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Abstract

This paper describes a CNN where all CNN style 2D

convolution operations that lower to matrix matrix multi-

plication are fully binary. The network is derived from a

common building block structure that is consistent with a

constructive proof outline showing that binary neural net-

works are universal function approximators. 71.24% top 1

accuracy on the 2012 ImageNet validation set was achieved

with a 2 step training procedure and implementation strate-

gies optimized for binary operands are provided.

1. Introduction

CNNs have achieved wide spread success in vision ap-

plications. The feature encoder portion of an image classi-

fication network typically forms the backbone of networks

designed for semantic segmentation, object detection, ob-

ject segmentation, depth estimation and motion estimation.

Minimizing the complexity of the backbone while achiev-

ing a high level of accuracy is a key to enabling the use of

CNNs in resource constrained environments.

The complexity of CNNs is dominated by the CNN style

2D convolution operator. This operator takes a 3D input ten-

sor and a 4D weight tensor and produces a 3D output tensor.

CNN style 2D convolution can be lowered to matrix matrix

multiplication via appropriate arrangement of tensors into

matrices [3].

Remaining network operators such as average and max

pooling, depth wise 2D convolution, unbatched linear lay-

ers, bias, scale and various nonlinearities reduce to either

pointwise operations, vector vector operations or vector ma-

trix operations. These operations have a lower arithmetic

intensity and / or fewer parameters and tend to contribute

substantially less to the complexity of common network de-

signs.

Binarizing both the inputs and weights is a method

for drastically reducing the implementation complexity of

CNN style 2D convolution relative to variants with 32 bit

float (common training precision) or 8 bit fixed point (com-

mon inference precision) inputs and weights. While bina-

rization benefits the implementation complexity, it typically

results in a model with lower accuracy. As such, there is an

interest in the design and training of high accuracy CNNs

which use fully binary CNN style 2D convolution.

This paper:

• Describes a network structure built from a common

building block where all CNN style 2D convolution

operations are implemented with binary inputs and bi-

nary weights; this includes the network stem and down

sampling portions of the network

• Provides the outline of a constructive universal func-

tion approximator proof for binary neural networks

which is consistent with the building block design

• Uses an existing 2 step training method to achieve

71.24% top 1 accuracy on the 2012 ImageNet valida-

tion set; to the best of the authors’ knowledge, this is

the highest accuracy on the 2012 ImageNet validation

set for a network with all matrix ops fully binary

2. Related work

There are a variety of approaches to minimizing CNN

complexity while achieving a high level of accuracy. In

practice, implementation complexity is a joint function of

network design, software mapping and hardware architec-

ture. As such, consider the network designs mentioned in

this section as a starting point that need to be further con-

sidered in the context of a specific software and hardware

architecture.

2.1. Filter sizes

Initial CNN designs used different filter sizes in the CNN

style 2D convolutional layers. Early attempts at complex-

ity reduction replaced a single layer with a larger filter with

multiple layers with 3x3 filters, e.g., replacing a single 5x5

layer with two 3x3 layers. While not mathematically equiv-

alent, the receptive field size is maintained while the num-

ber of parameters and MACs is reduced [17]. A somewhat

hidden tradeoff, though, is the potential latency and feature



map data movement increase, the consequences of which

are dependent on the specific hardware architecture.

2.2. Sparsity

A logical next step in complexity reduction was the re-

alization that the combined spatial and channel mixing of

3x3 CNN style 2D convolution can be achieved with a

depth wise 3x3 2D convolution layer for spatial mixing fol-

lowed by a separable 1x1 CNN style 2D convolution layer

for channel mixing. As before, while not mathematically

equivalent, spatial and channel mixing are still enabled and

the parameters and MACs are reduced [10].

Depth wise 2D convolution is an extreme form of feature

map grouping which can be viewed as structured sparsity

where only a subset of input channels are connected to each

output channel [21]. Other forms of sparsity exist beyond

grouped convolution and can be used to reduce complexity.

The more random the sparsity, the more opportunity there is

for accuracy vs complexity optimization, but there are also

more challenges from an implementation perspective.

2.3. Building block design

The above approaches are typically part of the design

of building blocks used to construct networks. The opti-

mal specification of building blocks in terms of input size,

channel width and network depth is a key component of ef-

ficient network design. Historically, channels doubled at

each down sampling level and building blocks at level 4

were repeated the most as they provided a good mix of re-

ceptive field size increase while not increasing the number

of parameters as much as level 5. Recently, large experi-

ments have been used to determine optimal channel width

increases and building block repeat patterns for a variety of

network complexity design points [15, 18].

2.4. Quantization

Quantization can be applied to all of the afore mentioned

methods to reduce the precision at which computation is

performed. While quantization does not change the theoret-

ical complexity of computations, it has a large effect on the

practical implementation complexity.

Memory and data movement, assuming that size changes

do not change memory hierarchy locations, scale with the

number of bits: if the number of bits per element increases

by 2x the memory size increases by 2x. Integer addition and

comparison operations scale with the number of bits used to

represent both inputs: if the number of bits in both operands

increases by 2x the implementation complexity increases by

∼ 2x.

Integer multiplication, however, scales with the number

of bits used to represent each input: if the number of bits in

both operands increases by 2x the implementation complex-

ity increases by ∼ 4x. As multiplication is more complex

from an implementation perspective than addition or com-

parison, the importance of the precision in layers with lots

of multiplications is critical. Hence the focus on the quanti-

zation of the CNN style 2D convolution operation.

Historically, CNN training is done at 32 bit float preci-

sion with 24 bits for the sign and mantissa (resolution) and

8 bits for the exponent (range). Networks can be relatively

easily quantized from 32 bit float to bfloat16, with 8 bits

for the sign and mantissa and 8 bits for the exponent, as

networks tend to be less sensitive to resolution above some

threshold and the range stays the same. The current sweet

spot for practical CNN inference is 8 bit fixed point, ideally

with range optimization and fixed point quantization built

into some portion of the training. Other combinations of

precision for the inputs and weights have been used beyond

those mentioned above.

2.5. Binary CNN design

The most efficient potential quantization is the extreme

end point: 1 bit for the inputs and 1 bit for the weights.

An abbreviated arch of papers using binary CNN style 2D

convolution includes:

• XNOR-Net used binary CNN style 2D convolution

with output scaling as an approximation of real CNN

style 2D convolution [16]; extensions such as XNOR-

Net++ looked at different options for output scaling to

improve accuracy [1]

• ABC-Net improved the binary CNN style 2D convolu-

tion approximation of real CNN style 2D convolution

via a 2 level parallel structure [11]; different branches

in the parallel structure used different biases before the

sign function to create different binarizations

• Bi-Real Net, consistent with the data processing in-

equality, introduced real identity connections around

binary CNN style 2D convolution to minimize infor-

mation loss [13]; most all high performing binary

CNNs have since adopted this strategy as it provides

a good tradeoff of accuracy vs complexity for a range

of cases

• Group-Net considered different serial and parallel

combinations of binary CNN style 2D convolution

with identity connections [25]; philosophically, similar

to how ABC-Net generalized XNOR-Net, Group-Net

generalized Bi-Real Net

• MeliusNet focused on building a better building block

via a DenseNet style addition of channels followed by

an improvement of those new channels [2]; however,

both the network stem and down sampling stages re-

mained real valued

• ReActNet modified the MobileNetV1 structure via

making the depth wise separable convolution opera-

tions binary 3x3 CNN style 2D convolution (vs depth



wise 2D convolution) followed by binary 1x1 CNN

style 2D convolution [12]; it also introduced trainable

biases before the sign and activation function to allow

for learnable binarizations and included a binary down

sampling stage with channel replication; however, the

network stem remained real valued

2.6. Binary CNN training

The not so hidden challenge of working with binary

CNNs is training. Specifically, almost everywhere there’s

no gradient propagation through sign functions during auto-

matic differentiation with reverse mode accumulation. Ap-

proaches for addressing this include using real teacher net-

works and feature map and / or output distribution match-

ing, different functions in the forward and backward paths

and / or gradually converging from a real network to a bi-

nary network.

3. Theory

A 3 layer real neural network can approximate arbitrar-

ily closely any continuous function on a compact subset of

R
K [5]. The universal function approximator property of

neural networks underlies their successful application to a

wide variety of problems. As such, it’s useful to understand

if binary neural networks maintain this same property.

3.1. Proof outline

The following is the outline of a constructive proof, rem-

iniscent of the Reimann integral, showing that a 3 layer bi-

nary neural network with a particular building block struc-

ture maintains the universal function approximator prop-

erty. The proof outline will initially consider the simpler

case of showing that a binary neural network can approx-

imate arbitrarily closely a compact function that maps a

scalar input x ∈ [0, 1] to a continuous scalar output 0 ≤
f(x) < ∞, then remove restrictions.

Consider the 3 layer binary neural network structure

shown in Figure 1 with input x swept from 0 to 1.

Layer 1 uses 2(1/d−1) input branches to create 1/d−1
branches, each generating a rectangle of height 1 and width

d centered at d, 2d, . . . , 1−d, respectively. For convenience

this omits a 1/2 width rectangle at the beginning and end of

the unit interval which can be added if more formality is

desired.

Layer 2 expands the branch centered at d to

round(Qf(d)) sub branches, the branch centered at 2d to

round(Qf(2d)) sub branches, . . ., and the branch centered

at 1−d to round(Qf(1−d)) sub branches. Each sub branch

generates a rectangle of height 1 and width d centered at the

same location as the branch.

Layer 3 combines all of the sub branches of all of the

branches and scales the result to generate the final output.

Let d → 0 to approximate all x ∈ [0, 1] and Q → ∞ to

approximate the corresponding value f(x) to complete the

initial portion of the proof outline.

Restrictions in the initial proof outline can be removed

as follows:

• For x ∈ [xmin, xmax] where xmin and xmax are finite,

choose branch locations xmin+d, xmin+2d, . . . , xmax−
d to uniformly tile the full interval

• For f(x) with a countable number of discontinuities,

center an additional branch at each discontinuity to

handle the jump there exactly

• For fmin ≤ f(x) ≤ fmax where xmin and xmax are finite

and each can be negative, 0, or positive, approximate

the non negative function f(x) + fmin then include a

bias term at the end from an additional layer as −fmin

• For a vector input x ∈ R
K replicate layer 1 for

each element of the vector, in layer 2 generate

round(Q(f(d))) K dimensional rectangles for each

combination of layer 1 branches and add the K dimen-

sional rectangles together in layer 3

• For a vector output f(x) ∈ R
M replicate layer 3 for

each of the M outputs

This completes the outline of the constructive proof that

the 3 layer binary neural network structure in Figure 1 is a

universal function approximator.

3.2. Implications

In the corresponding real valued constructive proof, d →
0 implies more branches. From a practical perspective,

more branches are needed in regions of higher function vari-

ation and fewer branches are needed in regions of less func-

tion variation. This matches what would be expected by

traditional sampling theory.

The binary valued constructive proof adds the additional

constraint Q → ∞, which implies even more branches are

needed in the binary neural network case (being somewhat

loose with the concept of infinity). From a practical per-

spective, to maintain a given accuracy in the function ap-

proximation more sub branches are needed for functions

with large range, fewer sub branches are needed by func-

tions with small range. This matches what would be ex-

pected by traditional quantization theory, and also implies

that a binary neural network will tend to have more chan-

nels than a similar accuracy real valued neural network.

4. Design

This section describes the design of an ImageNet image

classification CNN where all operations that can be lowered

to matrix matrix multiplication are fully binary.
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Figure 1. A 3 layer binary neural network that is a universal function approximator.

4.1. Network structure

The ImageNet image classification CNN used in this pa-

per is shown in Figure 2. While it’s a relatively typical pa-

rameterized structure with 5 levels of down sampling and

multiple repeated building blocks, there are a few features

to note.

In the data loader a 4th intensity channel is created from

the initial 3 RGB channels. Additionally, places in the net-

work that increase the number of channels by an integer

factor were configured to always choose a power of 2 in-

teger factor. The result is that the number of channels for

each level is a power of 2, a convenient value for hardware

implementations to work with. Note that this is not a re-

quirement.

The stem uses the same building block structure as levels

1 - 5. While this not unheard of, it’s a bit less common than

a more traditional option like using real 3x3 CNN style 2D

convolution. However, it was done to keep all CNN style

2D convolutions in the network fully binary.

4.2. Building block

The building block includes an identity path and a resid-

ual path composed of 1x1, 3x3 and 1x1 convolution mod-

ules.

4.2.1 Convolution module

The 1x1 convolution modules include their own identity

path and residual path with learnable bias and sign for the

binarization of activations, fully binary 1x1 CNN style 2D

convolution for mixing across channels, batch norm for per

channel scale and bias, convolution module identity path

addition and PReLU. This follows a Bi-Real Net style ap-

proach to the identity connection and a ReActNet style ap-

proach to the learnable bias before sign.

Binary 1x1 CNN style 2D convolution implies that each

input feature is equally present (+1) or not present (-1) and

equally positively (+1) or negatively weighted (-1). Larger

numbers of input and output channels allow more nuance in

the values produced by this operation.

The 3x3 convolution module includes real 3x3 depth

wise 2D convolution (a vector op) for spatial mixing, batch

norm and PReLU. It’s reasonable to ask: Why not use bi-

nary 3x3 CNN style 2D convolution for this module? Us-

ing a binary filter for spatial mixing to create a new center

value in a 3x3 region as a +-1 combination of the center and

neighboring values is not consistent with the typical shape

of real filters. However, successful binary CNNs have made

use of binary 3x3 CNN style 2D convolution. But for the

above reason, it was not used here. On the upside, this op-

eration reduces to a vector op and the number of parameters

and MACs is low, so it is in keeping with the theme of im-

plementation complexity reduction.

Inside the binary convolution modules it’s possible to use

P parallel residual branches, each with a different learned

bias, binary weights and batch norm parameters as shown in

Figure 4. This is in the same spirit as ABC-Net and Group-

Net.

This parallel approach points to a possible alternative for

binary FxF CNN style 2D convolution. Using the parallel

building block structure in Figure 4, let there be P = F 2

parallel branches, with an appropriate feature map shift and

0 pad applied before the bias operation of each. This ef-

fectively turns binary FxF CNN style 2D convolution into

F 2 binary 1x1 CNN style 2D convolution operations, where

each parallel branch benefits from a real scale in the batch

norm before combination to enable learning filter weight-

ings closer to what would be found in a real network.



4.2.2 Channel increase

Because of the identity connections around binary CNN

style 2D convolution and the fully grouped nature of the

real 3x3 depth wise 2D convolution, it’s not convenient to

increase the number of channels with the convolution oper-

ations in the building block. Instead, when it’s necessary to

modify the number of channels, channels are simply repli-

cated by an integer factor R > 1 at the start of the building

block. In practice, no extra memory is needed for this as the

replication can be done by bookkeeping.

Theoretically, R could be chosen as a non integer value

larger than 1 such that not all the channels are replicated.

Likewise, R could be chose as a non integer value less than

1 with the behavior defined as averaging in the channel di-

mension. Channel replication was also used as part of the
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Figure 2. An ImageNet network structure based on a common

building block. Each of the 5 levels has 1 common building block

configured for channel replication and down sampling followed

by Lx - 1 common building blocks with no channel replication or

down sampling, where Lx is the total number of common building

blocks in level x. The stem uses the common building block con-

figured for channel replication only (no down sampling), the selec-

tion of the replication factor here determines the number of chan-

nels for the remainder of the network. The decoder uses global

average pooling to spatially aggregate features and abstract away

the input image size followed by a fully connected layer to classify.
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Figure 3. The stem and level 1 - 5 building block structure ca-

pable of integer factor channel increase and integer spatial down

sampling; note that all CNN style 2D convolution operations that

can be lowered to matrix matrix multiplication are fully binary,

the depth wise 3x3 2D convolution that can be lowered to vector

matrix multiplication is real.
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Figure 4. Convolution module (top) and alternative convolution

module with P parallel binary convolution residuals (bottom).

ReActNet channel increase strategy and is in line with the

universal function approximation proof outline.

4.2.3 Spatial down sampling

When it’s necessary to spatially down sample by a fac-

tor of S, in a spirit similar to common modifications to



ResNet [9], the identity path is replaced by SxS/S average

pooling for spatial mixing followed by a binary 1x1 convo-

lution module for channel mixing. Likewise, in the residual

path, 3x3/S depth wise convolution is used in the real 3x3

convolution module for spatial mixing (followed by chan-

nel mixing in the subsequent binary convolution module).

A positive aspect of this strategy is that it allows the iden-

tity connections inside the binary 1x1 convolution modules

to remain identity connections.

4.2.4 Connections to real networks

Connecting with recent real network building block de-

signs, if the binary 1x1 convolution modules were re-

placed by real 1x1 convolution modules and larger group

sizes were used in the real 3x3 convolution module, then

this structure would effectively be a RegNetX building

block [15]. Many other network building blocks also use

an identity path with variants of a 1-3-1 residual structure

initially made famous by ResNet [8].

5. Training

Both 1 step (direct training of binary weights) and 2 step

(step 1 training of real weights followed by step 2 bina-

rization and training of binary weights) methods of training

were tried. 2 step training provided a slightly higher accu-

racy, though it’s not clear if this is a fundamental to real

pre training or just a consequence of the specific hyper pa-

rameters used in the training. Both 1 and 2 step methods

borrowed from strategies used by [12, 13, 14], the 2 step

method is described below.

Note that none of the recent training methods commonly

employed to boost ImageNet image classification accuracy

for real networks were used [4, 9, 19, 20, 22, 23, 24]. Some

combination of these would likely improve the reported ac-

curacy results.

5.1. Step 1: Binary activations real weights

In step 1 of training, the input to binary convolution was

binary but the weights were allowed to take on real values

(they will be binarized in step 2). Step 1 hyper parameters

included:

• Batch size 128 (4 GPUs, 32 images per GPU)

• Random resized crops to 3 x 224 x 224, random hori-

zontal flip and 0 mean unit variance normalization

• Distributional loss with output pmf targets provided by

ResNet34

• Adam optimizer

• 5 epochs of linear warm up followed by 20 epochs of

half wave cosine decay

• A max learning rate of 0.0005, initial learning rate

scale of 0.01x and final learning rate scale of 0.001x

ConvSign

Sign

y

∂e/∂y

x z

∂e/∂z∂e/∂x

g ∂e/∂g

h ∂e/∂h

Figure 5. Zooming in on the (binary) convolution operation to look

at the forward flow of weights and activations (red) along with

the backward flow of associated error gradients (blue); as both y

and h are binary, the convolution operator is a binary convolution

operator.

• L2 weight decay applied to the convolution parameters

with a weighting of 1e-5

Step 1 was used to get weights in the ballpark, not to

maximize accuracy of binary activations and real weights

(only 5+20 = 25 epochs were used). An alternative weight

decay that may degrade the accuracy of step 1 but provide a

better starting point for step 2 is described in [6].

5.2. Step 2: Binary activations binary weights

Weights were transferred from the last checkpoint in step

1 to initialize step 2. The real weights for the binary con-

volution module were used for gradient accumulation in the

backward pass, but passed through a sign function to enable

fully binary convolution in the forward pass.

Step 2 used the same hyper parameters as step 1 with the

following exceptions:

• 5 epochs of linear warm up followed by 100 epochs of

half wave cosine decay

• No L2 weight decay

Typically, weight decay is needed during real network

training to improve generalization and achieve high accura-

cies on ImageNet. Binarization has a similar regularizing

effect and prevents any of the CNN style 2D convolution

weights from becoming large. Clipping of the associated

real accumulated weights was not used.

5.3. The sign function

Figure 5 zooms in on the binary convolution operation

showing the sign operation in the data path and implicit sign



operation applied to real weights to create binary weights.

A key for training binary CNNs is propagating the sensi-

tivity of the error with respect to feature maps and weights

through the sign operation as the derivative of the output

of the sign operation with respect to the input is 0 almost

everywhere.

The training strategy used here followed the strategy

in [12] with the backward function decoupled from the for-

ward function through the sign operator. The backward

function used to propagate the sensitivity of the error with

respect to the activations is

∂y/∂x = −2|x|+ 2, x ∈ [−1, 1]

= 0, otherwise
(1)

which corresponds to (unused) piecewise forward function:

y = −1, x < −1

= x2 + 2x, −1 ≤ x < 0

= −x2 + 2x, 0 ≤ x < 1

= 1, 1 ≤ x

(2)

The backward function used to propagate the sensitivity of

the error with respect to the weights is:

∂y/∂x = 1, x ∈ [−1, 1]

= 0, otherwise
(3)

which corresponds to (unused) forward forward function:

y = −1, x < −1

= x, −1 ≤ x < 1

= 1, 1 ≤ x

(4)

A complementary method of pushing error information

deeper into the network with a teacher network (e.g., step 1

as a teacher for step 2 or a different variant of the network)

and forming additional errors via intermediate feature map

matching was not used [7].

6. Results

6.1. Accuracy

For the network defined in Section 4 configured as shown

in Table 1 and using the 2 step training defined in Section

5, the top 1 accuracy on the 2012 ImageNet validation set

after 5 + 20 epochs in step 1 was 66.63% and after 5 + 100

epochs in step 2 was 68.46%. After an additional cycle of 5

+ 100 epochs in step 2 with the max learning rate decreased

to 0.00025 the top 1 accuracy improved to 68.96%. Train-

ing hyper parameter optimization could likely improve this

further.

For the same network with P = 2 parallel branches in

the convolution module, using the same 2 step 2 cycle train-

ing procedure, top 1 accuracy on the 2012 ImageNet vali-

dation set improved to 71.24% after the final step.

Blocks S R RC H/S W/S

Stem replicate 1 1 8 32 224 224

Stem normal 0 1 1 32 224 224

Level 1 down 1 2 2 64 112 112

Level 1 normal 0 1 1 64 112 112

Level 2 down 1 2 2 128 56 56

Level 2 normal 0 1 1 128 56 56

Level 3 down 1 2 2 256 28 28

Level 3 normal 1 1 1 256 28 28

Level 4 down 1 2 2 512 14 14

Level 4 normal 5 1 1 512 14 14

Level 5 down 1 2 2 1024 7 7

Level 5 normal 1 1 1 1024 7 7

Global avg pool 1 1024 1 1

Fully connected 1 1000 1 1

Table 1. Network design configuration. The feature map size at

the level output is RC x H/S x W/S.

6.2. Operations

Per the discussion in Section 2, it’s not fully appropriate

to convert binary operations to equivalent real operations by

dividing by a single factor. The approach taken in this sub

section is to simply list the specific operations, which while

slightly more cumbersome, is more appropriate for evaluat-

ing the complexity on a given implementation (though still

not fully acceptable).

The number of parameters and number of operations is

listed in Table 2 for the network specified in Table 1. Note

that ∼ 90% of the real parameters are in the class decoder

fully connected layer. Reducing the memory requirements

in this layer, potentially via binarization, is a direction for

future work.

Item P = 1 P = 2
Binary parameters 9.04 e6 18.09 e6

Binary MACs 2.41 e9 4.83 e9

Real parameters 1.15 e6 1.19 e6

Real MACs 0.04 e9 0.04 e9

Real adds 62.67 e6 109.64 e6

Real mults 19.57 e6 35.22 e6

Sign 15.65 e6 31.31 e6

PReLU 16.41 e6 16.41 e6

Table 2. Parameter and operation counts in the proposed network.

In Table 3 the real MACs, real adds, real mults, sign and

PReLU are aggregated into real ops / 2 (to match the units



of MACs) with powers chosen to better enable binary to

real comparisons. As the implementation complexity of bi-

nary CNN style 2D convolution is small, the implementa-

tion complexity of the remaining operations and associated

data movement plays a larger role in the ultimate system

performance.

Item P = 1 P = 2
Binary parameters 9.04 e6 18.09 e6

Binary MACs 2.41 e9 4.83 e9

Real parameters 1.15 e6 1.19 e6

Real OPs/2 0.09 e9 0.13 e9

Table 3. Parameters and aggregated number of operations.

6.3. Comparisons

Table 4 includes comparisons to 2 recent top perform-

ing networks which use mostly binary CNN style 2D con-

volution: MeliusNet and ReActNet. The comparisons are

grouped to an ImageNet 2012 top 1 validation accuracy of

69.2% ± 0.2% and 71.2% ± 0.2% where Mb is million bi-

nary parameters, BGM is binary GMACs, MB is million

real parameters and RGO is real GOPs/2. For reference, the

top 1 accuracy of MobileNetV1 is 70.6%, so the accuracy of

these binary networks are in the ballpark of a real network

optimized for smaller devices.

Network Acc% Mb BGM MB RGO

MeliusNet42 69.2 9.69 0.17

ReActNetA 69.4 28.25 4.82 1.08 0.03

BCNN P=1 69.0 9.04 2.41 1.15 0.09

MeliusNet59 71.0 18.3– 0.25

ReActNetC 71.4 27.55 4.69 1.77 0.16

BCNN P=2 71.2 18.09 4.83 1.19 0.13

Table 4. Comparisons to other binary networks.

Combining real operations with binary operations via

the often used but as previously mentioned lacking rule of

thumb normalized OPs = binary OPs / 64 + real OPs and

combining real parameters (assuming int8 format) with bi-

nary parameters allows for the normalized results in Table 5.

Network Acc% Param MB Norm MOPs/2

MeliusNet42 69.2 10.1– 325.—

ReActNetA 69.4 4.61 108.40

BCNN P=1 69.0 2.28 131.28

MeliusNet59 71.0 17.4– 532.—

ReActNetC 71.4 5.22 232.51

BCNN P=2 71.2 3.45 208.15

Table 5. Normalized comparisons to other binary networks.

Around 69.2% accuracy, BCNN P=1 requires only ∼
50% of the parameter storage but ∼ 20% more normal-

ized operations than ReActNetA. Around 71.2% accuracy,

BCNN P=2 requires only ∼ 66% of the parameter storage

and ∼ 10% less operations than ReActNetC. These results

were obtained with no efficient frontier of accuracy vs com-

plexity optimization for BCNN.

Note that MeliusNet and ReActNet use real non fully

grouped convolutions for the stem and / or transitions. Do-

ing the same for BCNN could likely be used to improve

accuracy, but our goal was binarizing all matrix matrix mul-

tiplication operations.

For reference, other well known networks with various

parts binarized (and associated top 1 accuracy on the 2012

ImageNet validation set) include BNNs (42.2%), XNOR-

Net (51.2%), Bi-RealNet-152 (64.5%) and Real-To-Bin Net

(65.4%). These networks were omitted from the complexity

comparison, however, as they are at lower accuracies.

7. Conclusion

This paper presented a CNN designed for image classi-

fication where all operations that can be lowered to matrix

matrix multiplication are fully binary. This was enabled via

a common building block design motivated by a construc-

tive universal function approximator proof. A realization of

the proposed network achieved 71.24% top 1 accuracy on

the 2012 ImageNet validation data set.

Logical extensions and next steps include:

• Attempting to improve training via feature map match-

ing with a teacher network, L2 weight regularization

during step 1 to {−1, 1}, alternative real to binary

transformations and improved hyper parameter tuning

• Finding an efficient frontier of accuracy vs complexity

for different network configuration parameters

• Experimenting with binary FxF CNN style 2D convo-

lution using the parallel branch structure and P = F 2

binary 1x1 CNN style 2D convolution operations with

additional feature maps shift and 0 pad operations be-

fore the bias

• Designing an inverted residual building block using the

same strategy to reduce real feature map memory in the

identity path

• Using the binary CNN feature encoder in more com-

plex vision problems with binarized decoders
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