
Training Dynamical Binary Neural Networks with Equilibrium Propagation

Jérémie Laydevant1∗, Maxence Ernoult2†, Damien Querlioz3, Julie Grollier1
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Abstract

Equilibrium Propagation (EP) is an algorithm intrinsi-

cally adapted to the training of physical networks, thanks to

the local updates of weights given by the internal dynamics

of the system. However, the construction of such a hardware

requires to make the algorithm compatible with existing

neuromorphic CMOS technologies, which generally exploit

digital communication between neurons and offer a limited

amount of local memory. In this work, we demonstrate that

EP can train dynamical networks with binary activations

and weights. We first train systems with binary weights and

full-precision activations, achieving an accuracy equivalent

to that of full-precision models trained by standard EP on

MNIST, and losing only 1.9% accuracy on CIFAR-10 with

equal architecture. We then extend our method to the train-

ing of models with binary activations and weights on MNIST,

achieving an accuracy within 1% of the full-precision ref-

erence for fully connected architectures and reaching the

full-precision accuracy for convolutional architectures. Our

extension of EP to binary networks opens new solutions for

on-chip learning and provides a compact framework for

training BNNs end-to-end with the same circuitry as for

inference.

1. Introduction

Conventional deep learning models, trained with error

backpropagation (BP), have demonstrated outstanding per-

formance at multiple cognitive tasks. But the training process

is so energy consuming [32, 33] that it questions the environ-

mental sustainability of AI deployment [21]. These artificial

neural networks are actually trained on un-optimized von

Neumann hardware with a delocalized memory, such as

GPUs or TPUs. Furthermore, they struggle to fully bene-

fit from a hardware which provides local memory access

at neuron level as their learning rule, backpropagation, is

fundamentally non-local.

Equilibrium Propagation (EP) [30] is a learning frame-

work that leverages the dynamics of energy-based physical

systems fed by static inputs to compute weight updates with

a learning rule local in space [8] which can also be made

local in time [9], and in addition scales to CIFAR-10 [20].

Today, EP is developed on standard hardware (GPU) that 1)

does not provide for the low power and the computing effi-

ciency a dedicated hardware implementation might exhibit

[34, 23] and 2) prevents EP to scale to large scale datasets

such as ImageNet due to the duration of simulations. An EP-

dedicated hardware would reduce the energy consumption

of training by two orders of magnitude compared to GPUs

and accelerate training by several orders of magnitude [24],

while being competitive on large scale benchmarks in terms

of accuracy since the gradients estimates prescribed by EP

are equivalent to those given by BPTT [8].

The main asset of EP is the ability of on-chip learning,

especially when the memory and the computational budgets

dedicated to training and inference are constrained (e.g. em-

bedded environments). EP also naturally suits for training

physical systems intrinsically dynamical whose dynamics

are unknown and hardly derivable [19, 36, 24]. EP therefore

appears as a solution for on-chip training for embedded sys-

tems and dynamical hardware, two cases with which BP is

not compatible without major adaptation.

EP is however based on full-precision (64 bits floating

point) weights and activations that do not match the cur-

rent requirements of such hardware systems. Full-precision

weights overload the memory capacity of chips when they

are stored digitally [11, 34], and are prone to noise and hard

to read when stored with emerging synaptic nano-devices

[2, 35, 14, 15]. Moreover, analog activation functions are

not directly compatible with widely-used digital communi-

cations between neurons [34].

In this paper, we address the issue of on-chip learning via

EP by training dynamical systems having binary activations

and weights.We first leverage the recent progress made in

Binary Neural Networks (BNNs) optimization [13], to bina-

rize the synapses in energy-based models trained by EP. The

optimization of weights is performed using the inertia of the



gradient. This lowers the memory required for training such

systems compared to real-valued (“latent”) weights optimiza-

tion, traditionally used for training BNNs. We then binarize

the activation functions, yielding an easy way to compute

the local gradient while supporting a digital communication

between neurons. More precisely, our contributions are:

• We introduce a version of EP that can learn recur-

rent binary weights assuming full-precision activations

(Fig. 1a). For simplicity, we call this version of EP

“binarized EP”. Our implementation uses a novel weight

normalization scheme directly learnable by EP. We are

able to maintain an accuracy similar to full-precision

models on fully connected and convolutional architec-

tures on MNIST. We extend these results to the CIFAR-

10 task, with performance only degraded by 1.9 % from

that achieved with the full-precision counterpart trained

by EP [20].

• We extend our technique to fully binarized dynamical

networks where both weights and neuron activations are

binarized (Fig. 1b). We demonstrate successful train-

ing on fully connected and convolutional architectures

on MNIST with a slight degradation (between 0.2 and

1%) with respect to standard EP. This “fully binarized”

version of EP achieves binary communication between

neurons while reducing the memory required to com-

pute the local gradient to 1 bit, making the gradient

ternary.

• Our code is available at: https://github.

com / jlaydevant / Binary - Equilibrium -

Propagation.

2. Background

Energy-based models. As emphasized above, our work

focuses on dynamical energy-based neural networks as op-

posed to purely feedforward models. More precisely, denot-

ing s the state of the neurons at a given time, ρ(s) the activa-

tion function of the neurons, x an input and θ = {W, b} the

parameters of the model, we assume dynamics of the form:

ds

dt
= −

∂E

∂s
(x, s, ρ(s), θ), (1)

where E(x, s, ρ(s), θ) denotes an energy function describ-

ing the system of interest. Given x and θ, the system evolves

according to Eq. (1) until reaching a steady state s∗ which

minimizes the energy function: this constitutes the first phase.

Given a target y for the output layer of the system, the learn-

ing objective is to optimize the synaptic weights θ to mini-

mize the loss:

L∗ = ℓ(s∗, y) (2)

where ℓ denotes a cost function that outlines the discrepancy

between s∗ and y. After learning, the system evolves to

steady states of minimal prediction error.

(a) Binary weights (Section 3)

(b) Binary weights and activations (Section 4)

Figure 1: Building blocks of binarized EP: two neurons com-

municate bidirectionally through a binary synapse. The color

code highlights the precision of each variable: the synaptic

weight (bold red) is binary and the internal state of the neu-

rons (skt ), as well as the momentum (m) averaging the gra-

dient (bold blue), are full-precision. The activations (ρ(skt ))
and the equilibrium activations (ρ(sk∗)) are full-precision

variables (blue) in Section 3 but binary (red) in Section 4.

The gradient estimate (g) prescribed by EP (bold blue) is

a full-precision variable in Section 3 but is ternary (bold

green) in Section 4. Every neuron also has a bias which is

full-precision and does not appear on the figure for clarity.

Equilibrium Propagation (EP). While the learning ob-

jective could be optimized by backpropagating the prediction

error backward in time (BPTT), EP instead proceeds with a

second phase where the dynamics of Eq. (1) is changed into:

ds

dt
= −

∂E

∂s
− β

∂ℓ

∂s
, (3)

where β denotes a scalar nudging parameter. In this way,

the system evolves along Eq. (3) towards decreasing the cost

function ℓ until reaching a second steady state s
β
∗ . In their

foundational paper, Scellier & Bengio [30] proved that L∗

could be minimized using the local gradient estimate:

gθ =
1

β

(

∂E

∂θ
(x, sβ∗ , θ)−

∂E

∂θ
(x, s∗, θ)

)

, (4)

which typically translates, for the weights of a fully con-

nected layer, to [30]:

∆Wij =
1

β

(

ρ(sβi,∗)ρ(s
β
j,∗)− ρ(si,∗)ρ(sj,∗)

)

, (5)

where ρ denotes an activation function. EP has extremely

attractive features for neuromorphic chip design: the same

dynamics sustain both inference (Eq. (1)) and error propaga-

tion (Eq. (3)), and the learning rule is local (Eq. (5)).



Binary Neural Networks (BNNs). BNNs were first in-

troduced by Courbariaux et al. [6] to reduce the memory

footprint and the cost of operations in feedforward neural

networks at inference time, later scaled to hard visual tasks

[29]. In BNNs, the weights and activations are constrained

to the binary values {−1,+1}. During BNN training, each

binary weight is paired with a full-precision “latent” weight

which undergoes weight updates. Binary weights are taken

equal to the sign of the latent weights and are used for the

forward and the backward passes. After training, the latent

weights are discarded.

Binary Optimizer without latent weights (BOP). Al-

though latent weights in BNNs accumulate weight updates,

Helwegen et al. [13] suggested that they were not weights

in the strictest sense (they are not used at run time) but were

only meant to convey inertia for the optimization of the bi-

nary weights. Based on this insight, Helwegen et al. [13]

proposed a Binary Optimizer (BOP) which flips the binary

weights solely based on the value of their associated mo-

mentum (without latent weights per se): if the momentum is

large enough and crosses a threshold from below, the binary

weight is switched. By using one full precision variable

instead of two per synapse, BOP is of definite interest to

reduce the memory footprint of BNN training, which is why

our work heavily relies on this technique (see Section 3).

BOP has two hyperparameters: the value of the flipping de-

cision threshold τ , and the adaptativity rate γ. The larger τ ,

the less frequent the binary weight flips and the slower the

learning. On the other hand the larger γ, the more sensitive

the momentum to a new gradient signal, the more likely a

binary weight flips. The BOP algorithm is summarized in

Alg. 1.

Algorithm 1 BOP [13].

Input: g, m, W , γ, τ .

Output: m, W .

m← γg + (1− γ)m
for i ∈ [1, d] do

if |mi| > τ and sign(mi) = sign(Wi) then

Wi ← −Wi

end if

end for

Related work. Spiking neural networks (SNNs) are mod-

els that compress the communication between neurons to

one bit. They are thus compatible with digital and energy

efficient hardware [25, 10, 1, 7]. Most existing hardware

implementations of SNNs on neuromorphic platforms use

Spike Timing Dependent Plasticity (STDP) as a learning

rule [28]. Despite its low accuracy on complex tasks, the lo-

cality of STDP indeed enables compact circuits for on-chip

training. This shows the importance of making EP com-

patible with digital hardware: its local learning rule can be

implemented with compact circuits and the accuracy greatly

improved compared to STDP as EP optimizes a global ob-

jective junction.

Other studies have investigated how much synapses and

(or) neural activations of energy-based models could be com-

pressed when trained by EP. Mesnard et al. [26], O’Connor

et al. [27] and Martin et al. [24] showed that EP can train net-

works where neighboring neurons communicate with spikes

only. However all these techniques require full precision

weights, as well as an analysis of the spike trains in order to

determine the firing rates giving the gradients and are only

demonstrated on MNIST or non-linear toy problems.

Ji & Gross [18] have studied the effect of weight and

gradient quantization of an energy-based model trained by

EP, showing that at least 12 or 14 bits are required to achieve

less than 10% test error on MNIST. Here we show that

the weights (at all time) and the neural activations (at read

time) can be compressed down to 1 bit only, yielding ternary

gradients (at read time) and binary communication between

neurons in the system. We discuss how the full-precision

pre-activations and accumulated weight momentum can be

handled in a neuromorphic chip. Finally, our work is the first

to demonstrate energy-based model compression with EP on

CIFAR-10.

3. EP Learning of Recurrent Binary Weights

with Full Precision Neural Activations

In this section, we show that we can train dynamical

systems with binary weights and full precision activations by

EP with a performance on MNIST and CIFAR-10 close to the

one achieved by their full-precision counterparts trained by

EP [8, 20]. Our technique relies on the combined use of BOP

described in Alg. 1 and of a proper weight normalization to

avoid vanishing gradients. Therefore, we first describe how

EP can be embedded into BOP (Alg. 2). Then, we propose

two weight normalization schemes: one with a fixed scaling

factor taken from [29], another one with a dynamical scaling

factor directly learned by EP. We show that the use of the

learnt weight normalization, which naturally fits into the EP

framework, considerably improves model fitting and training

speed on MNIST and CIFAR-10.

3.1. Feeding EP weight updates into BOP

Working principle. We explain here how to use BOP to

optimize the binary synapses given the gradient computed

with EP. At each training iteration, the first steps of our

technique are the same as standard EP: the first phase and

the second phase are performed as usual and the EP gradient

estimate g is obtained from the steady states s∗ and s
β
∗ for

each synaptic weight. Thereafter, g is directly fed into the



BOP algorithm (Alg. 1): for each synapse connecting neuron

j to neuron i, the EP gradient estimate gij conveys inertia to

the synaptic momentum mij , and the binary synaptic weight

Wij is flipped or not, depending on the value of mij . Finally,

as usual in BNNs [6], the biases are full-precision and are

updated with standard Stochastic Gradient Descent (SGD).

We summarize all those steps in Alg. 2, where we have

highlighted binarized variables in bold red for clarity. With

this procedure, we have a system in which the synapses are

binarized at all time. In this section we use a full-precision

activation function for the neurons, the hardsigmoid, and full-

precision gradients. The binarization of activation functions

and ternarization of gradients is addressed in Section 4.

Algorithm 2 EP learning of dynamical binary weights (with

simplified notations). Binarized variables are in bold red.

When the neural pre-activations are binarized (Section 4),

the EP gradient estimate g is ternarized (in bold green),

otherwise full precision (Section 3).

Input: x, y, s, β, θ = {W, b}, η, m, γ, τ .

Output: θ = {W, b}, m.

Free phase:

for t ∈ [1, T ] do

s← s− dt× ∂E(x,s,W,b)
∂s

end for

s∗ ← s

Nudged phase:

for t ∈ [1,K] do

s← s− dt× ∂E(x,s,W,b)
∂s

− β × ∂ℓ(y,y)
∂s

end for

s
β
∗ ← s

Compute EP gradient with s
β
∗ and s∗:

g← − 1
β

(

∂E
∂θ

(x, sβ∗ ,W, b)− ∂E
∂θ

(x, s∗,W, b)
)

Apply BOP (Alg. (1)):

m, W = BOP(g,m,W, γ, τ)
Update biases with SGD:

b← b+ η × g

Hyperparameter tuning. Similarly to [13], we monitor

the number of weight flips per epoch and layer-wise in order

to tune the hyperparameters of BOP, using the metric:

π
layer
epoch = log

(

Number of flipped weights

Total number of weights
+ e−9

)

(6)

Heuristically, π
layer
epoch reflects a trade-off between learning

speed (high π
layer
epoch) and stability (low π

layer
epoch). We measure

π
layer
epoch in the regions of γ and τ where learning performs

well, and use this value of π
layer
epoch in return as a criterion to

tune γ and τ on new models.

3.2. Normalizing the Binary Weights with a fixed
scaling factor

When binarizing synaptic weights to ±1, neural activ-

ities may easily saturate to regions of flat activation func-

tion, resulting in vanishing gradients. It is especially true

with the hardsigmoid activation function often used with EP.

Batch-Normalization [17] used by Courbariaux et al. [6] and

Hubara et al. [16] helps with this issue by recentering and

renormalizing activations by computing the batch statistics.

Batch-Normalization has been introduced in recurrent neural

networks such as LSTMs to process sequence tasks [22] but

it does not translate directly to energy-based models. The

normalization scheme should indeed itself derive from an

energy function in order to be learnable, which restricts the

choice of candidate normalizations. However, the goal in

convergent dynamical systems processing static inputs is

not to center neural activations at every time step, but rather

at their steady state. Moreover, using batch-based weight

normalization schemes is far from straightforward from a

hardware prospective. For this purpose, we first normalize

the binary weights with a static scaling factor.

Static XNOR-Net weight scaling factor. In the design of

their XNOR-Net model, Rastegari et al. [29] introduced a

scaling factor to minimize the difference between the binary

synapses and the corresponding set of full-precision “latent”

weights at each layer. This scaling factor is updated at each

training iteration and depends on the size of two adjacent

layers and on the magnitude of these latent weights. The

scaling factor reads in our context:

αn,n+1 =
||winit

n,n+1||1

dim(winit
n,n+1)

(7)

where n is the index of a layer, winit
n,n+1 are the full-precision

random weights used to initialize the binary weights. Using

this scaling factor, we initialize each binary weights, layer

by layer, as Wn,n+1 = ±αn,n+1. Contrarily to XNOR-

Net where the scaling factor is updated at each forward

pass, we first keep the scaling factor fixed to its initial value

throughout training. We show in Section D that this scaling

factor is crucial to train recurrent binary weights by EP.

Results. We investigate fully connected architectures (with

one and two hidden layers) on MNIST and convolutional

architectures (with two and four convolutional layers) on the

MNIST and CIFAR-10 datasets. We employ prototypical

models to speed up training as in [8]. Our results (Table 1

- “EP - Binary Synapses”) are benchmarked against those

of full precision models (Table 1 - “EP - Benchmark”) and

those obtained by BPTT+BOP (Table 1 - “BPTT - Binary

Synapses”). Note that for a given architecture, the number



Table 1: Error of EP and BPTT on networks having binary synapses with a fixed or a dynamical scaling factor - Results are

reported as the mean over 5 trials ± 1 standard deviation - Benchmark performances are taken from [8, 20]

EP - Binary Synapses EP BPTT

Fixed α Dynamical α Benchmark Binary Synapses

Dataset Model Test Train Test Train Test Test

MNIST (1fc) 2.07 (0.02) 0.77 1.7 (0.04) 0 2.00 2.14 (0.06)

MNIST (2fc) 2.48 (0.08) 0.29 2.28 (0.13) 0 1.95 2.38 (0.07)

MNIST (conv) 0.85(0.11) 0.46 0.88(0.06) 0.05 1.05 0.97 (0.03)

CIFAR-10 (conv) 16.8(0.3) 6.9 15.66(0.28) 5.54 13.78 14.45 (0.12)

of neurons we used per layer may not be the same as in

reference architectures – see 3.4 and Appendix F for details.

Overall, Table 1 shows that the normalization of weights

with a fixed scaling factor allows EP with binary synapses to

perform comparably to full-precision models trained across

different fully connected and convolutional architectures,

on MNIST and CIFAR-10. The fully connected architec-

ture which has one hidden layer trained on MNIST shows

no statistically significant loss of performance compared to

full-precision counterpart trained by EP. This architecture

with binary synapses reaches the same accuracy if trained

by (EP+BOP) or by (BPTT+BOP). The fully connected

architecture having two hidden layers trained on MNIST

with fixed scaling factors shows 0.5% performance degra-

dation compared to full-precision models trained by EP. For

the convolutional architecture trained on MNIST, we can

even observe a slightly better training and testing (-0.2%)

errors on model with binary synapses compared to full pre-

cision models trained by EP. We explain this improvement

by the cumulative use of the randomization of β and of the

regularization effect induced by the binarized architecture

itself [6]. Furthemore, the training framework (EP+BOP)

achieves a similar accuracy as the framework (BPTT+BOP).

Finally, the performance of our convolutional model trained

on CIFAR-10 is ∼ 3% less than the one of Laborieux et al.

[20], using the same architecture. Also, the network trained

by (EP+BOP) shows only 2.5% degradation of the accuracy

compared to the same network trained by (BPTT+BOP).

3.3. Normalizing the Binary Weights with a learnt
scaling factor

Dynamical weight scaling factor learned by EP. Using

fixed scaling factors gives high, yet sub-optimal accuracies

(see Fig. 4 in the Appendix). Bulat & Tzimiropoulos [4]

show that the scaling factor can be learnt by backpropagation

to extend XNOR-Nets. Here we derive a learning rule for

the scaling factor with the help of the theorem of Scellier &

Bengio [30] to ensure that it provides a gradient estimate of

the loss L∗ defined in Eq. (2). The reasoning to derive this

learning rule is the following. We split the binary weights

in two parts: Wn,n+1 ← αn,n+1 × wbin
n,n+1 where wbin

n,n+1

(a) MNIST

(b) CIFAR-10

Figure 2: Average training error as a function of the num-

ber of epochs for a convolutional architecture with binary

synapses trained on MNIST with a static (blue curve) or a

dynamical (red curve) scaling factor. Curves averaged over

5 trials ±1 standard deviation.

are the binary weights scaled to ±1 and the scaling factors

αn,n+1 are initialized as when they are fixed. The resulting

dynamics still derives from an energy function, and one can

derive a learning rule for αn,n+1 which reads as:

∆αn,n+1(β) = −
1

β

(

∂E

∂αn,n+1
(sβ∗ )−

∂E

∂αn,n+1
(s∗)

)

,

(8)

so that αn,n+1 is learned like any other network parameter,

and limβ→0 ∆αn,n+1(β) = − ∂L∗

∂αn,n+1
. In Section D the

learning rules for fully connected and convolutional archi-

tectures are derived in all the settings of EP.

Results. Fig. 2 illustrates on a convolutional architecture

the gain in performance obtained by learning the scaling

factor. Globally, this technique systematically results in

faster learning and better model fitting across all the models,



and almost always in better generalization as observed in

Table 1. Learning the scaling factor by EP is thus a powerful

alternative to Batch-normalization in convergent dynamical

systems as highlighted by Fig. 2.

3.4. Hardware implementation

Memory gain at run time. As often observed in binarized

architectures [6, 16], we achieve accuracy similar to the one

of full-precision models at the price of having 8 times more

hidden neurons in fully connected architectures (see Fig. 8

of Appendix F.1 for a more detailed analysis). In convolu-

tional architectures, we have used at most the same number

of output feature maps than their full precision counterparts

for computational efficiency. After training, our models use

2 and 7.5 less memory for the synapses for fully connected

architectures on MNIST (for two and one hidden layers re-

spectively), 9 and 54 less for the convolutional architectures

used on MNIST and CIFAR-10 respectively. In hardware,

these binary weights can be stored in digital memories [34]

or using nanoscale memristors [15].

Memory requirements at train time. The memory re-

quirements for training should be subject to a more careful

treatment. Inertia-based optimization (BOP) requires a sin-

gle full-precision variable: the momentum, compared to

the latent-weight counterpart often trained by elaborate op-

timization techniques such as (SGD + Momentum) which

uses at least 2 full-precision variables: the latent weight and

the momentum. Inertia-based optimization thus reduces by

at least a factor 2 the required memory for training. Further-

more, the memory required for storing the momentum of

BOP could be implemented by non-standard memories. In

fact, the discrete time update of the momentum (Alg. 1) can

be rewritten into a continuous time update rule which reads:

dm

dt
+ γ ·m(t) = γ · g(t) (9)

which naturally appears as the differential equation describ-

ing the evolution of the voltage of a capacitor. Capacitors

are CMOS-compatible, and highly linear which makes them

well suited for storing full-precision variables [2]. They can

thus be used to store the inertia, thereby lowering the mem-

ory requirement to one capacitor per binary weight and more

globally lowering the memory required for training.

4. EP Learning of Recurrent Binary Weights

with Binary Neural Activations

The techniques presented in the previous section use full-

precision neural activations. However, it is highly preferable

to rely on binary activation values in hardware. Binary read

and write errors can indeed be accommodated without too

much circuit overhead in neuromorphic systems [14] and

binary values are easier to pass between spatially distant

hardware neurons [34]. In this section, we show that we

can train dynamical system with binary weights and binary

activations by EP, resulting in a performance on MNIST

again approaching full-precision models on fully connected

and convolutional architectures. Our implementation relies

on two main components: the choice of a proper activation

function to binarize neural pre-activations, and output layer

augmentation. Combining these two techniques, we can

design dynamical systems which are sensitive to error signals

despite threshold effects and can compute ternary gradients

in return. The corresponding pseudo-algorithm is the same as

Alg. 2, except that the gradient estimate g is now ternarized.

4.1. Convergent neural networks with binary acti­
vations.

Ternarizing EP gradients. We can note from Eq. (5) that

the precision of the gradient g estimate provided by EP is

typically determined by the choice of the activation function

ρ. For instance, if ρ outputs binary values {0, 1}, we imme-

diately see from Eq. (5) that, for the parameters θ = {W, b},
the gradients has values:

gθ ∈

{

−
2

β
, 0,

2

β

}

. (10)

In practice β = 2 works well, resulting in ×40 gradient

compression compared to 64-floating point resolution.

However, binarizing neural activations comes at several

costs for the dynamics of the neurons. The energy function

of the system subsequently outputs a semi-discrete variable

which affects the dynamics of each neuron non trivially: if

the updates of neuron activations are simultaneous, the dy-

namics of the system may not converge [5]. In particular,

this precludes the use of prototypical models [8], that can

be employed to speed up training as we did in the previ-

ous section. Therefore, we must use standard energy-based

models as in [30] so that binary activations are updated only

when the full-precision pre-activations reach the threshold

of the activation function, thus non simultaneously. We next

detail some empirical properties the binary activation of the

neurons should have in order to define convergent dynamics.

Binarizing neural activations into {0, 1}. While we bi-

narize weights to opposite signs, we found that using the

sign activation function to binarize neural activations into

{−1, 1}, as usually done with BNNs to implement MAC op-

erations with XNOR gates, entails non-convergent dynamics.

This confirms previous findings on EP which emphasized

the importance of bounding the neural activations between 0

and 1 to help dynamics convergence using the hardsigmoid

activation function ρ(s) = max(0,min(s, 1)) [30]. There-

fore, our proposal here is to use the Heavyside step function



shifted by 0.5:

ρ(s) = H

(

s−
1

2

)

(11)

where H(x) = 1 if x ≥ 0, 0 otherwise. However, the energy

based dynamics of our models requires to gate ∂E
∂ρ

by the

derivative of ρ as Eq. 1 rewrites as:

ds

dt
= −

∂E

∂s
(x, s, θ)−

∂ρ(s)

∂s

∂E

∂ρ(s)
(x, ρ(s), θ). (12)

Noting that Eq. 11 is obtained by asymptotically sharpening

the narrowed hardsigmoid around 1
2 within [ 12 − σ, 1

2 + σ]
denoted ρ̂, namely:

ρ(s) = lim
σ→0

ρ̂(s, σ) = H

(

s−
1

2

)

(13)

we propose to substitute the derivative of ρ as:

∂ρ̂(s, σ)

∂s
≈

∂ρ(s)

∂s
=

{

1
2σ if

∣

∣s− 1
2

∣

∣ ≤ σ

0 else
(14)

where σ is a parameter discussed in Appendix F. Therefore,

denoting ρ̂′ = ∂sρ̂ for simplicity, the free dynamics of s can

be approximated as:

ds

dt
≈ −

∂E

∂s
− ρ̂′(s)

∂E

∂ρ
(15)

4.2. Augmenting the Error Signal to Nudge Neurons
with Binary Activations

Binarization of activations can prevent the propagation

of errors. As the system sits at rest at the end of the first

phase of EP, upon nudging the output layer by the prediction

error, the motion of the system during the second phase of EP

encodes error signals [31, 8]. Therefore during the second

phase, a given neuron i needs to have its activation function

change from ρ(s∗,i) to a distinct ρ(sβ
∗,i) to compute the error

gradient locally and transmit it backward to upstream layers.

However, when using a discontinuous activation function

like defined in Eq. (13), we may have ρ(s∗,i) = ρ(sβ
∗,i) if

the pre-activation si of the neuron moves less than the value

of the activation threshold of ρ, thus zeroing the error signal,

or equivalently vanishing gradients. Consequently, we need

to ensure that for a sufficient number of neurons i:

∆si = |s
β
∗,i − s∗,i| >

1

2
(16)

In order to satisfy Eq. (16) for a sufficient number of neu-

rons, we propose to increase the error signal by augmenting

the output layer so that each prediction neuron is replaced by

Nperclass neurons per class, inflating the output layer from

Nclasses to Nclasses×Nperclass. We choose Nperclass in such

a way that the number of output neurons matches approx-

imately the number of neurons in the penultimate hidden

layer: Nperclasses ≈
Npenultimate

Nclasses
. In this way, the output

layer delivers a large and redundant initial error signal that

can push neurons beyond the activation threshold of ρ and

propagate across the whole architecture. Our solution is

reminiscent of the the use of auxiliary output neurons in [3],

albeit with a very different motivation.

4.3. Results

We investigate here fully connected (1 and 2 hidden lay-

ers) and convolutional architectures on MNIST. The first

layer receives full-precision inputs from the input layer and

binary inputs from the next layer. For a given architecture,

the number of neurons used per layer is different for both

situations: for the fully connected architectures we use 8192

neurons per hidden layer and the two convolutional layers

of the convolutional architecture have respectively 256 and

512 channels - see Appendix F for more details. We use

a randomized sign for β as prescribed by Laborieux et al.

[20] to improve the gradient estimate given by EP for all

simulations except for the fully connected architecture with

two hidden layers where we only use β > 0.

Figure 3: Average training error as a function of the num-

ber of epochs for a convolutional architecture with binary

synapses and binary activations trained on MNIST with a

classic output layer (10 output neurons - blue curve) or an

enlarged output layer (700 output neurons - red curve). Blue

curves are averaged over 2 trials±1 standard deviation - Red

curves are averaged over 5 trials ±1 standard deviation.

Fig 3 shows for the convolutional architecture a trend

observed for all models: when using 10 neurons in the out-

put layer, training fails (blue curve) while it succeeds upon

augmenting the output layer. It is here augmented by a factor

70 (red curve) which is required for the number of neurons

in the output layer to match the number of input neurons that

the last convolutional layer receives from the penultimate

convolutional layer: we multiply the number of channels in

the penultimate convolutional layer (256) by the kernel size

(5×5) and divide the result by the max pooling kernel size

(3×3) which gives ∼ 700 output neurons).



Table 2: Error achieved by EP with binary synapses & acti-

vations, and fixed scaling factors α - Results are reported as

the mean over 5 trials ± 1 standard deviation.

Fully binarized EP

Dataset Model Test Train

MNIST (1fc) 2.83 (0.06) 0.2

MNIST (2fc) 3.03(0.03) 0.84(0.17)
MNIST conv 1.14(0.08) 0.67(0.04)

Performance. The results obtained on MNIST with fixed

scaling factors are summarized in Table 2. On the fully con-

nected architectures, the accuracy approaches those obtained

with binary synapses and full-precision activations, with a

slight degradation of 0.8% for one hidden layer and 0.6% for

two hidden layers (see Table 1). The degradation is slightly

enhanced when we compare with the full-precision coun-

terpart trained by EP where the performance is degraded

by 0.8% for one hidden layer but 1% for two hidden layers.

We account the degraded performance of the architecture

which has two hidden layers by the fact that we use β > 0
which makes the estimation of the gradient less accurate

than when estimated with the sign of β random. We used

β > 0 because we found that reaching the second equilib-

rium point with β < 0 is possible but very long to get in

practice with a classic nudge. For the convolutional archi-

tecture trained on MNIST, we also report a performance

only 0.2% below the system which has binary synapses and

full-precision activations but within the error bars of the one

achieved by full-precision models as reported by [8]. We

think that optimizing the nudging strategy could improve the

error obtained with two or more hidden layers and will be

key in the future for scaling to CIFAR-10.

4.4. Gains for hardware

When binarizing the activation in addition to the synapses,

we had to increase the number of neurons in each layer com-

pared to full-precision models: by 16 for the fully connected

layers resulting in 8192 neurons per hidden layer and by 8

for the convolutional architecture which has 256 and 512

channels per respective layer, to get accuracy approaching

reported results with full-precision architectures. But consid-

erable gains in terms of memory and computing are achieved

due to the way the gradient is computed.

The gradient estimate gij is indeed now ternary (Eq. 10),

and can be easily computed with the subtraction of 2 AND

operations. With the notations of Eq. 5 it decomposes as:

one AND operation between si,∗ and sj,∗ and another one

between s
β
i,∗ and s

β
j,∗, which amounts to only 5 elementary

operations including the subtraction. In terms of memory,

neurons only have to store 1 bit as the first equilibrium state.

That way, the communication between neurons is not only

binarized, but in addition, compared to previous works on EP

achieving binary communication through spikes [26, 27, 24],

our method drastically reduces the memory to compute the

gradient. Indeed, spikes need to be stored for several time

steps to get an estimation of the firing rate of each neuron,

resulting in heavy memory requirements.

The computation of the MAC operation is also simple. It

cannot be obtained as in standard BNNs with a single XNOR

gate and popcount because this operation does not match our

choice of binary activations (0/1) and binary weights (-1/1).

However, it only requires the subtraction of the popcount of

2 AND gates, using simpler logical gates, and only doubling

their total number compared to usual BNNs.

Despite the fact that we need to enlarge the output layer

depending on the architecture, we show in Appendix E.3

that probing the state of one single neuron per class in the

output layer is sufficient to obtain almost the same accuracy

than when measuring the states of all the output neurons,

which is beneficial for lowering the energy consumption of

hardware (Figs. 6-7).

In addition, contrarily to BP performed in conventional

BNNs where the input of each layer is stored between the

forward and the backward passes in order to compute the

full-precision gradient, here we only need to store the 1 bit

activation after each phase in order to compute the gradi-

ent, which drastically reduces the memory requirements of

the model for training by a factor 40. The current imple-

mentation of binary EP on GPUs, however, still relies on

full-precision neuron state s(t) variables. In future imple-

mentation of binarized EP on dedicated hardware, these neu-

ron states can be implicitly encoded through the dynamics

of nano-devices, thus solving this issue [2].

5. Conclusion

As a conclusion, we provide here a binarized version of

EP that exhibits only a slight degradation of accuracy com-

pared to full-precision models. This version of EP offers the

possibility of training on-chip BNNs with compact circuitry

because the hardware required for training is the same as for

inference, whereas current BNNs are trained on conventional

hardware, before being transferred to compact, low-energy

chips. Finally, the version of EP with binary synapses and

full precision activations is of major interest for future fast,

low power hardware built on emerging devices. Joint devel-

opment of EP and hardware will be critical for adapting EP

to larger data sets.
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