recently [7] proposes

adaptive gradient clipping (AGC) to ameliorate the NF-

ResNets [6]’s performance, which clips gradients based on

the unit-wise ratios of gradient norms to parameter norms.

It can be described as follows:

Gl
i →











λ
‖W l

i ‖∗F
‖Gl

i‖F
Gl

i if
‖Gl

i‖F
‖W l

i ‖∗F
> λ

Gl
i otherwise.

(1)

Where Gl
i denotes the ith row of gradient matrix Gl;

similarly, W l
i is the ith row of weight matrix W l; l is

the layer index of the considered network; ‖W l
i ‖∗F =

max{‖Wi‖F , ǫ}, ǫ = 10−3 and ‖·‖F is the Frobenius norm.

The clipping threshold λ is a crucial hyperparameter,

which is usually tuned by a grid search. Equipped with

AGC, BNN training tends to have a constrained gradient

distribution as evidenced in Figure 8, avoiding the gradient

explosion issue.

Scaled weight standardization. To deal with the mean-

shift in the hidden activation distributions caused by remov-

ing BN, we also introduced the Scaled Weight Standard-

ization from [6]. Specifically, we modify all convolutional

layers in BNN backbones as follows:

Ŵi,j = γ · Wi,j − µi√
Nσi

(2)

3



where µi = (1/N)ΣjWi,j , σ2
i = (1/N)Σj(Wi,j − µi)

2,

N is the fan-in, and Ŵi,j is the corresponding standardized

weights. γ is a fixed scalar for variance preserving, and has

diverse values for different adopted activation functions [6].

For example, γ =
√

2/(1− (1/π)) for the ReLU activation

function [1]. We name the modified convolutional layer as

WS-Conv for simplicity. Note that, such WS-Conv has con-

sistent performance between training and inference, miti-

gating the discrepancy behaviour of the batch normaliza-

tion [7] and leading to a hardware-friendly implementation

of BN-Free binary neural networks.

Specialized bottleneck block. For the batch normaliza-

tion benefits preserving purpose, we inherit the specialized

bottlenecks block from [6, 7] that applies input/output nor-

malization with hand-crafted scaling factor (e.g., α, β). As

shown in Figure 2, we utilize xi0 and xi1 to present the in-

put of the ith BN-Free block and activation after the ReAct

PReLU function. In order to normalize the input variance,

β1 =
√

Var(xi0) is adopted before the 3x3 WS-Conv oper-

ation. We then multiply it with a scalar α and feed it to the

ReAct PReLU. Similarly, we divide the obtain activation

xi1 with β2 =
√

Var(xi1) and multiply it with α. Blessed

by the variance preserving design [6, 7], the output variance

of the ith BN-Free block is Var(xi1)+α2. Note that, β1 and

β2 are usually the expected empirical standard deviation of

the corresponding activation at initialization [7].

3.2. The Backbone Architecture of BNN

Generalized activation functions. [51, 67, 8, 38] advo-

cate that enforcing binary neural networks to learn simi-

lar distribution as full-precision (i.e., real-valued or 32 bits)

networks plays a significant role in the final achievable per-

formance of BNN. Specifically, XNOR-Net [51] pursues

close logits distribution as real-valued ones by calculating

analytical real-valued scaling factors and multiplying them

with the activations. [67, 8] introduce further improvements

by learning these factors through back-propagation. Re-

ActNet [38] explores an orthogonal perspective that mimics

the activation distribution from a pre-trained full precision

model. However, it is challenging for binary neural net-

works with a highly limited capacity to learn appropriate

activation distribution, since even small variations to their

activation distribution can substantially affect the feature

representations in BNNs [38].

To tackle this issue, [38] proposes the generalized ac-

tivation functions with learnable parameters, for sign and

PReLU [23] functions, which are termed as RSign and

RPReLU respectively. Such learnable parameters enable

the adaptive reshape and shift of BNNs’ activation to match

the desired distributions. Following [38]’s definition, we in-

troduce adopted activation functions.

(RSign) xb
i = h(xr

i ) =

{

+1, if xr
i > αi

−1, if xr
i ≤ αi

(3)

where xr
i is full-precision input of the RSign function h(·)

on the ith channel, xb
i is the binary output and αi is a learn-

able coefficient controlling the threshold. The superscripts

b and r above xi denote the corresponding binary and full-

precision values.

(RPReLU) f(xi) =

{

xi − γi + ζi, if xi > γi

βi × (xi − γi) + ζi, if xi ≤ γi
(4)

In RPReLU function f(·), xi is the input in the ith channel,

γi and ζi are learnable shifts, and βi is a learnable coeffi-

cient determines the slope of the negative half.

Meanwhile, we also use the default setting that adding

parameter-free shortcuts to blocks, similar to [39] and [38].

As shown in Figure 2, our proposed Batch Normalization

free (BN-Free) network block maintains the duplication of

input activation from [38], replaces by scaling factors (e.g.,

α, 1/β1, 1/β2) and adjusts convolutional layers with scaled

weight standardization (i.e., WS-Conv).

Distillation loss functions. To establish the state-of-the-

art BNN results, we also introduce the distribution loss

function [38] to enforce the similarity of distributions be-

tween full-precision networks and binary neural networks.

It can also be regarded as a knowledge distillation tech-

nique. Specifically, the formulation is depicted as follows:

LDis = − 1

n

∑

c

n
∑

i=1

ρRc (Xi)× log(
ρBc (Xi)

ρRc (Xi)
) (5)

where LDis is the Kullback–Leibler (KL) divergence, Xi

is the input image, c represents classes and n denotes the

batch size. ρRc is the softmax output of the full-precision

(i.e., real-valued) model and ρBc is the softmax output of the

binary neural network. With the assistance of introduced

distribution loss, BNN is capable of imitating the prediction

distribution from full-precision models, leading to a supe-

rior performance. In the implementation, the full-precision

NFNet [6, 7] is utilized, which is also a BN-Free network.

4. Experiments

4.1. Setup

We conduct experiments on three binary models, i.e.,

XNOR-Net [51], Bi-RealNet [39], and ReActNet [38] with

two widely used backbones, i.e., ResNet-18 [24] and Mo-

bileNetV1 [30]. Meanwhile, we evaluate their BN-free

4



counterparts and report the performance on three represen-

tative classification datasets, i.e., CIFAR-10 [35], CIFAR-

100 [35], and ILSVRC12 ImageNet [54].

Implementation details on ImageNet. We use the Ima-

geNet dataset with 1000 classes. There are 1, 281, 167 im-

ages for training and 50, 000 images for validation. Consid-

ering the superior performance of ReActNet [37] on the Im-

ageNet classification task, we apply our BN-Free network

design on ReActNet-18 and ReActNet-A, which are the

modifications of ResNet-18 and MobileNetv1 respectively.

We also adopt the adaptive gradient clipping (AGC) [7]

in the back-propagation when training our BN-Free BNNs

with the upper bound value set to 0.02.

When training the model, We follow the original two-

step training strategy [38], where we only binarize the acti-

vations and train the network from scratch in the first step,

then we fine-tune the network with both binary activations

and weights in the second step. In both steps, we train the

network for 120 epochs with the Adam optimizer and an

initial learning rate of 5 × 10−4, which follows a linear

decreasing scheduler to zero. The weight decay is set to

1×10−5 for the first step and 0 for the second. Besides, the

data augmentation method we used in our experiments fol-

lows [30], which contains random cropping, lighting, and

random horizontal flipping. The input resolution is 224 and

the top-1 accuracy on the validation set will be reported in

the following section.

Implementation details on CIFAR-10 and CIFAR-100.

Both CIFAR-10 and CIFAR-100 contain 50, 000 training

images and 10, 000 testing images from 10 and 100 classes

respectively. To comprehensively investigate the effective-

ness of BN-Free networks, We conduct the classification

experiments with four binary networks: XNORNet-18, Bi-

RealNet-18, ReActNet-18, and ReActNet-A on CIFAR-10

and CIFAR-100. The first three networks all have a modi-

fied ResNet-18 backbone while ReActNet-A is constructed

on MobileNetv1. We follow the two-step training strategy

consistent with the ImageNet experiments and train the net-

work for 256 epochs in each step. The upper bound of clip-

ping value in AGC is set to 0.001 by default, according to

the grid searching in Section 4.3. Additionally, other train-

ing hyperparameters remain the same as those in the Ima-

geNet experiments. Differently, we use only random crop-

ping and horizontal flipping for data augmentation.

4.2. Comparison to State­of­the­art networks

We begin by investigating the performance of batch nor-

malization free BNN (BN-Free BNNs). For each network,

we apply the Scaled Weight Standardization [7] to all con-

volution layers and replace the basic blocks with our BN-

Free blocks after removing all batch normalization (BN)

layers. We report the accuracy between its three variants:

the baseline network with BN, the network without BN, and

the BN-Free network.

Results on ImageNet. We first evaluate our proposed

BN-Free (BF) BNN on ImageNet. Specifically, the BN-

Free versions of ReActNet-18 and ReActNet-A are con-

structed to compare with other existing state-of-the-art

BNNs (with BN). Top-1 accuracies are collected in Table 1

and Figure 3.

Table 1. Comparison of the top-1 accuracy with state-of-the-

art binary methods on ImageNet. The accuracy of other bi-

nary networks are collected from the original papers, which in-

clude BNN [14], PCNN [19], XNOR-Net [51], Bi-RealNet [39],

Real-to-Binary Net [42], ReActNet-18 (BN) and ReActNet-A

(BN) [38]. “w/o BN” denotes the version without batch normal-

ization; “BN-Free” represents our proposed BN-Free BNNs.

Binary Network Top-1 Acc (%)

BNN [14] 42.2
PCNN [19] 57.3
XNORNet-18 [51] 51.2
Bi-RealNet-18 [39] 56.4
Real-to-Binary Net [42] 65.4

ReActNet-18 (BN) [38] 65.5
ReActNet-18 (w/o BN) 44.6
ReActNet-18 (BN-Free) 61.1

ReActNet-A (BN) [38] 69.4
ReActNet-A (w/o BN) 34.1
ReActNet-A (BN-Free) 68.0

0 50 100 150 200
Epochs

10
20
30
40
50
60
70

To
p-

1 
Ac

cu
ra

cy
 (%

)

ImageNet, ReActNet-A

w/o BN
BN-Free
BN

0 50 100 150 200
Epochs

20

30

40

50

60

ImageNet, ReActNet-18

Figure 3. Results of validation accuracy over epochs on ImageNet

with ReActNet-18/A. The green background represents the first

training step, in which only activations are binarized. And in the

orange part, both activations and weights are binary.

As shown in Table 1, compared with the binary neu-

ral network without BatchNorm layers, our BN-Free binary

neural networks achieve substantial performance improve-

ments. Specifically, we obtain 16.5% and 33.9% accuracy

gains for the ReActNet-18 and ReActNet-A on ImageNet,

respectively. Note that, our BN-Free ReActNet-A achieves

a 68.0% top-1 accuracy, which only has marginal gap

5



0 100 200 300 400 500
Epochs

40

50

60

70

80

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, ReActNet-A

BN
w/o BN
BN-Free

0 100 200 300 400 500
Epochs

40
50
60
70
80
90

CIFAR-10, ReActNet-18

0 100 200 300 400 500
Epochs

10

20

30

40

50

CIFAR-100, ReActNet-A

0 100 200 300 400 500
Epochs

20
30
40
50
60
70

CIFAR-100, ReActNet-18

Figure 4. Results of testing accuracy over epochs on CIFAR-10/100 with ReActNet-18/A. The green background represents the first training

step, in which only activations are binarized. And in the orange part, both activations and weights are binary.

(i.e.,1.4%) compared to the state-of-the-art ReActNet [38]

with batch normalization. Detailed training dynamics are

presented in Figure 3. We observe that the proposed BN-

Free BNN not only reaches a superior performance, but also

leads to more stable training.

Results on CIFAR-10 and CIFAR-100. To further eval-

uate the effectiveness of BN-Free modules in BNN, we im-

plement the three binary networks mentioned in section 4.1,

i.e., XNORNet, Bi-RealNet, ReActNet, and compare the

performance of their three variants (i.e., BN, w/o BN, BN-

Free) on CIFAR-10 and CIFAR-100. With the results in

Table 2 and Figure 4, several consistent observations could

be drawn as the following:

• The proposed BN-Free approach serves as a remedy

for the accuracy degradation caused by the absence of

BN layers across all datasets and networks. Specifi-

cally, when compared with their counterparts without

BN, BN-Free BNNs achieve accuracy improvements

of 1.75% ∼ 8.29%, 5.74% ∼ 15.63% for different

binary networks on CIFAR-10 and CIFAR-100.

• Accuracy achieved by BN-Free ReActNet-A surpasses

its BN counterpart surprisingly by 0.96% and 4.70%
on CIFAR-10 and CIFAR-100, respectively. And BF-

ReActNet-18 also achieves comparable performance

with its BN version. However, for XNORNet-18 and

Bi-RealNet-18, there remains a moderate performance

gap between the BN and BN-Free networks.

• Training curves of BN-Free ReActNet on CIFAR-10 in

Figure 4, almost overlaps (BN) ReActNet’s curves in

both training steps. This indicates our BF networks not

only can achieve comparable accuracy but also ensure

a stable training process, especially on small datasets.

4.3. Ablation Study

In the previous section, we empirically evaluate the ef-

fectiveness of BN-Free modules and verify that our BF-

ReActNet-A can reach competitive state-of-the-art perfor-

Table 2. Comparison of the top-1 accuracy between the three vari-

ants (i.e., BN, w/o BN, BN-Free) of binary networks on CIFAR-10

and CIFAR-100. All networks are modified from ResNet-18 ex-

cept for ReActNet-A, which is constructed from MobileNetv1.

Binary Network
CIFAR-10 (%) CIFAR-100 (%)

BN w/o BN BN-Free BN w/o BN BN-Free

XNORNet-18 90.21 71.75 79.67 65.35 45.30 53.76

Bi-RealNet-18 89.12 71.30 79.59 63.51 47.72 54.34

ReActNet-18 92.31 90.33 92.08 68.78 62.60 68.34

ReActNet-A 82.95 77.60 83.91 50.30 39.37 55.00

Table 3. Ablation Study of clipping threshold values in AGC on

CIFAR-10/100 with ReActNet-18 and ReActNet-A.

Clipping Value
ReActNet-18 ReActNet-A

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

w/o AGC 91.08 66.15 82.39 48.12

1× 10−2 91.23 65.38 82.61 49.46

5× 10−3 91.03 66.03 83.10 48.69

1× 10−3 92.08 68.34 83.91 51.32

8× 10−4 91.54 67.95 83.58 52.27

5× 10−4 91.39 67.36 83.31 53.60

2× 10−4 90.43 67.07 83.03 55.00

1× 10−4 89.62 62.45 80.81 52.28

mance. To further investigate the effects of different clip-

ping thresholds in AGC strategy and different components

in the proposed BN-Free framework, we provide an ablation

study on CIFAR-10 and CIFAR-100 with ReActNet-18 and

ReActNet-A as the backbone BNNs.

Clipping threshold in AGC. The clipping threshold λ
plays an important role in the effectiveness of AGC [7].

In this paragraph, we empirically analyze how does the

threshold values affect the training process and final perfor-

mance. As shown in Table 3, the results indicate that with

the growth of the clipping threshold, the final test accuracy

first increases to the peak then begins to decline. The results

also show that we can get an extra accuracy improvement of

1.00% ∼ 6.88% by using an appropriate threshold. In addi-

6



0 100 200 300 400
30
40
50
60
70
80

To
p-

1 
Ac

cu
ra

cy
 (%

)

CIFAR-10, ReActNet-A

w/o AGC
1e-2
5e-3
1e-3

0 100 200 300 400
20
30
40
50
60
70
80
90

CIFAR-10, ReActNet-18

0 100 200 300 400
10

20

30

40

50

CIFAR-100, ReActNet-A

0 100 200 300 400

20
30
40
50
60
70

CIFAR-100, ReActNet-18

0 100 200 300 400
Epochs

30
40
50
60
70
80

To
p-

1 
Ac

cu
ra

cy
 (%

)

8e-4
5e-4
2e-4
1e-4

0 100 200 300 400
Epochs

20
30
40
50
60
70
80
90

0 100 200 300 400
Epochs

10

20

30

40

50

0 100 200 300 400
Epochs

20
30
40
50
60
70

Figure 5. Results of testing accuracy curves of different clipping values in AGC on CIFAR-10/100 with ReActNet-18/A. The green back-

ground represents the first training step, where only activations are binarized. In the orange part, both activations and weights are binary.

Table 4. Ablation study of the separate effect of scaled weight stan-

dardization and normalizer-free block on CIFAR-10 and CIFAR-

100 with two binary networks based on ReActNet. Test accuracies

are reported.

Settings
ReActNet-18 (%)

CIFAR-10 CIFAR-100

BN 92.31 68.79
w/o BN 90.33 62.60

WS-Conv 91.91 68.20
Specialized Block (i.e., α, 1

β
) 91.44 63.63

BN-Free 92.08 68.34

Settings
ReActNet-A (%)

CIFAR-10 CIFAR-100

BN 82.95 50.30
w/o BN 77.60 39.37

WS-Conv 82.34 52.37
Specialized Block (i.e., α, 1

β
) 80.45 54.44

BN-Free 83.91 55.00

tion, the performance of BN-Free networks on CIFAR-10 is

less affected by the clipping values. A possible explanation

is that the performance on the simple CIFAR-10 classifica-

tion is saturated and less sensitive. Furthermore, Figure 5

demonstrates that the training process becomes less stable

when the threshold in AGC is extremely small. It comes

as no surprise that aggressive gradient clipping introduces

undesired noise and causes instability.

Different components in the BN-Free framework. As

described in Section 3.1, the BN-Free module is constructed

with a specialized block for the variance normalization, and

a scaled weight standardization technique that is applied to

all convolution layers (WS-Conv). To study the effects of

different components in the BN-Free framework, we con-

struct five variants on top of baseline BNNs (ReActNet-18

and ReActNet-A): a) original baseline (with BN); b) base-

line (w/o BN); c) baseline (w/o BN) + WS-Conv; d) base-

line (w/o BN) + specialized block; e) baseline (w/o BN)

+ WS-Conv + specialized block which is equivalent to

the complete BN-Free setup. AGC with the best clipping

threshold is adopted. The results are collected in Table 4

and their corresponding training dynamics are presented in

Figure 6, from which several observations could be drawn:

• Either specialized block or WS-Conv can improve the

performance of binary networks independently, specif-

ically, the separate improvement achieved by WS-

Conv ranges from 1.58% to 13.00% and the sepa-

rate improvement of the specialized block ranges from

1.03% to 15.07%. In addition, the combination of

these two approaches can further benefit the BN-Free

binary neural networks.

• WS-Conv benefits more than the specialized bottle-

neck by 0.47% ∼ 4.57% performance gains, except

the experiment of ReActNet-A on CIFAR-100.

4.4. Visualization

In this section, we provide the visualization of gradi-

ent, latent weight, and activation distributions. Three vari-

ants of ReActNet-A (i.e., BN, w/o BN, BN-Free) trained on

CIFAR-10 are considered.

Activation distribution. We visualize the activation dis-

tribution in Figure 7. Compared with the network without

7



0 100 200 300 400 500
Epochs

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, ReActNet-A

BN
w/o BN
BN-Free
WS-Conv
Specialized Block

0 100 200 300 400 500
Epochs

40
50
60
70
80
90

CIFAR-10, ReActNet-18

0 100 200 300 400 500
Epochs

10

20

30

40

50

CIFAR-100, ReActNet-A

0 100 200 300 400 500
Epochs

10
20
30
40
50
60
70

CIFAR-100, ReActNet-18

Figure 6. Results of testing accuracy over epochs on CIFAR-10/100 with ReActNet-18/A. The green background represents the first training

step, in which only activations are binarized. And in the orange part, both activations and weights are binary.

RSign 1bit 3x3 Conv BatchNorm PReLU

RSign 1bit 3x3 WS-Conv PReLU1/β
α

RSign 1bit 3x3 Conv PReLU

ReActNet-A (BN)

ReActNet-A (w/o BN)

ReActNet-A (BN-Free)

Figure 7. Histogram of the activation distribution inside three vari-

ants of ReActNet-A on CIFAR-10: with BN (top), without BN

(middle) and BN-Free (bottom).

BN, the values of the activation inside the BN-Free network

are consistently concentrated in a smaller region, which pro-

vides some insights into the training stability.

-2 -1 0 1 2
Gradient values (1e-4)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f w
ei

gh
ts

 (1
e7

)

Gradient distributions of ReActNet-A on CIFAR-10
BN
w/o BN
BN-Free

Figure 8. Visualization of gradient distributions of the three vari-

ants of ReActNet-A on CIFAR-10: with BN (blue), without BN

(green) and BN-Free (red).

Gradient distribution. In figure 8, we show histogram

visualizations of the gradient distribution. Our proposed

BN-Free BNNs (red bars) tend to have a smaller range for

gradients, which potentially prevents the emergence of gra-

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weight values

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f w
ei

gh
ts

 (1
e7

)

Latent weight distribution of ReActNet-A on CIFAR-10
BN
w/o BN
BN-Free

Figure 9. Visualization of latent weight distributions of the three

variants of ReActNet-A on CIFAR-10: with BN (blue), without

BN (green) and BN-Free (red).

dient exploration caused by training without batch normal-

ization [55].

Latent weight distribution. Figure 9 present the latent

weight distribution of three variants of ReActNet-A. We

observe that BN-Free BNNs have a more zero-centralized

weight distribution, which mainly stems from the weight

standardization process.

5. Conclusions

In this paper, we for the first time propose a frame-

work for training binary neural networks without batch nor-

malization, i.e., BN-Free BNN, which achieves competi-

tive state-of-the-art performance compared to its BN-based

counterpart. Specifically, We introduce the scaled weight

standardization to deal with the mean-shift in the hidden

activation distributions caused by removing BN and ap-

ply a specialized bottleneck block for the purpose of vari-

ance preserving. Moreover, adaptive gradient clipping is

adopted to mitigate the gradient exploration issue and stabi-

lize training, for the BN-Free BNN. With the contributions

jointly achieved by these techniques, our BN-Free ReAct-

Net achieves 92.08%, 68.34%, and 68.00% on CIFAR-10,

CIFAR-100, and ImageNet, respectively. Note that our BN-

Free BNN totally gets rid of batch normalization in both

training and inference regimes. In the future, we would be

interested to examine the speedup and energy-saving results

of the BNN training/inference on a hardware platform.

8



References

[1] Devansh Arpit, Yingbo Zhou, Bhargava Kota, and Venu

Govindaraju. Normalization propagation: A parametric

technique for removing internal covariate shift in deep net-

works. In International Conference on Machine Learning,

pages 1168–1176. PMLR, 2016. 4

[2] Thomas Bachlechner, Bodhisattwa Prasad Majumder,

Huanru Henry Mao, Garrison W Cottrell, and Julian

McAuley. Rezero is all you need: Fast convergence at large

depth. arXiv preprint arXiv:2003.04887, 2020. 2

[3] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis,

Kurt Wan-Duo Ma, and Brian McWilliams. The shattered

gradients problem: If resnets are the answer, then what is the

question? In International Conference on Machine Learn-

ing, pages 342–350. PMLR, 2017. 3

[4] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry.

Scalable methods for 8-bit training of neural networks. arXiv

preprint arXiv:1805.11046, 2018. 2

[5] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013. 2

[6] Andrew Brock, Soham De, and Samuel L Smith. Character-

izing signal propagation to close the performance gap in un-

normalized resnets. arXiv preprint arXiv:2101.08692, 2021.

2, 3, 4

[7] Andrew Brock, Soham De, Samuel L Smith, and Karen Si-

monyan. High-performance large-scale image recognition

without normalization. arXiv preprint arXiv:2102.06171,

2021. 1, 2, 3, 4, 5, 6

[8] Adrian Bulat and Georgios Tzimiropoulos. Xnor-

net++: Improved binary neural networks. arXiv preprint

arXiv:1909.13863, 2019. 2, 4

[9] Samuel Rota Bulo, Lorenzo Porzi, and Peter Kontschieder.

In-place activated batchnorm for memory-optimized training

of dnns. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 5639–5647,

2018. 2

[10] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-

los. Deep learning with low precision by half-wave gaus-

sian quantization. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 5918–5926,

2017. 2

[11] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for seman-

tic image segmentation. arXiv preprint arXiv:1706.05587,

2017. 1

[12] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A sur-

vey of model compression and acceleration for deep neural

networks. arXiv preprint arXiv:1710.09282, 2017. 2

[13] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Binaryconnect: Training deep neural networks

with binary weights during propagations. arXiv preprint

arXiv:1511.00363, 2015. 1, 2

[14] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran

El-Yaniv, and Yoshua Bengio. Binarized neural networks:

Training deep neural networks with weights and activations

constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830,

2016. 1, 2, 5

[15] Soham De and Sam Smith. Batch normalization biases resid-

ual blocks towards the identity function in deep networks.

Advances in Neural Information Processing Systems, 33,

2020. 3

[16] Yonggan Fu, Haoran You, Yang Zhao, Yue Wang, Chaojian

Li, Kailash Gopalakrishnan, Zhangyang Wang, and Yingyan

Lin. Fractrain: Fractionally squeezing bit savings both tem-

porally and spatially for efficient dnn training. Advances in

Neural Information Processing Systems (NeurIPS), 2020. 2

[17] Igor Gitman and Boris Ginsburg. Comparison of batch

normalization and weight normalization algorithms for

the large-scale image classification. arXiv preprint

arXiv:1709.08145, 2017. 2

[18] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large mini-

batch sgd: Training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677, 2017. 3

[19] Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin

Cao, Jianzhuang Liu, and David Doermann. Projection con-

volutional neural networks for 1-bit cnns via discrete back

propagation. In Proceedings of the AAAI Conference on Ar-

tificial Intelligence, volume 33, pages 8344–8351, 2019. 2,

5

[20] Kai Han, Yunhe Wang, Yixing Xu, Chunjing Xu, Enhua Wu,

and Chang Xu. Training binary neural networks through

learning with noisy supervision. In International Conference

on Machine Learning, pages 4017–4026. PMLR, 2020. 2

[21] Song Han, Jeff Pool, John Tran, and William J Dally. Learn-

ing both weights and connections for efficient neural net-

works. arXiv preprint arXiv:1506.02626, 2015. 2

[22] Boris Hanin and David Rolnick. How to start training:

The effect of initialization and architecture. arXiv preprint

arXiv:1803.01719, 2018. 2, 3

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In Proceedings of the

IEEE international conference on computer vision, pages

1026–1034, 2015. 4

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1, 4

[25] Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun

Liu, Kwang-Ting Cheng, and Roeland Nusselder. Latent

weights do not exist: Rethinking binarized neural network

optimization. arXiv preprint arXiv:1906.02107, 2019. 2

[26] Geoffrey Hinton. Neural networks for machine learning.

2012. 2

[27] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015. 2

[28] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train

longer, generalize better: closing the generalization gap in

large batch training of neural networks. arXiv preprint

arXiv:1705.08741, 2017. 3

9



[29] Lu Hou, Quanming Yao, and James T Kwok. Loss-

aware binarization of deep networks. arXiv preprint

arXiv:1611.01600, 2016. 2

[30] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 3, 4, 5

[31] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In International conference on machine learn-

ing, pages 448–456. PMLR, 2015. 1, 2, 3

[32] Arthur Jacot, Franck Gabriel, and Clément Hongler. Freeze

and chaos for dnns: an ntk view of batch normalization,

checkerboard and boundary effects. CoRR, abs/1907.05715,

2019. 3

[33] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,

Hieu Pham, Quoc V Le, Yunhsuan Sung, Zhen Li, and Tom

Duerig. Scaling up visual and vision-language representa-

tion learning with noisy text supervision. arXiv preprint

arXiv:2102.05918, 2021. 1

[34] Minje Kim and Paris Smaragdis. Bitwise neural networks.

arXiv preprint arXiv:1601.06071, 2016. 2

[35] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 5

[36] Zefan Li, Bingbing Ni, Wenjun Zhang, Xiaokang Yang, and

Wen Gao. Performance guaranteed network acceleration via

high-order residual quantization. In Proceedings of the IEEE

international conference on computer vision, pages 2584–

2592, 2017. 2

[37] Chunlei Liu, Wenrui Ding, Xin Xia, Baochang Zhang, Jiaxin

Gu, Jianzhuang Liu, Rongrong Ji, and David Doermann. Cir-

culant binary convolutional networks: Enhancing the perfor-

mance of 1-bit dcnns with circulant back propagation. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 2691–2699, 2019. 2,

5

[38] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-

Ting Cheng. Reactnet: Towards precise binary neural net-

work with generalized activation functions. In European

Conference on Computer Vision, pages 143–159. Springer,

2020. 1, 2, 3, 4, 5, 6

[39] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,

and Kwang-Ting Cheng. Bi-real net: Enhancing the per-

formance of 1-bit cnns with improved representational ca-

pability and advanced training algorithm. In Proceedings of

the European conference on computer vision (ECCV), pages

722–737, 2018. 1, 2, 4, 5

[40] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3431–3440, 2015. 1

[41] Ping Luo, Xinjiang Wang, Wenqi Shao, and Zhanglin Peng.

Towards understanding regularization in batch normaliza-

tion. arXiv preprint arXiv:1809.00846, 2018. 3

[42] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tz-

imiropoulos. Training binary neural networks with real-to-

binary convolutions. In International Conference on Learn-

ing Representations, 2020. 2, 5

[43] Stephen Merity, Nitish Shirish Keskar, and Richard Socher.

Regularizing and optimizing lstm language models. arXiv

preprint arXiv:1708.02182, 2017. 3

[44] Asit Mishra and Debbie Marr. Apprentice: Using knowledge

distillation techniques to improve low-precision network ac-

curacy. arXiv preprint arXiv:1711.05852, 2017. 2

[45] Junting Pan, Elisa Sayrol, Xavier Giro-i Nieto, Kevin

McGuinness, and Noel E O’Connor. Shallow and deep con-

volutional networks for saliency prediction. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 598–606, 2016. 1

[46] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On

the difficulty of training recurrent neural networks. In Inter-

national conference on machine learning, pages 1310–1318.

PMLR, 2013. 3

[47] Hieu Pham, Qizhe Xie, Zihang Dai, and Quoc V Le. Meta

pseudo labels. arXiv preprint arXiv:2003.10580, 2020. 1

[48] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model

compression via distillation and quantization. arXiv preprint

arXiv:1802.05668, 2018. 2

[49] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and

Alan Yuille. Micro-batch training with batch-channel nor-

malization and weight standardization. arXiv preprint

arXiv:1903.10520, 2019. 2

[50] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai,

Jingkuan Song, and Nicu Sebe. Binary neural networks: A

survey. Pattern Recognition, 105:107281, 2020. 1, 2

[51] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In European conference

on computer vision, pages 525–542. Springer, 2016. 1, 2, 4,

5

[52] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016. 1

[53] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. arXiv preprint arXiv:1506.01497, 2015.

1

[54] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015. 5

[55] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and

Aleksander Madry. How does batch normalization help op-

timization? arXiv preprint arXiv:1805.11604, 2018. 1, 2, 3,

8

[56] Jianghao Shen, Yue Wang, Pengfei Xu, Yonggan Fu,

Zhangyang Wang, and Yingyan Lin. Fractional skipping:

Towards finer-grained dynamic cnn inference. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, vol-

ume 34, pages 5700–5708, 2020. 2

10



[57] Mingzhu Shen, Kai Han, Chunjing Xu, and Yunhe Wang.

Searching for accurate binary neural architectures. In Pro-

ceedings of the IEEE/CVF International Conference on

Computer Vision Workshops, pages 0–0, 2019. 2

[58] Cecilia Summers and Michael J Dinneen. Four things ev-

eryone should know to improve batch normalization. arXiv

preprint arXiv:1906.03548, 2019. 2

[59] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

1

[60] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella,

Michaela Blott, Philip Leong, Magnus Jahre, and Kees Vis-

sers. Finn: A framework for fast, scalable binarized neural

network inference. In Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Ar-

rays, pages 65–74, 2017. 2

[61] Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang

Zhao, Yingyan Lin, and Zhangyang Wang. E2-train: Train-

ing state-of-the-art cnns with over 80% energy savings. Ad-

vances in Neural Information Processing Systems (NeurIPS),

2019. 2

[62] Ziwei Wang, Jiwen Lu, Chenxin Tao, Jie Zhou, and Qi Tian.

Learning channel-wise interactions for binary convolutional

neural networks. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pages

568–577, 2019. 2

[63] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural net-

works. In Proceedings of the 30th International Conference

on Neural Information Processing Systems, pages 2082–

2090, 2016. 2

[64] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and

Jian Cheng. Quantized convolutional neural networks for

mobile devices. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4820–

4828, 2016. 2

[65] Shuang Wu, Guoqi Li, Lei Deng, Liu Liu, Dong Wu, Yuan

Xie, and Luping Shi. l1-norm batch normalization for ef-

ficient training of deep neural networks. IEEE transactions

on neural networks and learning systems, 30(7):2043–2051,

2018. 2

[66] Yixing Xu, Kai Han, Chang Xu, Yehui Tang, Chunjing

Xu, and Yunhe Wang. Learning frequency domain ap-

proximation for binary neural networks. arXiv preprint

arXiv:2103.00841, 2021. 2

[67] Zhe Xu and Ray CC Cheung. Accurate and compact con-

volutional neural networks with trained binarization. arXiv

preprint arXiv:1909.11366, 2019. 4

[68] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-

Dickstein, and Samuel S Schoenholz. A mean field theory

of batch normalization. arXiv preprint arXiv:1902.08129,

2019. 3

[69] Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li,

Sicheng Li, Zihao Liu, Zhangyang Wang, and Yingyan Lin.

Shiftaddnet: A hardware-inspired deep network. Advances

in Neural Information Processing Systems (NeurIPS), 2020.

2

[70] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup ini-

tialization: Residual learning without normalization. arXiv

preprint arXiv:1901.09321, 2019. 2

[71] Yang Zhao, Xiaohan Chen, Yue Wang, Chaojian Li, Haoran

You, Yonggan Fu, Yuan Xie, Zhangyang Wang, and Yingyan

Lin. Smartexchange: Trading higher-cost memory stor-

age/access for lower-cost computation. In 2020 ACM/IEEE

47th Annual International Symposium on Computer Archi-

tecture (ISCA), pages 954–967. IEEE, 2020. 2

[72] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and

Yurong Chen. Incremental network quantization: Towards

lossless cnns with low-precision weights. arXiv preprint

arXiv:1702.03044, 2017. 2

[73] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,

and Yuheng Zou. Dorefa-net: Training low bitwidth convo-

lutional neural networks with low bitwidth gradients. arXiv

preprint arXiv:1606.06160, 2016. 1, 2

11


