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Abstract

Neural network models are resource hungry. It is diffi-

cult to deploy such deep networks on devices with limited

resources, like smart wearables, cellphones, drones, and

autonomous vehicles. Low bit quantization such as binary

and ternary quantization is a common approach to allevi-

ate this resource requirements. Ternary quantization pro-

vides a more flexible model and outperforms binary quan-

tization in terms of accuracy, however doubles the mem-

ory footprint and increases the computational cost. Con-

trary to these approaches, mixed quantized models allow a

trade-off between accuracy and memory footprint. In such

models, quantization depth is often chosen manually, or is

tuned using a separate optimization routine. The latter re-

quires training a quantized network multiple times. Here,

we propose an adaptive combination of binary and ternary

quantization, namely Smart Quantization (SQ), in which the

quantization depth is modified directly via a regularization

function, so that the model is trained only once. Our ex-

perimental results show that the proposed method adapts

quantization depth successfully while keeping the model ac-

curacy high on MNIST and CIFAR10 benchmarks.

1. Introduction

Deep Neural Network (DNN) models have achieved

tremendous attraction due to their success on a wide vari-

ety of tasks, including computer vision, automatic speech

recognition, natural language processing, and reinforce-

ment learning [3]. More specifically, in computer vision

DNN have led to a series of breakthrough for image clas-

sification [6], [16], [17], and object detection [14], [11],

[15]. DNN models are computationally intensive and re-

quire large memory to store the model parameters. Compu-

tation and storage resource requirement becomes the main

obstacle to deploy such models in many edge devices due to

lack of memory, computation power, energy, etc. This mo-

tivated the researchers to develop compression techniques

to reduce the cost for such models.

Recently, several techniques have been introduced in the

literature to solve the storage and computational limitations

of the edge devices. Among them, quantization methods

focus on representing the weights of a neural network in

lower precision than the usual 32-bits float representation,

saving on the memory footprint of the model. Binary quan-

tization [1], [4], [13], [19], [9], [2] represent weights with

1 bit precision and ternary quantization [10], [8], [20] with

2 bits precision. While the latter frameworks lead to sig-

nificant memory reduction compared to their full precision

counterpart, they are constrained to quantize the model with

1 bit or 2 bits, on demand. We relax this constraint, and

present Smart Quantization (SQ) that allows adapting lay-

ers to 1 bit and 2 bits while training the network. Conse-

quently, this approach automatically quantizes weights into

binary or ternary depending upon a trainable control param-

eter. We show that this approach leads to mixed bit preci-

sion models that beats ternary networks both in terms of

accuracy and memory consumption. Here we only focus

on quantizing layers because it is more feasible to imple-

ment layer-wise quantization at inference time after train-

ing. However, this method can be also adapted for mixed

precision training of sub-network, block, filter, or weight.

2. Related Work

There are two main components in DNN models,

namely, weights and activations. These two components

are usually computed in full precision, i.e. floating point

32-bits. This work focuses on quantizing the weights of

the network, i.e. generalizing BinaryConnect (BC) [1] and

Ternary Weight Network (TWN) [8] toward automatic 1 or

2 bits mixed-precision using a single training algorithm.

In BC [1], the real value weights, w, are binarized to

wb ∈ {−1,+1} during the forward pass. To map a full

precision weight to a binary weight, the deterministic sign

function is used,

wb = sign(w) =

{

+1 w ≥ 0,

−1 w < 0.
(1)

The derivative of the sign function is zero on R \ {0}. The

sign function has zero gradient which freezes weight up-



dates during back-propagation. To bypass this problem, BC

[1] uses a clipped straight-through estimator

∂L

∂w
=

∂L

∂wb
1|w|≤1(w) (2)

where L is the loss function and 1A(.) is the indicator func-

tion on the set A. In other words (2) approximates the sign

function by the linear function f(x) = x within [−1,+1]
and a constant elsewhere. During back propagation, the

weights are updated only within [−1,+1]. The binarized

weights are updated with their corresponding full precision

gradients. XNOR-Net [13] adds a scaling factor to reduce

the gap between binary and full-precision model’s accuracy,

defining Binary Weight Network (BWN). The real value

weights W in each layer are quantized as µ × {−1,+1}
where µ = E

[

|W|
]

∈ R. DoReFa-Net [19] generalizes the

latter work and approximates the full precision weights with

more than one bit, while ABCNet [9] approximates weights

with a linear combination of multiple binary weight bases.

2.1. Ternary weight networks

Ternary Weight Network (TWN) [8] is a neural network

with weights constrained to {−1, 0,+1}. The weight reso-

lution is reduced from 32 bits to 2 bits, replacing full preci-

sion weights with ternary weights. TWN aims to fill the gap

between full precision and binary precision weight. Com-

pared to binary weight networks, ternary weight networks

are more expressive. In 3×3 weight filter in a convolutional

neural network, there are 23×3 = 512 possible variations

with binary precision and 33×3 = 19683 with ternary pre-

cision.

TWN [8] finds the closest ternary weights matrix W
t to

its corresponding real value weight matrix W using

{

µ̂,Ŵt = argmin
µ,Wt

‖W − µWt‖22,

s.t. µ ≥ 0, wt
ij ∈ {−1, 0, 1}, i, j = 1, 2, ..., n.

(3)

The ternary weight Wt is achieved by applying a symmet-

ric threshold ∆

W
t =











+1 wij > ∆,

0 |wij | ≤ ∆,

−1 wij < −∆.

(4)

One may adopt a weight-dependant threshold ∆ and a scal-

ing factor µ that approximately solves (3). Similar to BC

and BWN schemes; ternary-value weights are only used

for the forward pass and back propagation, but not for the

parameter updates. At inference, the scaling factor can be

folded with the input X as,

X⊙W ≈ X⊙ (µWt) = (µX)⊙W
t, (5)

where ⊙ denotes the convolution.

Trained Ternary Quantization (TTQ) [20] proposes a

more general ternary method which reduces the precision of

weights in neural network to ternary values. However, TTQ

quantizes the weights to asymmetric values {−µ1, 0,+µ2}
using two full-precision scaling coefficients µ1 and µ2 for

each layer of neural network. Consequently, the method

achieves better accuracy as opposed to TWN.

Note that µ is regarded as a scaling factor when the net-

work is quantized, during training, within a certain structure

(e.g., per layer, per filter, per channel). Varying µ per weight

may end up canceling the ternary simplification which re-

quires the same hardware as a full precision network. How-

ever, restricting µ in the form of 2n simplifies multiplication

to shift operation to the right or left depending on the sign

of the integer value n ∈ Z, see [18].

Our method provides a compromise between BC and

TWN and trains weights with a single trainable scaling fac-

tor µ. Weights shift between ternary {−µ, 0,+µ} and bi-

nary {−µ,+µ}. This provides a single algorithm for 1 or 2

bits mixed precision.

2.2. Regularization

Regularization technique is essential to prevent over-

fitting problem and to obtain robust generalization for un-

seen data. Standard regularization functions, such as L2 or

L1 encourage weights to be concentrated about the origin.

However, in case of binary network it is more appropriate

to have a regularization function to encourage the weights

about µ× {−1,+1}, with a scaling factor µ > 0 [12] such

as ,

R1(w, µ) =
∣

∣|w| − µ
∣

∣, (6)

A straightforward generalization for ternary quantization

can be expressed as,

R2(w, µ) =

∣

∣

∣

∣

∣

∣|w| −
µ

2

∣

∣−
µ

2

∣

∣

∣

∣

. (7)

Regularizer (6) encourages weights about {−µ,+µ}, and

(7) about {−µ, 0,+µ}. The two functions are depicted in

Figure 1. These regularization functions are only useful

when the quantization depth is set before training starts. We

propose a more flexible version to smoothly move between

these two functions using a shape parameter β.

3. Adaptive Quantization

Here we propose a generalized adaptive regularization

function that switches between binary regularization of (6)

and ternary regularization of (7)

min

(

∣

∣|w|+ µ
∣

∣

p
,
∣

∣|w| − µ
∣

∣

p
, tan(β)|w|p

)

, (8)

in which µ is a trainable scaling factor, p is the order co-

efficient denoting the type of regularization function, and



(a) R1(w, µ = 1) (b) R2(w, µ = 1)

Figure 1: Binary and ternary regularizers; R1 encourages

binary weights, with minimums at {−µ,+µ}, and R2 en-

courages ternary weights, with minimums at {−µ, 0,+µ}.

β ∈ (π
4
, π
2
) controls the transition between (6) and (7). As

a special case β → π
2

converges to the binary regularizer

(6) and β → π
4

coincide with the ternary regularizer (7), de-

picted in Figure 2. A large value of tan(β) repels estimated

weights away from zero thus yielding binary quantization,

and a small value of tan(β) encourages zero weights. The

shape parameter β controls the quantization depth. Quanti-

zation depth changes per layer; therefore we let β vary per

layer. We recommend to regularize β about π
2

i.e. prefer-

ring binary quantization apriori by adding | cot(β)| to the

objective function.

For a single filter W the regularization function can be

expressed by a sum over its elements on row i and column

j as,

R(W, µ, β) =
I

∑

i=1

J
∑

j=1

min

(

∣

∣|wij |+ µ
∣

∣

p
,
∣

∣|wij | − µ
∣

∣

p
,

tan(β)|wij |
p

)

+ γ| cot(β)|,

(9)

where γ controls the proportion of binary to ternary layers,

i.e., large values of γ contributes to encouraging the layers

to form binary values. In each layer, weights are pushed to

binary or ternary values, depending on the trained value of

the corresponding β. Here we only focus on such regular-

izer that is constructed using p = 1, as the accuracy does

not change significantly by varying the value of p.

The introduced regularization function is added to the

empirical loss function L(.). The objective function is opti-

mized on set of parameter weights W , set of scaling factors

µ, and set of shape parameters β using back propagation

L(W ,µ,β) = L(W) +

L
∑

l=1

λl

K
∑

k=1

R(Wkl, µkl, βl),

(10)

where k indexes the channel in a convolution network, and

l indexes the layer. One may use a different regularization

constant λl for each layer to keep the impact of the regu-

larization term balanced across layers, indeed different lay-

ers may involve different number of parameters. We set

λl =
λ

#Wl

where λ is a constant, and #Wl is the number

of weights in layer l.

We propose to use the same threshold-based function

of TWN [8] (4), but with a fixed threshold ∆l per layer

l. Note that [8] proposes a weight-dependant threshold.

We enforce weights to only accumulate about {−µ,+µ}
for large βl. One may set ∆l to have the same balanced

weights in {−µ, 0,+µ} at initialization for all layers and

let the weights evolve during training. Formally, if σl is the

standard deviation of the initial Gaussian weights in layer

l, we propose ∆l = 0.2 × σl. The probability that a sin-

gle weight lies in the range [−∆l,∆l] is ≈ 0.16. All the

weights falling in this range will be quantized as zeros after

applying the threshold function.

Weights are naturally pushed to binary or ternary values

depending on βl during training. Eventually, a threshold δ

close to π
2
≈ 1.57 defines the final quantization depth for

each layer.

Final quantization depth of layer l :

{

Binary βl ≥ δ,

Ternary βl < δ

4. Experiments

We run experiments on two common image classification

tasks MNIST [7] and CIFAR10 [5] datasets. We compare

our method, Smart Quantization (SQ), with BinaryCon-

nect (BC) of [1], Binary Weight Networks (BWN) of [13],

Ternary Weights Network (TWN) of [8] and also with a Full

Precision network (FP). The quality of the compression is

measured only in terms of memory, it is difficult to compare

mixed precision models, with binary and ternary, in terms

of consumed energy as their fair comparison requires spe-

cific hardware design. Let nl be the quantization depth for

the layer l and #Wl the number of weights in layer l, there-

fore the compression ratio is derived as,
∑

L

l=1
#Wl×32

∑
L

l=1
#Wl×nl

. The

compression ratio for a binary network is 32, for a ternary

network 16, and our approach falls in between.

Our SQ network generalizes binary and ternary regular-

ization in a single regularization function. We present how

to control the proportion of binary and ternary layers using

γ in (8). Figure 3 clarifies the effect of γ on the weight

distribution. When γ is large, β is encouraged towards π
2

which corresponds to binary quantization. Thus, weights

are pushed about {−µ,+µ} and 0 is removed from the

trained values, see Figure 3a. On the contrary, when γ is

small, β tends to π
4

and the weights started including 0 in

their values, see Figure 3b. In our experiment, the param-

eters W , µ and β are trainable; p, δl, ∆l, λl, and γ are

tuning parameters.



(a) R(w, β = π

4
) (b) R(w, β = 3π

8
) (c) R(w, β = 1.5707)

Figure 2: Adaptive regularization function. When β → π
2

the regularization function switches from ternary to binary.

(a) γ = 1× 10−1, β = 1.57 (b) γ = 1× 10−5, β = 0.79

Figure 3: Effect of γ on the weights distribution of a layer

while training. a) binray and b) ternary weight distribution,

respectively.

4.1. MNIST

MNIST is an image classification benchmark dataset

with 28 × 28 gray-scale images representing digits rang-

ing from 0 to 9. The dataset is split into 60k training images

and 10k testing images. We used the LeNet-5 [7] archi-

tecture consisting of 5 layers, 2 convolution followed by

maxpooling, stacked with two fully connected layers and

a softmax layer at the end. We train the network for 60
epochs using Adam optimizer. We used the initial learning

rate of 0.01, but divided by 10 in epoch 15 and 30 to sta-

bilize training. The batch size is set to 64 with L2 weight

decay constant 10−4 only for BC, BWC and TWN. The full

precision LeNet-5 is trained with no regularization as it pro-

vided a superior accuracy. SQ is trained with λ = 10−1

and γ = 10−2 and the effective regularization constant is

divided by the number of weights in each layer to compen-

sate for the layer size. Validation accuracy for each method

is reported in Table 1, as well as the quantization depth, and

the overall compression ratio. We observe that SQ network

quantized the first two convolutional layers in 1 bit, and the

last fully-connected layers in 2 bits. The accuracy improve-

ment and the compression ratio is marginal for simple task

and simple architectures. The effect of smart training be-

comes more visible for more complex tasks with more lay-

ers.

Method
Quantization depth

per layer (-bits)

Compression

ratio

Accuracy

(top-1)

BC 1-1-1-1-1 32 99.35

BWN 1-1-1-1-1 32 99.32

TWN 2-2-2-2-2 16 99.38

SQ 1-1-2-2-2 16.3 99.37

FP 1 99.44

Table 1: Smart Quantization (SQ) compared with Bi-

nary Connect (BC), Binary Weight Network (BWN), Tern-

eary Weight Network (TWN), and Full Precision (FP) on

MNIST dataset.

4.2. CIFAR10

CIFAR10 is an image classification benchmark that con-

tains 32 × 32 RGB images from ten classes. The

dataset is split into 50k training images and 10k test-

ing images. All images are normalized using mean =
(0.4914, 0.4822, 0.4465) and std = (0.247, 0.243, 0.261).
For the training session, we pad the sides of the images with

4 pixels, then sample a crop of size 32 × 32, and flip hori-

zontally at random as our augmentation process.

We use two VGG-like architectures, i) VGG-7 architec-

ture defined in [8] in which we apply batch normalization

after each layer and use ReLU activations, ii) a standard

VGG-16 architecture. We did not quantize the first and the

last layers in VGG-16 as the accuracy dropped significantly

for all methods.

We train the network for 150 epochs, using Adam op-

timizer with the initial learning rate 0.001 divided by 10
at epochs 40 and 80. The batch size is set to 64 with L2

weight decay constant 10−4, moreover λ = 0.1, γ = 10−3

for SQ. Validation accuracy for each method is reported in

Table 2. SQ beats pure 2 bits network TWN, even in terms

of accuracy. It recommends three 1 bit layers for VGG-7

and seven 1 bit layers for VGG-16. The compression ratio



Architecture Method
Quantization depth

per layer (-bits)

Compression

ratio

Accuracy

(top-1)

BC 1-1-1-1-1-1-1 32 92.49

BWN 1-1-1-1-1-1-1 32 92.42

VGG-7 TWN 2-2-2-2-2-2-2 16 92.74

SQ 2-1-1-1-2-2-2 18.3 92.94

FP 1 93.72

BC 32-1-1-1-1-1-1-1-1-1-1-1-1-32 31.5 91.92

BWN 32-1-1-1-1-1-1-1-1-1-1-1-1-32 31.5 91.85

VGG-16 TWN 32-2-2-2-2-2-2-2-2-2-2-2-2-32 15.9 92.14

SQ 32-2-1-1-2-2-2-1-1-1-1-1-2-32 25.1 92.38

FP 1 92.53

Table 2: Smart Quantization (SQ) compared with Binary Connect (BC), Binary Weight Network (BWN), Ternary Weight

Network (TWN), and Full Precision (FP) on CIFAR10 dataset.

(a) Layer 1, β1 = 1.56 (b) Layer 2, β2 = 1.57 (c) Layer 3, β3 = 1.57 (d) Layer 4, β4 = 1.57

(e) Layer 5, β5 = 1.00 (f) Layer 6, β6 = 0.86 (g) Layer 7, β7 = 0.98

Figure 4: Layer-wise weights distribution in VGG-7 for SQ. The weights are pushed to binary when the shape parameter β

is close to π
2
≈ 1.57.

is significantly higher than a ternary network. The weight

distribution of each layers are depicted in Figure 4 for the

VGG-7 architecture. Weights are pushed to {−µ,+µ} or

{−µ, 0,+µ} depending on the shape parameter β.

5. Conclusions

We proposed Smart Quantization (SQ), a training

method to build a 1 and 2 bits mixed quantized DNN.

Depth optimization requires training network multiple

times which is costly, especially if the network is com-

plex. However, our proposed method successfully com-

bines quantization with different depths, while training the

network only once. We focused on layer-wise quantization,

since it is more suitable for mixed-precision inference im-

plementation. However, subnetwork, block, filter, or weight

mixed quantization is feasible using a similar algorithm.

SQ makes manual tuning of quantization depth unneces-

sary. It allows to improve the memory consumption, by au-

tomatically quantizing some layers with smaller precision.

In some cases, this method even outperforms pure ternary

networks in terms of accuracy due to a formal regulariza-

tion function that shapes trained weights towards mixed-

precision. It is well-known that some layers are more re-

silient to aggressive quantization. Our proposed method-

ology offers a network similar to pure ternary but gives

an insight about which layers can be simplified further by

adapting to binary quantization. Scaling the method for

complex tasks such as ImageNet and with deeper architec-

tures is challenging and requires further research. A simi-

lar methodology can be applied to quantize neural network

models designed for other tasks related to speech and text.
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