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Abstract

We consider the training of binary neural networks

(BNNs) using the stochastic relaxation approach, which

leads to stochastic binary networks (SBNs). We identify that

a severe obstacle to training deep SBNs without skip con-

nections is already the initialization phase. While smaller

models can be trained from a random (possibly data-driven)

initialization, for deeper models and large datasets, it be-

comes increasingly difficult to obtain non-vanishing and

low variance gradients when initializing randomly.

In this work, we initialize SBNs from real-valued net-

works with ReLU activations. Real valued networks are

well established, easier to train and benefit from many tech-

niques to improve their generalization properties. We pro-

pose that closely approximating their internal features can

provide a good initialization for SBN. We transfer features

incrementally, layer-by-layer, accounting for noises in the

SBN, exploiting equivalent reparametrizations of ReLU net-

works and using a novel transfer loss formulation. We

demonstrate experimentally that with the proposed initial-

ization, binary networks can be trained faster and achieve

a higher accuracy than when initialized randomly.

1. Introduction

Neural networks with binary weights and activations

have much lower computation costs and memory consump-

tion than their real-valued counterparts [8, 10, 11, 21].

They are therefore very attractive for applications in mo-

bile devices, robotics and other resource-limited settings, in

particular for solving vision and speech recognition prob-

lems [2, 27].

Training binary neural networks poses several additional

challenges in comparison to real-valued ones. First, they

are not differentiable. This has been overcome in semi-

nal works [7, 12] by using straight-through (ST) estimators.

A clear understanding of such estimators is possible when

considering a stochastic relaxation of a binary network [25].

The associated costs are i) the need to introduce noises in

each layer in order to make the loss function differentiable

in the expectation and ii) ST estimators are biased, which

may have a detrimental effect [25]. The training can take

longer than for real-valued networks but, with appropriate

hyper-parameters, succeeds in practice, achieving close to

100% training accuracy. In our view, there remain two chal-

lenges: how to make a good initialization so that deeper

binary models can be trained and how to improve the gen-

eralization gap to close up the performance of real-valued

networks.

The challenge of initialization can be seen from the fol-

lowing observations. At the first approximation, binary acti-

vations are similar to sigmoid activations and experience the

problem of vanishing gradients. Batch normalization [13]

helps a lot with this problem as it initially performs a data-

driven standardization of pre-activations [16, 24]. Never-

theless, large-scale models are typically trained in stages

where the initialization stage uses e.g. real-valued activa-

tions [15]. Moreover, real-valued residual paths are used to

alleviate the difficulty of training [14]. To our knowledge, a

successful training of non-residual deep convolutional ar-

chitecture on large-scale dataset (e.g. ImageNet) has not

been demonstrated yet. In the framework of stochastic bi-

nary networks (SBN) [19, 22, 23, 25] an additional chal-

lenge is to control the noise level of the stochastic relaxation

so that the stochastic gradient has a meaningful signal-to-

noise ratio.

We propose to address both the generalization and the

initialization challenges by transferring intermediate fea-

ture representations from available real-valued networks.

Lower-level and mid-level features are known to be generic

across different tasks and transfering them, e.g., in fine-

tuning, leads to easier training and better generalization for

the target task [28].

Contribution In this work we transfer features from a

real-valued ReLU network to SBNs of the same architec-

ture on the same dataset. We do not yet demonstrate supe-

rior results in large-scale problems or cross-domain trans-



fer. Rather we propose a detailed study on a small-scale

CIFAR-10 dataset. ReLU networks are most commonly

used, readily available for many tasks and possess a better

performance than the best binary networks. Nevertheless,

initializing binary networks from them is more difficult due

to the unbounded response of ReLU activations. We study

how to binarize them block-by-block in order to preserve

intermediate feature representations. We find out that it is

essential to use ternary weights to transfer ReLU networks.

Incorporating ternary weights requires only two binary con-

volutions and can be seen as just a moderate increase of a

binary neural network’s width. For the feature transfer ob-

jective we consider several choices and propose to use the

means squared error (MSE) of activations in the next layer

to the one transferred. Since the transfer itself is performed

by SGD optimization, it, in turn, needs to be initialized. As

the first approximation, we propose and study a new method

that aligns feature statistics while taking into account noises

in the SBN model.

Experimentally we show that SBN layers can, to a large

extend, substitute ReLU layers, preserving at least a part of

functionality when initialized just based on simple statistics

and can be further optimized to produce deep representa-

tions close to the original ones. Training an SBN network

initialized with the proposed method has an advantage in

the beginning and allows it to achieve higher accuracy than

when initializing randomly. With this approach we improve

over non-residual SOTA results on CIFAR-10 while using a

smaller and more cost-efficient network.

2. Related Work

The SOTA methods for training large-scale binary net-

works [4, 5, 15] use the initialization strategy of Bulat et al.

[3]: to firstly train a network with real weights and bi-

nary activations and then gradually anneal weights to bi-

nary. This is similar to starting by training models with

real weights and clipping-like non-linearities [6]. Other

works [7, 23] indicate that training with binary weights and

ReLU activations is a relatively simpler problem. Thus we

see the binarization of activations as the main difficulty. Al-

izadeh et al. [1] shows that initializing latent weights from

real-valued weights can provide a good initialization result-

ing in a seeped-up for training. At the same time Bulat et al.

[3] mention that the transition from a fully real-valued net-

work to a binary one [both weights and activations] causes

a catastrophic loss in accuracy often comparable to train-

ing from scratch. Martı́nez et al. [15] explore regularizing

transferring knowledge from the teacher network by adding

a dissimilarity of attention maps during training. These at-

tention maps only align simple statistics of activation maps,

and as we experimentally show are not sufficient for trans-

ferring features.

Transferring knowledge from a real-valued network to a

binary one has been considered by Du et al. [9]. The two

networks are trained simultaneously in their work, inter-

act both ways, however the interaction is only at the last

layer. It therefore serves more as a regularization rather

than allows to transfer generic intermediate representations.

Mishra & Marr [17], Polino et al. [20] use knowledge distil-

lation approach to train a quantized network, which utilizes

the teacher’s predictive distribution as soft targets.

In NN quantization, it is more natural to expect that a

real-valued network can provide a good initialization. In

particular MSE between quantized and non-quantized fea-

tures has been considered [18]. Zhuang et al. [30] uses an

auxiliary mixed-precision network that shares parameters

and is trained jointly with the low-precision network. Zhou

et al. [29] propose to regularize quantized weights by the

MSE from the real-valued weights.

3. Background and Problem Statement

Binary neural networks are commonly represented in

the literature with weights and activations in {−1, 1} for

mathematical convenience. At the test time, they can be

equivalently implemented using {0, 1} encoding, binary

XNOR operations and few integer operations (summing bits

in the output of the binary convolution and comparing it

to a threshold). These operations are the most energy-

efficient [8]. SOTA binary networks, however, also include

floating-point multiplications [21] or floating-point para-

metric residual connections [5, 14, 15]. In the later archi-

tectures full-precision paths exist from any layer all the way

to the network output layer. Such connections significantly

mitigate the training difficulties but incur additional latency

and energy costs.

Basic SBN We will aim at training a network that does

not need floating point operations (except in the input and

output layers). The basic BNN uses the following convolu-

tional layers:

pre-activation a = W ⊛ x+ b, (1a)

activation y = sign(a), (1b)

where x, y,W are {−1, 1} binary, ⊛ denotes convolution

with binary arguments and b is an integer.

Since binary activations are not differentiable and opti-

mizing over binary weights creates a combinatorial prob-

lem, a basic stochastic relaxation of the network is consid-

ered. It is obtained by making binary entities stochastic:

W = sign(V − Z), (2)

y = sign(a− ξ), (3)

where V are real-valued latent weights and Z and ξ are

(vectors) of independent noises with a simple distribution.
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Figure 1: AllCNN network [26] used in our experiments and its partition in logical blocks. In order to convert this model

to SBN, we process it sequentially, block by block, starting with the block 1. We first initialize a block to be converted

analytically, append it to the SBN model and perform transfer learning to match features of the referenced network for this

block and then proceed to the next block.

In this relaxation, the expected loss of the network is differ-

entiable in latent weights V and the straight-through method

provides a biased estimate of the true gradient [25]. We ap-

ply ST estimators as proposed by [25]: they recommend

using logistic noises and identity straight-through estimator

for weights while the activation noises can be chosen freely

as long as the corresponding (non-identity) ST estimator is

used for activations.

Problem Statement Considering the SBN model allows

gradients and latent weights to have a mathematically pre-

cise meaning and allows us also mathematically model in

which sense we want the SBN model to replicate the be-

havior of the ReLU network. As our working example we

use the simple AllCNN architecture in Fig. 1 — it uses only

convolutional layers with strides. We want to initialize an

SBN model of the same structure with binary activations.

Clearly, intermediate representations after binary and ReLU

activations take values in different domains and cannot be

aligned. We therefore define internal features of SBN at

block k as pre-activation ak and want them to approximate

pre-activations aR,k of the ReLU network. Because ak are

stochastic due to injected noises, we pose the problem as

finding parameters V, b such that the expected value of pre-

activation over all SBN noises, ESBN[a
k], approximates the

features aR,k in the teacher network. In doing so, we also

need to keep the variance due to noises low enough in or-

der to be able to capture the representation accurately with

a small number of samples from SBN and to allow subse-

quent optimization with SGD.

4. Method

We initialize an SBN model from a ReLU model incre-

mentally, replacing one block of layers at a time as illus-

trated in Fig. 1. We keep the first and the very last con-

volutional transforms of the ReLU network as real-valued.

Prior work on quantization has shown that they can be at

least quantized to low bit-width without accuracy degrada-

tion in practice and are not our main focus. Initialization of

one block consists of an optimization-free block conversion

which matches statistics of features over a batch of data, and

a more precise optimization-based feature matching.

4.1. Initialization Based on Statistics

It is a common approach, e.g., in domain adaptation, to

align distributions by matching their means and variances.

The affine transform that achieves such alignment is found

by a simple formula of these statistics. It is, therefore, a

cheap and reasonable first step to transfer internal repre-

sentations. To allow a sensible transfer from the existing

ReLU network, we need to make certain adjustments to the

SBN architecture. We will show afterwards that at the test

time we can obtain a binary network equivalent to the basic

model (2). The goal of aligning preactivations leads to the

following definitions of blocks to be converted:

ReLU Block We define a block of ReLU network with

input xR ∈ R
n and output features aR ∈ R

m to consist of

the following operations applied sequentially:

input scaling uR = xR ⊙ tR, (4a)

activation yR = ReLU(uR), (4b)

conv vR = WR ∗ yR, (4c)

output scaling aR = vR ⊙ sR + bR, (4d)

where all entries are real-valued and ⊙ denotes channel-

wise multiplication (tR is a vector of the number of channels

of xR). Common feed-forward NNs can be represented as

a sequence of such blocks, where the input and or output

scaling may be set to tR = sR = 1. These scaling factors

will be used later on to perform equivalent transformations

on a block.



SBN Block In the SBN model we propose the following

representation of one building block:

input scaling u = x⊙ t, (5a)

activation y = [[u− ξ ≥ 0]], (5b)

conv v = (W+
⊛ y −W−

⊛ y), (5c)

output scaling a = v ⊙ s+ b, (5d)

where, compared to the basic model (2) we have rearranged

the order of operations, introduce a pair of (stochastic) bi-

nary {0, 1} weights W+, W− and real-valued parameters

t, s, b and used indicator [[u− ξ ≥ 0]] instead of sign.

The following properties are important. 1) When such

blocks are composed, the adjacent affine transforms from

two blocks compose into one. The resulting affine trans-

form can be hidden at test time under binary threshold using

that [[x ⊙ s + b − ξ ≥ 0]] = [[x ≥ θ]], where θ = (ξ − b)/s
is the equivalent threshold that can be precomputed (for a

fixed noise sample ξ or its mean value). Thus at the test

time, extra affine transforms do not induce any extra com-

putation compared to (2).

2) Using the indicator [[·]] instead of sign for activations

appears equivalent for BNN, but it is not equivalent for SBN

due to the noises present in W . As will be seen below, us-

ing the indicator better corresponds to ReLU activations and

leads to lower variances downstream.

3) The difference of two binary convolutions is equiv-

alent to a convolution of the binary input y with a ternary

weight kernel W+−W−. On one hand this allows us to use

all the formalism and methods developed for SBNs [25].

On the other hand, ternary weights can model the teacher

real-valued weights significantly more accurately. In par-

ticular, most of the weights in the teacher network are close

to zero and can be removed from the network (zerowed) as

demonstrated by works on network sparsity and compres-

sion. Therefore for transferring such weights it is important

to be able to represent 0. The basic SBN model necessarily

has all inputs connected to all outputs (by ±1 weights) and

needs a combination of highly correlated inputs and anti-

correlated weights in order to represent sparsity. Consider

also that the ternary block eq. (5) can implement AND, OR

and NOT logical operations on y, which the basic SBN block

cannot. We should note that the methods in the literature

often increase the number of channels compared to the ref-

erence real-valued architecture (motivated by the need to

increase the representation power of SBN). Increasing the

number of channels twice leads to a ×4 increase in the num-

ber of weights and computation cost. In comparison, the

proposed block structure merely doubles the computation

complexity.

Figure 2: t-SNE embeddings of the last linear layer (top

left), when converting one block using binary weights (top

right) and when converting the same block using ternary

weights (bottom) in section 4.1.2.

4.1.1 Initialization of Activations

We make the following observation: if we choose ξ to be

uniform in [0, 1], the expected activation value expresses as

Ez[y|u] = P(u− ξ ≥ 0) = P(ξ ≤ u)

= Fξ(0) = min(max(u, 0), 1), (6)

which matches ReLU activation on [−∞, 1] and saturates

to 1 for u ≥ 1. Therefore, supposing x = xR (blocks in

SBN and ReLU networks receive the same inputs), we will

achieve matching of activations ESBN[y] = yR if uR is in

the range (−∞, 1). We thus chose the scaling tR such that

P(x⊙ tR ≤ 1) ≥ γ, (7)

where γ < 1 is a threshold and P is w.r.t. the empirical dis-

tribution over the inputs x in a batch as well as the spatial di-

mensions. Making γ closer to 1 reduces the approximation

error, however, at the cost of a lower signal-to-noise ratio in

y. We find γ experimentally in section 5.1. A common ap-

proach in the literature is to assume that the distribution of

x is approximately Gaussian (e.g., [8]). We have observed

that it is a poor approximation e.g., for networks with Max-

Pooling such as VGG, leading to poor initialization perfor-

mance for them. In contrast, we found that the empirical

distribution works well in both cases (we tested AllCNN

and VGG). When tR is chosen, we divide the weight of the

linear layer WR channel-wise by tR. Because ReLU is 1-

homogenous, this preserves the equivalence of the whole

block. The block so transformed is passed to the next step.

4.1.2 Initialization of Weights

Since the weights in SBN are stochastic, we match their ex-

pected values to real-valued weights WR. With the logistic

noise Z used for weights, we have, e.g. for W+:

E[W+] = E[[[V +−Z ≥ 0]]] = P(V +≥Z) = S(V +), (8)



(a) (b) (c)

Figure 3: Example of real-valued 3× 3 kernels (a) and two

samples of the initialized stochastic ternary model (b,c). It

is seen that the initialization provides a reasonable set of

filters with some entries more deterministic and some more

noisy and amenable to changes in training.

where S is the logistic sigmoid function. Assuming WR

is positive, to achieve an expected value E[W ] = WR,

we set latent weights as V + = logit(WR) and V − =
logit(10−13). The case when WR is negative is symmet-

ric. The matching of this expectation however makes sense

only when |WR| ≤ 1. In order to meet these constraints we

set

sRo = max
i,k,l

WR
o,i,k,l, (9)

where i is input channel, o is output channel and k, l are

spatial kernel coordinates. To preserve equivalence we must

divide WR by sR in the output channels. As a result, the

whole block of ReLU network preserves equivalence with

the original one and we have |WR| ≤ 1.

As we discussed above many weights WR in a pretrained

network are often close to zero. If we were to approxi-

mate them with a single stochastic binary {−1, 1} weight,

we would obtain many weights ”undecided”, which are

±1 with equal probability. If there are many such unde-

cided states, the gradient of the model has a very high vari-

ance and a very small expectation. In the proposed ternary

weight model, we can represent weights close to 0 with

very low variance. Fig. 3 illustrates samples of stochastic

ternary filters after the proposed initialization. Fig. 2 com-

pares tSNE embeddings that we could achieve using binary

weights and ternary weights and shows the loss of represen-

tation capability when using binary weights.

4.1.3 Initialization of Scales

Ideally, we want for all block inputs x = xR the expected

SBN features a to match accurately the real-valued features

aR. So far we defined conversions of the first three op-

erations of ReLU block eq. (4) and SBN block eq. (5) to

preserve expectations of activations and weights separately.

However, these steps are approximate and do not guaran-

tee a good alignment of feature distributions. We therefore

choose affine scaling parameters s, b in the last operation in

order to align the first two moments of a and aR. The non-

standard part here, implied by the use of SBN model, is that

we need to collect statistics over data and spatial dimensions

while averaging out noises in a. Let

mR
1 = Edata[a

R], mR
2 = Edata[(a

R)2], (10a)

where mR
1 ,m

R
2 are vectors of the size of channels and the

square is coordinate-wise. Note that these statistics do not

change with the equivalent transforms applied to the ReLU

block and can be computed on the initial network. Let ā =
ESBN[a] and let

m1(ā) = Edata[ā], (11)

m2(ā) = Edata[ā
2]. (12)

Recall that the notation ESBN means averaging over all in-

jected noises in the current as well as all preceding SBN

blocks. Then we can compute s, b as:

s2 =
m2(a

R)− (m1(a
R))2

m2(ā)−m1(ā)2
, (13a)

b = m1(a
R)−m1(ā)s. (13b)

In the experiments section 5.1 we show that the proposed

initialization based on matching expectations and statistics

of features allows to preserve a significant portion of accu-

racy, and especially so for deeper layers.

4.2. Optimization Based Feature Transfer

Given the statistics-based initialization of SBN, we pro-

ceed to the full transfer of intermediate features using

gradient-based optimization. Still considering one block at

a time we want to achieve a closer match between ā and aR.

The task can be formulated as the optimization problem

min
V +,V −,t,s,b

Edata

[

D(a, aR)
]

, (14)

where D is a dissimilarity function, for which we will con-

sider several choices. The common MSE dissimilarity is de-

fined as DMSE(a, a
R) =

∥

∥ā− aR
∥

∥

2
. Notice we apply it to

the expected SBN features ā = ESBN[a]. As alternatives we

consider attention loss [15], denoted DATT, which we also

apply to expected features ā and our proposed innovation:

the MSE loss on the next layer applied for optimizing the

current layer, denoted DMSE+. The rationale for the later is

that it still enforces proximity of inner representations while

being robust to deviations in representations that are of no

importance to the next layer.

4.3. Transforming the Whole Network

Prior to convering to SBN, if the teacher network has

BatchNorm layers, we compute their test-time equivalent

affine transforms to obtain blocks of the form (4). We per-

form the whole network conversion as described above: we



Figure 4: Statistics of units after each convolutional and linear layers following the converted block at layers (7,8), which

correspond to block # 4 at Fig. 1. The statistics with the SBN block (blue) are of the mean values over SBN noises approxi-

mated using 10 samples. Hence the histogram after binary activation (7) is not a discrete 0-1 distribution. Observe that even

though the statistics after conv (8) are accurately aligned, more fine-grained differences in feature representations, not visible

in the distributions, cause significant shifts downstream.

process it incrementally, starting from block 1, in each step

initializing and re-optimizing the so-far converted part us-

ing the feature transfer formulation. For the optimization

part we will experimentally explore possible options: which

losss is better to use, should we adjust only the current block

or including all the blocks below it, how long to train for the

feature transfer, etc.

5. Experiments

For our experiments, we consider the CIFAR10 dataset

and All-CNN architecture in Fig. 1 as a referenced ReLU

network. This architecture has no max-pooling layers and

no huge fully connected layers as in VGG. To study the

individual steps of the initialization procedure we used a

low-end model denoted AllCNN89, which was trained us-

ing common techniques and achieves 89% testing accuracy.

In the final experiment we also transfer a high-end model of

the exactly same architecture but trained using the method

from [24] to 94.8% test accuracy1, denoted AllCNN94.

First goals of experiments are to verify how the individ-

ual steps of the proposed initialization perform, where are

the biggest losses in the accuracy and which choices in these

steps lead to a better individual step performance as well as

that of the full feature transfer. We then set to answer the

following questions. Does a better initialization allow to

achieve a better test performance and not merely speed up

the training? Can the initialization by transferring interme-

diate features lead to improved generalization capabilities

1The model selection was made by the validation accuracy.

for the trained SBN?

5.1. Analytical Initialization

In Fig. 4 we illustrate how replacing one ReLU block (4)

with SBN block (5) via proposed statistics based initializa-

tion aligns the distributions at this block, but at the same

time causes shifts in the downstream distributions.

In the next experiment we study how the threshold γ for

the activation initialization affects the accuracy of the net-

work after the analytical matching. Fig. 5 illustrates the

tendencies using several values of γ. We observe that con-

verting blocks in the beginning of the network results in

a significantly larger accuracy degradation (≈ 40%) com-

pared to that of converting deeper blocks (≈ 10%). We also

see that values close to 1 are sub-optimal for all blocks. We

empirically chose threshold γ ≈ 0.85 as a robust value for

all layers.

5.2. Optimization­Based Feature Transfer

The next step after the analytical initialization of the pa-

rameters in the block is the matching of its output features.

Here we conduct a series of experiments to determine a suit-

able loss for feature transfer, and the incremental optimiza-

tion strategy.

In Fig. 6 we compare different losses applied at the fea-

ture transfer step. For all losses we used Adam optimizer

with learning rate 0.001 and 5 samples of the SBN noises

for estimating ESBN. From Fig. 6 we see that the accuracy

increases faster and achieves higher final value when opti-

mizing DMSE+ rather than DMSE and the previously used



Figure 5: Test accuracy after statistics-based conversion of

one block at given index (shown on x-axis) for different val-

ues of γ. Converting more shallow blocks incurs more sig-

nificant loss of accuracy and γ has somewhat different effect

at different depth. The dashed line represents the referenced

network test accuracy.

Figure 6: Comparison of different losses for feature trans-

fer: DMSE, DMSE+, DATT. We transfer a single block 4

(left) or 5 (right) in AllCNN89 by optimizing the respec-

tive loss, and measure the validation accuracy of the whole

network. The network accuracy improves when optimizing

the first two losses, but more so when optimizing DMSE+.

The difference is substantial after epoch 1 and is significant

even with more epochs. In contrast, while DATT can be

easily optimized (top plots), its lower value does not secure

a better accuracy (bottom plots).

attention loss [15] actually has a negative impact on accu-

racy.

In the next step we experiment with the incremental op-

timization strategy. The proposed incremental procedure

leaves a few free choices: how many epochs to optimize

and whether to optimize parameters of the already con-

verted layers as we go deeper. In Fig. 7 we show that a

large portion of the accuracy gap is closed in just one epoch

of DMSE+ optimization. Training further improves the re-

sults only marginally. At the same time we found that one

Figure 7: Comparison of the test accuracy with 1) analytical

statistics-based initialization, 2) after one features matching

epoch and 3) after 150 epochs. Optimization-based feature

transfer improves the accuracy without using the class la-

bels.

Figure 8: (Top) The number of training epochs needed in or-

der to achieve an approximately stationary point of DMSE

when converting blocks incrementally. The result shows

that more work is needed in the middle of the network. The

graph also compares optimizing the current block parame-

ters (red) or the whole current SBN network (yellow).

(Bottom) Respective validation accuracy retained after the

respective conversion stage (at block 13 the whole network

is converted).

epoch per block was not sufficient for converting the whole

network. In Fig. 8 (top) we show the number of epochs

needed to optimize the target DMSE+ loss (achieve its gra-

dient value ≤ ε) depending on the block depth. We there-

fore use this strategy as a stopping criterion instead of a

predefined number of epochs. It is found to be significantly

larger for blocks in the middle. From Fig. 8 we also see that

optimizing parameters of all the preceding blocks gives both

faster training and more accurate final results as compared

to optimizing only parameters of the current block.

5.3. Training with Class Labels

We now verify how supervised training with class labels

and cross-entropy loss benefits from the proposed initial-
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Figure 9: Validation accuracy of SBN models (using 10

samples) of the same network structure during their training

when started from different initialization points. Our initial-

ization has a significant advantage at the start and over 10%

higher accuracy at the end of the training. The yellow and

red circles indicate the accuracy when initialized (81.1% for

AllCNN89 and 86% for AllCNN94).

ization method. Towards this end we compare: 1) randomly

initialized SBN with data-driven initialization [16] of scales

and biases; 2) randomly initialized SBN with batch nor-

malization layers; 3) Initialization with our method from

AllCNN89 and 4) initialization with our method from All-

CNN94. Note that with the exception of 1) we do not use

batch normalization, which appears to be a key component

in SOTA BNN training.

The training setups was the same for all four cases: we

use the same architecture obtained by replacing blocks of

AllCNN with the respective blocks (5), denoted AllCNN-T

(T for ternary), same gradient estimators and Adam opti-

mizer with learning rate 0.001.

Based on the results in Fig. 9 and table 1 we make the

following observations. I) Our initialization using either of

the real-valued networks has a significant advantage over

a random initialization, giving a well-performing starting

point and keeping the advantage even after 600 epochs. II)

A higher accuracy of the teacher network leads to nearly

proportionally higher accuracy of the initial point as well

as of the final obtained model. III) When initializing from

a high-performance point, the trained SBN surpasses many

previous SOTA results (that use non-residual models) in ac-

curacy with an architecture that has a smaller computation

cost. It also has a comparable accuracy in the deterministic

mode (noises replaced by their mean values). This indi-

cates that we have transferred some useful representations

that lead to an easier training and a better generalization. It

is also closing the gap in the performance (∼ 2%), com-

pared to the teacher network, suggesting that it has a suf-

ficient representation capability. We expect that the results

Table 1: Comparison with SOTA. We compare the com-

putation cost (memory, floating point, integer and binary

operations) of test-time models and the test accuracy they

achieve.

BINARY MODELS SIZE AND COMPLEXITY

Model Weights FLOPS IOPS BOPS

AllCNN-T 0.3 Mb 5 · 10
6

4.2 · 10
6

2.7 · 10
8

VGGSmall [12] 1.7 Mb 7.5 · 10
6

1.9 · 10
7

6.1 · 10
8

Net 5 [8] 5 Mb 2.3 · 10
7

1.7 · 10
8

5.4 · 10
9

CIFAR-10 TEST ACCURACY

Method Model Deterministic 10-sample

Our AllCNN-T 91 92.6± 0.1

Shekhovtsov &

Yanush [25]

VGGSmall 89.7 90.5

Peters et al. [19] VGGSmall 88.61 91.2

Hubara et al. [12] VGGSmall 89.85 -

Rastegari et al. [21] VGGSmall

+scaling

89.83 -

Ding et al. [8] Net 5 91.56 -

Bulat et al. [4] 17-cell∗ 93.7 -
∗ The quoted result if for basic data augmentation. The network has real-

valued skip connections with parameters and a complicated structure; we

could not estimate its complexity.

could be further improved using complementary techniques

applied during final training, such as batch normalization or

activation regularization [8].

6. Conclusion and Future Work

We have proposed an initialization scheme for SBNs

which incrementally converts ReLU network block-by-

block, first using basic statistics and then re-optimizing for

better feature transfer. This initialization scheme takes into

account noises in SBNs and is invariant to the equivalent

transformations of the original ReLU network. In contrast

to using a pretraining phase [3, 6, 15] where models are

in between real-valued and binarized networks and are not

trained to high performance, we showed that with a ternary

architecture and the proposed method it is possible to reuse

already available high-performance ReLU networks to ini-

tialize SBNs by transferring their internal features and nar-

row the accuracy gap to them. However, further experi-

mental verification of our observations on a large-scale data

needs to be conducted.
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