
Fast Walsh-Hadamard Transform and Smooth-Thresholding Based Binary

Layers in Deep Neural Networks

Hongyi Pan Diaa Badawi Ahmet Enis Cetin

Department of Electrical and Computer Engineering

University of Illinois at Chicago

{hpan21, dbadaw2, aecyy}@uic.edu

Abstract

In this paper, we propose a novel layer based on

fast Walsh-Hadamard transform (WHT) and smooth-

thresholding to replace 1 × 1 convolution layers in deep

neural networks. In the WHT domain, we denoise

the transform domain coefficients using the new smooth-

thresholding non-linearity, a smoothed version of the well-

known soft-thresholding operator. We also introduce a

family of multiplication-free operators from the basic 2×2

Hadamard transform to implement 3 × 3 depthwise sepa-

rable convolution layers. Using these two types of layers,

we replace the bottleneck layers in MobileNet-V2 to reduce

the network’s number of parameters with a slight loss in ac-

curacy. For example, by replacing the final third bottleneck

layers, we reduce the number of parameters from 2.270M to

947K. This reduces the accuracy from 95.21% to 92.88% on

the CIFAR-10 dataset. Our approach significantly improves

the speed of data processing. The fast Walsh-Hadamard

transform has a computational complexity of O(m log2 m).
As a result, it is computationally more efficient than the

1 × 1 convolution layer. The fast Walsh-Hadamard layer

processes a tensor in R
10×32×32×1024 about 2 times faster

than 1× 1 convolution layer on NVIDIA Jetson Nano com-

puter board.

1. Introduction

Deep convolution neural networks (CNN) are univer-

sally used in a wide range of applications including image

classification [1, 2, 3, 4, 5, 6, 7, 8, 9], object detection [10,

11, 12, 13] and semantic segmentation [14, 15, 16, 17, 18].

On the other hand, implementing deep neural networks in

real-time resource-constrained environments such as em-

bedded devices is very difficult due to insufficient mem-

ory and limited computational capacity. For these reasons,

there is an increasing demand to develop smaller and ef-

ficient neural networks as neural networks have become an

instrumental technology for sensor data processing [19] and

can be utilized in our modern society everywhere.

Efficient neural network models include compress-

ing a large neural network using quantization [20, 21],

hashing [22], pruning [23], vector quantization [24]

and Huffman encoding [25]. Another approach is the

SqueezeNet [26], which is designed as a small network with

1 × 1 filters during training. In [27] the neural network is

slimmed by removing some layers from a well-developed

model. Binary neural networks [28, 29, 30, 31, 32, 33, 34,

35, 36, 37] showed that binary weights can be used to slim

and accelerate neural networks.

Although 1 × 1 convolutions reduce the computational

load, they are still computationally expensive and time-

consuming in regular deep neural networks. In this pa-

per, we introduce a binary layer based on the fast Walsh-

Hadamard transform to slim and speed up deep neural net-

works with 1 × 1 convolutions. Moreover, the recent lit-

erature [38, 39, 40, 41, 42] developed an energy-efficient

neuron called multiplication-free (MF) kernel, which does

not require any multiplications. We establish the relation

between the MF operator and 2-by-2 Hadamard transform,

and we fuse this idea to propose the depthwise separable

multiplication-free convolution layer. We apply these two

types of layers in bottleneck layers of MobileNet-V2 [43],

and the new network is remarkably more slimmed and com-

putationally efficient compared to the original structure ac-

cording to our experiments. Similar results can also be ob-

tained in other standard deep neural networks.

2. Methodology

In this section, we first review the Walsh-Hadamard

(WH) transform. Then, we introduce the proposed fast

Walsh-Hadamard transform layer. Finally, we describe the

multiplication-free depthwise separable convolution layer,

which turns out to be a combination of two binary layers.

2.1. The Walsh­Hadamard (WH) Transform

The WH transform is based on the so-called butterfly op-

eration described by the following binary matrix:

H =

[

1 1
1 −1

]

(1)

which is also the main building block of the fast Fourier

transform (FFT). A 2-by-2 WH transform Y of the vector

X ∈ R
2 is

Y = WX = HX (2)

In general, the WH transform Y = WkX of a vector

X ∈ R
m where m = 2k, k ∈ N can be expressed via the

orthogonal Walsh matrix Wk ∈ R
m×m which is generated

using the Hadamard matrix which can be recursively con-

structed in two steps as follows [44]:

• First, we construct the Hadamard matrix Hk:

Hk =











1, k = 0,
[

Hk−1 Hk−1

Hk−1 −Hk−1

]

, k > 0,
(3)

Alternatively, for k > 1, Hk can also be computed as

Hk = H1 ⊗Hk−1 (4)

where ⊗ denotes Kronecker product.

• Then, we shuffle the rows of Hk to obtain Wk by

applying the bit-reversal permutation and the Gray-

code permutation on row index. For example, when

k = 2,m = 4, we have the Hadamard matrix

H2 =









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









(5)

and the corresponding WH-transform is given by

W2 =









1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1









(6)

It is not difficult to verify that X = 1

m
WkY, which im-

plies the inverse Walsh-Hadamard transform is itself with

normalization by m.

The fast Walsh-Hadamard transform (FWHT) algorithm

is similar to the FFT algorithm, and, consequently, the com-

plexity of FWHT is O(m log2 m). The FWHT algorithm is

completely based on the butterfly operations described in

Eq. (1) in [45]. As a result, the implementation of FWHT

can be realized by only addition and subtraction operations

using butterflies. It was shown that the WH transform is the

same as the block Haar wavelet transform [46].

2.2. The FWHT Layer

In the state-of-art deep convolution neural networks,

1 × 1 convolution layers are widely used as hidden lay-

ers [5, 43, 47, 48] to change the dimensions of channels.

For instance, there are 17 bottleneck layers in MobileNet-

V2 [43]. The first bottleneck layer contains a 3 × 3 depth-

wise separable convolution layer and a 1 × 1 convolution

layer. Other bottleneck layers are built using a 1× 1 convo-

lution layer named “conv expand”, a 3× 3 depthwise sepa-

rable convolution layer [49], and a 1 × 1 convolution layer

named “conv project”. The layer “conv expand” increases

the number of channels 6 times. On the other hand, the layer

“conv project” decreases the number of channels by a fac-

tor of 1

6
. The depthwise separable convolution layer is the

main component for feature extraction.

Notice that each 1×1 convolution layer contains as many

parameters as the number of channels, and they are time-

consuming during inference. We propose a novel FWHT

layer to replace the 1 × 1 convolution layers. The FWHT

layer is summarized in Algorithms 1 and 2. In general, an

FWHT layer consists of an FWHT to change the tensor to

the Hadamard domain, a smooth-thresholding operation as

the non-linearity in the Hadamard domain, and an FWHT

to change the tensor back to the feature-map domain. The

FWHT is performed on the channel axis, which implies that

completing FWHT on a tensor X ∈ R
n×w×h×m means

performing n× w × h m-length FWHTs in parallel.

In the WH transform domain, we denoise the param-

eters and eliminate coefficients with small amplitude val-

ues. Soft-thresholding (ST) is commonly used in wavelet

domain denoising algorithms [50, 51] and defined as

y = ST (x) = sign(x)(|x| − T)+ =











x+ T, x < −T

0, |x| ≤ T

x− T, x > T
(7)

where T is the thresholding parameter and is trainable in

our FWHT layer.

The denoising parameter T can be learned using the

back-propagation algorithm during training. More specif-

ically,

∂(sign(x)(|x| − T)+)

∂T
=











1, x < −T

0, |x| ≤ T

−1, x > T

(8)

However, the denoising parameter T in soft-thresholding

can only be updated by +1 or −1. We introduce

smooth-thresholding by revising the definition of the soft-

thresholding operator as follows

y = S′
T (x) = tanh(x)(|x| − T)+ (9)

and the corresponding partial derivative is

∂(tanh(x)(|x| − T)+)

∂T
=

{

− tanh(x), |x| > T

0, |x| ≤ T
(10)

We observe that the derivative in Eq. (10) is the derivative

in Eq. (8) multiplied by tanh(x). As a result, the conver-

gence of the smooth-thresholding operator is smooth and

steady in the back-propagation algorithm. We learn a dif-

ferent threshold T value for each WH transform domain

coefficient. Other methods using the Hadamard transform

include [52, 53] but they did not apply trainable threshold-

ing in the WH-transform domain.

Figure 1: y = ST (x, 0.5) and y = S′
T (x, 0.5)

Figure 1 shows the soft-thresholding and smooth-

thresholding operators for T = 0.5, respectively. The FWH

transform coefficients can take both positive and negative

values. Large positive and negative transform domain co-

efficients are equally important. Therefore, we cannot use

the ReLU function in the transform domain. In fact, our

experiments verify this observation, and soft-thresholding

and smooth-thresholding improve the recognition accuracy

compared to the ReLU.

There are (2d − 1) trainable thresholding parameters in

the FWHT layer when there are 2d channels. This means

that if we perform smooth-thresholding on tensor Y, each

slice among the channel axis will share a common threshold

value. The so-called DC channel Y[:, :, :, 0] usually con-

tains essential information. Due to this reason, we do not

perform smooth-thresholding on this channel.

The FWHT layer for channel expansion is described in

Algorithm 1. We first compute the 2d point WH transforms

and perform smooth-thresholding in the transform domain.

We pad (2d − c) zeros to the end of each input vector be-

fore the 2d-by-2d WH transform to increase the dimension.

After smooth-thresholding in the WH domain, we calculate

the inverse WH transform.

Algorithm 1 The FWHT layer for channel expansion

Input: Input tensor X ∈ R
n×w×h×c

Output: Output tensor Z ∈ R
n×w×h×tc

1: Find minimum d ∈ N, s.t. 2d ≥ tc
2: X̂ = pad(X, 2d − c) ∈ R

n×w×h×2
d

3: Y = FWHT(X̂) ∈ R
n×w×h×2

d

4: Ŷ = concat(Y[:, :, :, 0], ST(Y[:, :, :, 1 :]))

5: Ẑ = FWHT(Ŷ) ∈ R
n×w×h×2

d

6: Z = Ẑ[:, :, : tc]
7: return Z.

Comments: Function pad(A, b) pads b zeros on the

channel axis of tensor A. FWHT(·) is the normalized

fast Walsh-Hadamard transform on the last axis. Func-

tion concat(·, ·) concatenates two tensors along the last

axis. ST(·) performs smooth-thresholding. Index fol-

lows Python’s rule.

Algorithm 2 The FWHT layer for channel projection

Input: Input tensor X ∈ R
n×w×h×tc

Output: Output tensor Z ∈ R
n×w×h×c

1: Find minimum p, q ∈ N, s.t. 2p ≥ tc, 2q ≥ c
2: r = 2p−q

3: X̂ = pad(X, 2p − tc) ∈ R
n×w×h×2

p

4: Y = FWHT(X̂) ∈ R
n×w×h×2

p

5: Ŷ = concat(Y[:, :, :, 0]/r, avgpool(ST(Y[:, :, :, 1 :
2p − r + 1]), r)) ∈ R

n×w×h×2
q

6: Ẑ = FWHT(Ŷ) ∈ R
n×w×h×2

q

7: Z = Ẑ[:, :, : c]
8: return Z.

Comments: Function pad(A, b) pads b zeros on the

channel axis of tensor A. FWHT(·) is the normalized

fast Walsh-Hadamard transform on the last axis. Func-

tion concat(·, ·) concatenates two tensors along the last

axis. Function avgpool(A, b) is the average pooling on

A with pooling size and strides are b. ST(·) performs

smooth-thresholding. Index follows Python’s rule.

In FWHT layer for channel projection by a factor of

r = 2
p

2q
, we first compute the 2p point WH transforms

and perform smooth-thresholding in the transform domain

as described in Algorithm 2. After this step, we compute

the 2q point WH transforms to reduce the dimension of the

feature map. We divide the DC channel values by r to keep

the energy at the same level as other channels after pooling.

In Step 5 of Algorithm 2, we average pool the transform

domain coefficients to reduce the dimension of the Walsh-

Hadamard transform and discard the last (r − 1) transform

domain coefficients of Y to make the dimension equal to

2q . The last (r − 1) coefficients are high-frequency coef-

ficients, and usually, their amplitudes are negligible com-

pared to other WH coefficients.

Therefore, the dimension change operation from m di-

mensions to n dimensions can be summarized as follows:

Z =

{

1

2q
UWqS

′
TWqPX, m ≤ n

1√
2p+q

UWqAvgS
′
TWpPX, m > n

(11)

where p is the minimum integer such that 2p ≥ m, q is

the minimum integer such that 2q ≥ n, P describes zero-

padding operation to make X multipliable by Wp or Wq ,

S′
T is the smooth-thresholding layer with DC channel ex-

cluded, U is unpadding function to make the dimension the

same as Z, and Avg is average pooling on the channel axis

with the DC channel of WH transform excluded.

Hence, the trainable number of parameters in FWHT lay-

ers is no more than the (2d − 1) where d is the minimum

integer such that 2d is no less than the number of input chan-

nels. The trainable parameters are only the threshold val-

ues of the smooth-thresholding. Therefore, it is clear that

FWHT layer requires significantly fewer parameters than

the regular 1× 1 layer, which requires a different set of fil-

ter coefficients for each 1× 1 convolution.

2.3. Multiplication­Free Depthwise Separable
"Convolutions" (MF­DS­Conv)

Akbaş et. al. introduced multiplication-free (MF) kernel

to replace regular convolution in CNNs [38, 39, 40, 41, 42].

The MF kernel requires no multiplication but only additions

and sign operations. It is more energy-efficient compared

to the standard convolution. In this section, we describe

how we can generate new operators similar to the MF ker-

nel from the 2×2 Walsh-Hadamard transform to implement

depthwise separable convolution using binary operations,

additions, and subtractions.

Let w be a weight value and x be the corresponding in-

put. In a regular neuron we multiply x by w to determine

the contribution of the input value. In some binary networks

and additive networks [38, 39, 40, 41, 42], the sign of the

multiplication w × x is used as the basic operation of the

neuron. In addition, we will scale the sign(w × x) by the

ℓ1 norm of the vector y = [w + x w − x]T which is the

2×2 WH transform of the vector [w x]T and define the

following basic operation

w ⊙ x = sign(w × x)(|w + x|+ |w − x|)
= 2sign(w × x)max{|w|, |x|}

(12)

which can be used to construct a vector ”product”. The op-

erator can also replace the multiplication operator used in

correlation or convolution calculations. Another related op-

erator is

sign(w×x)(||w+x|−|w−x||) = 2sign(w×x)min{|w|, |x|}
(13)

which can be also used in convolution and correlation

operations. The above operations defined in Eq. (12)

and (13) are very similar to the MF operation used in

[38, 39, 40, 41, 42], which is

w ⊕ x = sign(w × x)(|w|+ |x|) (14)

What is common in all of the above operations is that the re-

sult of the operation w⊕x has the same sign as the multipli-

cation operation, and the magnitude of the output is deter-

mined either by addition, min, or max operations. As a re-

sult, we can use all of the above three operations defined in

Eq. (12)- (14) in vector product, correlation, and convolu-

tion operations as follows: Let w = [w1 · · ·wD]T ∈ R
D×1

and x = [x1 · · ·xD]T ∈ R
D×1 be two D-dimensional col-

umn vectors. Instead of performing the standard Euclidean

inner product 〈w,x〉 = wTx ,
∑D

i=1
wixi, the MF dot

product that is defined as

wT ⊕ x ,

D
∑

i=1

sign(wixi)(|wi|+ |xi|) (15)

=

D
∑

i=1

sign(wi)xi + wisign(xi) (16)

is used in neurons and convolutions. Vector ”products” us-

ing Eq. (12) and (13) can be also defined in a similar man-

ner.

Notice that the only multiplication operations that ap-

pear in Eq. (16) correspond to sign changes and can be

implemented with very low complexity. For this reason, we

do not count the sign changes towards multiplication opera-

tions and thus call Eq. (16) an MF dot product. It can easily

be verified that the product in Eq. (16) and operators (12)

and (13) induce a scaled version of ℓ1-norm as

xT ⊕ x =

n
∑

i=1

|xi|+ |xi| = 2‖x‖1 (17)

Vector dot products described above can be extended to

matrix multiplications as follows: Let W ∈ R
n×m and

X ∈ R
n×p be arbitrary matrices. Then we define

WT⊕X ,











wT
1 ⊕ x1 wT

1 ⊕ x2 . . . wT
1 ⊕ xp

wT
2 ⊕ x1 wT

2 ⊕ x2 . . . wT
2 ⊕ xp

...
...

. . .
...

wT
m ⊕ x1 wT

m ⊕ x2 . . . wT
m ⊕ xp











(18)

where wi is the ith column of W for i = 1, 2, . . . , m and

xj is the jth column of X for j = 1, 2, . . . , p. In brief,

the definition is similar to the matrix production WTX by

only changing the element-wise product to element-wise

MF-product. By replacing product operation by MF prod-

uct operation in depthwise separable convolution layer, we

achieve MF-DS-Conv.

The standard back-propagation algorithm can be used

for training the MF-DS-Conv layer with the need for small

approximations. The partial scalar derivatives of the pre-

activation response concerning are given as follows:

∂(w ⊕ x)

∂x
= sign(w) + 2wδ(x) (19)

∂(w ⊕ x)

∂w
= 2xδ(w) + sign(x) (20)

where δ(x) is the Dirac–delta function that directly results

from the discontinuity of the signum function at x = 0. If

we omit the delta function from the definitions of the partial

derivatives, we end up with binary derivatives (sign(w) and

sign(x)). However, approximating the Dirac–delta function

provides better convergence since we end up with smoother

derivatives. In this regard, we approximate the derivative of

the signum function to be that of a steep hyperbolic tangent,

as follows:

dsign(x)

dx
≈

dtanh(αx)

dx
= α

(

1− tanh2(αx)
)

(21)

for a scalar α >> 1. This is reasonable since sign(x) =
limα→∞ tanh(αx). This way the terms associated with the

delta function in the Eq. (19) and (20) will contribute to the

partial derivatives when the arguments are close to zero. In

our experiments, we choose α = 10.

By replacing two 1 × 1 convolution layers by FWHT

layers and the depthwise separable 3 × 3 convolution

layer by a 3 × 3 MF-DS-Conv layer, we implement

“multiplication-free” bottleneck layer. Although it is

not wholly multiplication-free because there are batch-

normalization layers between the convolution layers, it is

much more efficient and slimmer than the original bottle-

neck layer. On the other hand, as it is shown in Table 1 be-

cause the input and the output of each layer have the same

shape as the original layer, our layers are plug-and-play.

Input Operator Output

h× w × k FWHT expension, ReLU6 h× w × tk
h× w × tk 3× 3 MF-DS-Conv, ReLU6 h

s
× w

s
× tk

h
s
× w

s
× tk FWHT projection, ReLU6 h

s
× w

s
× k′

Table 1: Revised bottleneck residual block transforming

from k to k′ channels, with stride s, and expansion factor

t. Batch normalization is used after each layer. Input and

output are same as Table 1 in [43].

3. Experimental Results

In our experiments, training and accuracy tests proceed

on a laptop with Intel Core i7-7700HQ CPU, NVIDIA

GTX-1060 GPU with Max-Q design, and 16GB DDR4

RAM. Code is written in TensorFlow-Keras in Python 3.

In the following sections, we will compare the accuracy of

neural networks on the Fashion MNIST dataset and CIFAR-

10 dataset, then compare the speed of neural networks by

feeding a large tensor to a single layer.

In the accuracy test, we use the ImageNet-pretrained

MobileNet-V2 model with 1.0 depth. As it is shown in Ta-

ble 2, We replace layers after the last global average pooling

layer by a dropout layer and a dense layer with 10 outputs

as TensorFlow official transfer learning demo [54]. This

is how we build the fine-tuned MobileNet-V2. In case the

minimum input of MobileNet-V2 is 96× 96× 3, we inter-

polate the images to this resolution, as shown in Figures 2

and 3. Because images in Fashion MNIST dataset are in

gray-scale, after interpolating, we copy the values 2 times

to make them 96× 96× 3.

Input Operator t c n s

962 × 3 Conv2D - 32 1 2

482 × 32 Bottleneck 1 16 1 1

482 × 16 Bottleneck 6 24 2 2

242 × 24 Bottleneck 6 32 3 2

122 × 32 Bottleneck 6 64 4 2

62 × 64 Bottleneck 6 96 3 1

62 × 96 Bottleneck 6 160 3 2

32 × 160 Bottleneck 6 320 1 1

32 × 320 Conv2D - 1280 1 1

32 × 1280 AvgPool - - 1 -

1280 Dropout (rate=0.2) - - 1 -

1280 Dense (units=10) - - 1 -

t, c, n and s represent expansion factor, channel, repeat

time and stride [43]. Initial weights before Dropout are

from ImageNet checkpoint float v2 1.0 96 in [55].

Table 2: Structure of fine-tuned MobileNet-V2 (baseline)

We modify the MobileNet-V2 with methods described

in Section 2. Detailly, in Tables 3 and 4, we try to only

change 1×1 convolution layers for channel projection with

name “MobileNet-V2 with projection conv. changed” be-

cause 1× 1 convolution layers for channel expansion plays

a more important role than 1 × 1 convolution layers for

channel projection in bottleneck layers for feature extrac-

tion, and we try to change 1× 1 convolution layers for both

channel expansion and projection with name “MobileNet-

V2 with 1 × 1 conv. changed”, and change 1 × 1 convolu-

tion layers and 3× 3 depthwise convolution layers with the

name “MobileNet-V2 with bottleneck changed”. Note that

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2: Samples of Fashion MNIST: (a) T-shirt/top, (b)

trouser, (c) pullover, (d) dress, (e) coat, (f) sandal, (g) shirt,

(h) sneaker, (i) bag, (j) ankle boot.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3: Samples of CIFAR-10: (a) airplane, (b) automo-

bile, (c) bird, (d) cat, (e) deer, (f) dog, (g) frog, (h) horse, (i)

ship, (j) truck.

early layers contain very few perimeters, but they are much

more important in feature extraction than the latter layers,

especially for early 1×1 convolution layers for channel ex-

pansion, so we also try to keep some early layers, as chang-

ing these layer cannot save too many parameters but will

bring a lot of accuracy loss. For example, if we only change

1 × 1 convolution layers for both channel expansion and

projection in the latter half of bottleneck layers, we call it

as “MobileNet-V2 with 1/2 1× 1 conv. changed”.

3.1. Fashion MNIST Experiments

We train the networks with the same parameter setting

(SGD with the learning rate = 0.005, momentum = 0.9 on

100 epochs with batch size = 64) for a fair comparison and

record the best accuracy training phase. We take categori-

cal cross-entropy without label smoothing as the loss func-

tion. We horizontally flip the training images to enrich the

dataset. The results of this experiment are summarized in

Table 3. By replacing about a half of 1 × 1 convolution

layers with FWHT layers, we can save 67.82% parameters

with 0.98% accuracy loss. Besides, by also replacing about

half of 3×3 depthwise separable convolution layers by MF-

DS-Conv, we only lose an additional 0.05% accuracy.

Moreover, to show the advantage of smooth-thresholding

over the soft-thresholding, ReLU (y = ReLU(x − T)) and

the linear identity function (y = x), we performed a set

of experiments in the FWHT layers. Accuracy history is

shown in Figure 4. We only changed the non-linearity in

the WH transform domain, and everything else (even the

random seed) is identical. If we do not use any function,

the network has a very rough converge behavior, as shown

in the green curve in Figure 4. With ReLU, MobileNet-

V2 with the half of 1 × 1 convolutions changed reaches an

accuracy of 0.24% less than the soft-thresholding-based ap-

proach. This is because ReLU is only the non-negative part

of the soft-thresholding operator. The positive values are as

important as negative values in the WH transform domain.

Because of these reasons, soft- and smooth-thresholding

can retain more information than ReLU in FWHT layers.

On the other hand, with smooth-thresholding, MobileNet-

V2 with half of the bottleneck changed reaches a 0.18%

higher accuracy than the soft-thresholding due to the fact

that the derivative of the soft-thresholding operator can only

be either 1, 0, or -1.

Figure 4: Accuracy history of networks with different

threshold functions in the FWHT layers.

3.2. CIFAR­10 Experiments

We train the networks with the same parameter setting

(SGD with learning rate = 0.005, momentum = 0.9, on 150

epochs with the batch size = 128) for a fair comparison and

record the best accuracy in the training phase. We take

categorical cross-entropy without label smoothing as the

Method Threshold Parameters Saving Rate Accuracy

Fine-tuned MobileNet-V2 (baseline) - 2,270,794 - 95.37%

MobileNet-V2 with all projection conv. changed Soft 1,317,126 42.00% 94.46%

MobileNet-V2 with all 1× 1 conv. changed Soft 574,838 74.69% 91.49%

MobileNet-V2 with 2/3 1× 1 conv. changed Soft 616,449 72.85% 93.90%

MobileNet-V2 with 1/2 1× 1 conv. changed Identitya 716,362 68.45% 93.45%

MobileNet-V2 with 1/2 1× 1 conv. changed ReLUb 730,648 67.82% 94.14%

MobileNet-V2 with 1/2 1× 1 conv. changed Soft 730,648 67.82% 94.38%

MobileNet-V2 with 1/2 1× 1 conv. changed Smooth 730,648 67.82% 94.49%

MobileNet-V2 with 1/2 bottleneck changed Soft 730,648 67.82% 94.26%

MobileNet-V2 with 1/2 bottleneck changed Smooth 730,648 67.82% 94.44%
a is achieved without using any function at where smooth-thresholding is in FWHT layers. So there is no

trainable variable. Although it reaches 93.45%, its accuracy plot does not converge like other cases.
b is achieved with ReLU instead of smooth-thresholding in FWHT layers. Threshold values are also trainable.

Table 3: Results on Fashion MNIST Dataset

Method Threshold Parameters Saving Rate Accuracy

Baseline MobileNet-V2 modela in [27] - 2.2378M - 94.3%

RMNv2b [27] - 1.0691M 52.22% 92.4%

Fine-tuned MobileNet-V2 (baseline) - 2,270,794 - 95.21%

MobileNet-V2 with all projection conv. changed Soft 1,317,126 42.00% 87.22%

MobileNet-V2 with 1/2 projection conv. changed Soft 1,399,328 38.38% 92.46%

MobileNet-V2 with 1/3 projection conv. changed Soft 1,514,036 33.33% 94.28%

MobileNet-V2 with 1/2 1× 1 conv. changed Soft 730,648 67.82% 90.16%

MobileNet-V2 with 1/2 1× 1 conv. changed Smooth 730,648 67.82% 90.91%

MobileNet-V2 with 1/3 1× 1 conv. changed Soft 947,759 58.26% 93.21%

MobileNet-V2 with 1/3 1× 1 conv. changed Smooth 947,759 58.26% 93.23%

MobileNet-V2 with 1/2 bottleneck changed Soft 730,648 67.82% 90.11%

MobileNet-V2 with 1/2 bottleneck changed Smooth 730,648 67.82% 90.77%

MobileNet-V2 with 1/3 bottleneck changed Soft 947,759 58.26% 92.47%

MobileNet-V2 with 1/3 bottleneck changed Smooth 947,759 58.26% 92.88%

Parameters and accuracy of baseline modela and RMNv2b are from Table 3 in [27].

Table 4: Results on the CIFAR-10 dataset

loss function. We horizontally flip, rotate, shift, sheer and

zoom the training images to enrich the dataset. By replac-

ing about one-third of 1× 1 convolution layers with FWHT

layers, we can save 58.26% parameters with 1.98% accu-

racy loss. Our network with 947,759 parameters is more

accurate (93.23%) than the comparable slim RMNv2 net-

work (accuracy=92.4%) described in [27].

In addition, by also replacing about one-third of 3 × 3
depthwise separable convolution layers with MF-DS-Conv,

we lose an additional 0.35% accuracy.

3.3. The Speed Test

We implemented the proposed network on an NVIDIA

computer board to show the efficiency of the FWHT layer.

As pointed in Section 2.2, the FWHT is an O(m log2 m)

operation. We compared the 1 × 1 convolution layer

and the FWHT layer by processing a random tensor from

R
10×32×32×1024 to R

10×32×32×1024. We also imple-

mented the Walsh-Hadamard transform (WHT) using or-

dinary matrix multiplication. The only difference between

the WHT layer and the FWHT layer is that the former em-

ploys matrix-vector-product-based Walsh-Hadamard trans-

form instead of the O(m log2 m) fast Walsh-Hadamard

transform. The model uploaded to [56] only contains one

layer (FWHT, WHT or 1× 1 convolution). The speed tests

are performed on the same laptop computer and an NVIDIA

Jetson Nano (4GB RAM version). We run the TensorFlow

PB model on the laptop, and we convert the PB file to

TFLite format for NVIDIA Jetson Nano because it is an

ARM-based edge device. The test result is stated in Ta-

ble 5. There is no doubt that the WHT layer runs the slow-

est because its complexity is O(m2). Although the FWHT

layer’s speed advantage to 1×1 convolution layer is not ob-

vious on the laptop computer, the FWHT layer runs about

2 times faster than 1× 1 convolution layer on the NVIDIA

Jetson Nano board. This is because the TFLite model is

optimized by TensorFlow, while the PB model is not opti-

mized as much as the TFLite model.

Layer On Laptop On NVIDIA Jetson Nano

1× 1 conv. 0.0975s 2.3524s

WHT 0.1064s 5.1580s

FWHT 0.0952s 1.1973s

Table 5: Speed test, code is available at [56]

4. Conclusion

In this paper, we propose a binary layer called FWHT

layer to replace 1 × 1 convolution layer based on the fast

Walsh-Hadamard (WH) transform and smooth-thresholding

to change the channel size in deep neural networks. The

FWHT layer using an m ×m WH matrix requires only N
trainable parameters compared to 1 × 1 convolution lay-

ers because the only trainable parameters are the threshold

values of the smooth-threshold, which is a tanh-smoothed

version of the well-known soft-thresholding operator. The

number of parameters m is equal to the channel number or

a power of 2 integers larger than the number of channels,

and the same threshold values can be used throughout the

layer. The WH transform is implemented in O(m log2 m)
arithmetic. As a result, the FWHT layer runs about 2 times

faster than the 1 × 1 convolution layer on NVIDIA Jetson

Nano with TFLite model format.

We also establish the relationship between the MF op-

erator and the 2-by-2 WH transform and proposed a depth-

wise separable multiplication-free convolution layer, a com-

bination of two binary layers. By using the architecture

of MobileNet-V2 with FWHT and MF layers, we reduce

the number of parameters of MobileNet-V2 by 67.82%

with 0.93% accuracy loss on the Fashion MNIST dataset

and 58.26% savings with 2.33% accuracy loss on the

CIFAR-10 dataset. Although we perform experiments us-

ing MobileNet-V2 to compare our results with [27], similar

results can be obtained using other deep neural networks.

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. Advances in neural information processing systems,

25:1097–1105, 2012. 1

[2] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1

[3] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

1

[4] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng

Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang.

Residual attention network for image classification. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3156–3164, 2017. 1

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1, 2

[6] Diaa Badawi, Hongyi Pan, Sinan Cem Cetin, and A Enis

Çetin. Computationally efficient spatio-temporal dynamic

texture recognition for volatile organic compound (voc) leak-

age detection in industrial plants. IEEE Journal of Selected

Topics in Signal Processing, 14(4):676–687, 2020. 1

[7] Chirag Agarwal, Shahin Khobahi, Dan Schonfeld, and Mo-

jtaba Soltanalian. Coronet: a deep network architecture for

enhanced identification of covid-19 from chest x-ray images.

In Medical Imaging 2021: Computer-Aided Diagnosis, vol-

ume 11597, page 1159722. International Society for Optics

and Photonics, 2021. 1

[8] Harris Partaourides, Kostantinos Papadamou, Nicolas

Kourtellis, Ilias Leontiades, and Sotirios Chatzis. A self-

attentive emotion recognition network. In ICASSP 2020-

2020 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 7199–7203. IEEE,

2020. 1

[9] Dimitrios Stamoulis, Ting-Wu Chin, Anand Krishnan

Prakash, Haocheng Fang, Sribhuvan Sajja, Mitchell Bognar,

and Diana Marculescu. Designing adaptive neural networks

for energy-constrained image classification. In Proceedings

of the International Conference on Computer-Aided Design,

pages 1–8, 2018. 1

[10] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016. 1

[11] Süleyman Aslan, Uğur Güdükbay, B Uğur Töreyin, and

A Enis Çetin. Deep convolutional generative adversarial net-

works for flame detection in video. In International Confer-

ence on Computational Collective Intelligence, pages 807–

815. Springer, 2020. 1

[12] Guglielmo Menchetti, Zhanli Chen, Diana J Wilkie, Rashid

Ansari, Yasemin Yardimci, and A Enis Çetin. Pain detec-

tion from facial videos using two-stage deep learning. In

2019 IEEE Global Conference on Signal and Information

Processing (GlobalSIP), pages 1–5. IEEE, 2019. 1

[13] Süleyman Aslan, Uğur Güdükbay, B Uğur Töreyin, and

A Enis Çetin. Early wildfire smoke detection based on

motion-based geometric image transformation and deep con-

volutional generative adversarial networks. In ICASSP 2019-

2019 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 8315–8319. IEEE,

2019. 1

[14] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,

Gang Yu, and Nong Sang. Bisenet: Bilateral segmentation

network for real-time semantic segmentation. In Proceed-

ings of the European conference on computer vision (ECCV),

pages 325–341, 2018. 1

[15] Zilong Huang, Xinggang Wang, Lichao Huang, Chang

Huang, Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross

attention for semantic segmentation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 603–612, 2019. 1

[16] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3431–3440, 2015. 1

[17] Rudra PK Poudel, Stephan Liwicki, and Roberto Cipolla.

Fast-scnn: fast semantic segmentation network. arXiv

preprint arXiv:1902.04502, 2019. 1

[18] Yinli Jin, Wenbang Hao, Ping Wang, and Jun Wang. Fast de-

tection of traffic congestion from ultra-low frame rate image

based on semantic segmentation. In 2019 14th IEEE Con-

ference on Industrial Electronics and Applications (ICIEA),

pages 528–532. IEEE, 2019. 1

[19] Holger Schwenk and Yoshua Bengio. Boosting neural net-

works. Neural computation, 12(8):1869–1887, 2000. 1

[20] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and

Jian Cheng. Quantized convolutional neural networks for

mobile devices. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4820–

4828, 2016. 1

[21] Usama Muneeb, Erdem Koyuncu, Yasaman Keshtkar-

jahromd, Hulya Seferoglu, Mehmet Fatih Erden, and A Enis

Cetin. Robust and computationally-efficient anomaly detec-

tion using powers-of-two networks. In ICASSP 2020-2020

IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 2992–2996. IEEE, 2020.

1

[22] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-

berger, and Yixin Chen. Compressing neural networks with

the hashing trick. In International conference on machine

learning, pages 2285–2294. PMLR, 2015. 1

[23] Hongyi Pan, Diaa Badawi, and Ahmet Enis Cetin. Com-

putationally efficient wildfire detection method using a deep

convolutional network pruned via fourier analysis. Sensors,

20(10):2891, 2020. 1

[24] Mingchao Yu, Zhifeng Lin, Krishna Narra, Songze Li, You-

jie Li, Nam Sung Kim, Alexander Schwing, Murali An-

navaram, and Salman Avestimehr. Gradiveq: Vector quan-

tization for bandwidth-efficient gradient aggregation in dis-

tributed cnn training. arXiv preprint arXiv:1811.03617,

2018. 1

[25] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arxiv 2015. arXiv

preprint arXiv:1510.00149, 2019. 1

[26] Forrest N Iandola, Song Han, Matthew W Moskewicz,

Khalid Ashraf, William J Dally, and Kurt Keutzer.

Squeezenet: Alexnet-level accuracy with 50x fewer pa-

rameters and¡ 0.5 mb model size. arXiv preprint

arXiv:1602.07360, 2016. 1

[27] Maneesh Ayi and Mohamed El-Sharkawy. Rmnv2: Reduced

mobilenet v2 for cifar10. In 2020 10th Annual Comput-

ing and Communication Workshop and Conference (CCWC),

pages 0287–0292. IEEE, 2020. 1, 7, 8

[28] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran

El-Yaniv, and Yoshua Bengio. Binarized neural networks:

Training deep neural networks with weights and activations

constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830,

2016. 1

[29] Adrian Bulat and Georgios Tzimiropoulos. Hierarchical bi-

nary cnns for landmark localization with limited resources.

IEEE transactions on pattern analysis and machine intelli-

gence, 42(2):343–356, 2018. 1

[30] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In European conference

on computer vision, pages 525–542. Springer, 2016. 1

[31] Zhiqiang Shen, Zechun Liu, Jie Qin, Lei Huang, Kwang-

Ting Cheng, and Marios Savvides. S2-bnn: Bridging

the gap between self-supervised real and 1-bit neural net-

works via guided distribution calibration. arXiv preprint

arXiv:2102.08946, 2021. 1

[32] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-

Ting Cheng. Reactnet: Towards precise binary neural net-

work with generalized activation functions. In European

Conference on Computer Vision, pages 143–159. Springer,

2020. 1

[33] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tz-

imiropoulos. Training binary neural networks with real-

to-binary convolutions. arXiv preprint arXiv:2003.11535,

2020. 1

[34] Adrian Bulat, Brais Martinez, and Georgios Tzimiropou-

los. Bats: Binary architecture search. arXiv preprint

arXiv:2003.01711, 2020. 1

[35] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks. In

Proceedings of the 30th International Conference on Neural

Information Processing Systems, pages 4114–4122, 2016. 1

[36] Milad Alizadeh, Javier Fernández-Marqués, Nicholas D

Lane, and Yarin Gal. An empirical study of binary neu-

ral networks’ optimisation. In International Conference on

Learning Representations, 2018. 1

[37] Tom Bannink, Adam Hillier, Lukas Geiger, Tim de Bruin,

Leon Overweel, Jelmer Neeven, and Koen Helwegen.

Larq compute engine: Design, benchmark, and deploy

state-of-the-art binarized neural networks. arXiv preprint

arXiv:2011.09398, 2020. 1

[38] Cem Emre Akbaş, Alican Bozkurt, A Enis Çetin, Rengul

Çetin-Atalay, and Ayşegül Üner. Multiplication-free neu-

ral networks. In 2015 23nd Signal Processing and Commu-

nications Applications Conference (SIU), pages 2416–2418.

IEEE, 2015. 1, 4

[39] Arman Afrasiyabi, Baris Nasir, Ozan Yildiz, Fatos T Yarman

Vural, and A Enis Cetin. An energy efficient additive neural

network. In 2017 25th Signal Processing and Communica-

tions Applications Conference (SIU), pages 1–4. IEEE, 2017.

1, 4

[40] Arman Afrasiyabi, Diaa Badawi, Baris Nasir, Ozan Yildi,

Fatios T Yarman Vural, and A Enis Çetin. Non-euclidean

vector product for neural networks. In 2018 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pages 6862–6866. IEEE, 2018. 1, 4

[41] Diaa Badawi, Ece Akhan, Ma’en Mallah, Ayşegül Üner,

Rengül Çetin-Atalay, and A Enis Çetin. Multiplication free

neural network for cancer stem cell detection in h-and-e

stained liver images. In Compressive Sensing VI: From Di-

verse Modalities to Big Data Analytics, volume 10211, page

102110C. International Society for Optics and Photonics,

2017. 1, 4

[42] Hongyi Pan, Diaa Badawi, Xi Zhang, and Ahmet Enis Cetin.

Additive neural network for forest fire detection. Signal, Im-

age and Video Processing, pages 1–8, 2019. 1, 4

[43] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018. 1, 2, 5

[44] Joseph L Walsh. A closed set of normal orthogonal func-

tions. American Journal of Mathematics, 45(1):5–24, 1923.

2

[45] Bernard J. Fino and V. Ralph Algazi. Unified matrix treat-

ment of the fast walsh-hadamard transform. IEEE Transac-

tions on Computers, 25(11):1142–1146, 1976. 2

[46] A Enis Cetin, Omer N Gerek, and Sennur Ulukus. Block

wavelet transforms for image coding. IEEE Transactions on

Circuits and Systems for Video Technology, 3(6):433–435,

1993. 2

[47] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1492–1500,

2017. 2

[48] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander Alemi. Inception-v4, inception-resnet and the im-

pact of residual connections on learning. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 31,

2017. 2

[49] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

1251–1258, 2017. 2

[50] PM Agante and JP Marques De Sá. Ecg noise filtering using

wavelets with soft-thresholding methods. In Computers in

Cardiology 1999. Vol. 26 (Cat. No. 99CH37004), pages 535–

538. IEEE, 1999. 2

[51] David L Donoho. De-noising by soft-thresholding. IEEE

transactions on information theory, 41(3):613–627, 1995. 2

[52] T Ceren Deveci, Serdar Cakir, and A Enis Cetin. En-

ergy efficient hadamard neural networks. arXiv preprint

arXiv:1805.05421, 2018. 3

[53] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De

Sa, and Zhiru Zhang. Building efficient deep neural net-

works with unitary group convolutions. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 11303–11312, 2019. 3

[54] Transfer learning and fine-tuning. https :

//www.tensorflow.org/tutorials/images/

transfer_learning. Accessed: 2021-03-01. 5

[55] Mobilenet in tensorflow’s official github. https :

/ / github . com / tensorflow / models / tree /

master/research/slim/nets/mobilenet. Ac-

cessed: 2021-03-01. 5

[56] Hadamard network speed test code. https://github.

com/phy710/Hadamard-Network. 7, 8

https://www.tensorflow.org/tutorials/images/transfer_learning
https://www.tensorflow.org/tutorials/images/transfer_learning
https://www.tensorflow.org/tutorials/images/transfer_learning
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
https://github.com/phy710/Hadamard-Network
https://github.com/phy710/Hadamard-Network

