
On the Application of Binary Neural Networks in Oblivious Inference

Mohammad Samragh*

UC San Diego

msamragh@ucsd.edu

Siam Hussain∗

UC San Diego

s2hussai@ucsd.edu

Xinqiao Zhang

UC San Diego, San Diego State University

x5zhang@ucsd.edu

Ke Huang

San Diego State University

khuang@sdsu.edu

Farinaz Koushanfar

UC San Diego

farinaz@ucsd.edu

Abstract

This paper explores the application of Binary Neural

Networks (BNN) in oblivious inference, a service provided

by a server to mistrusting clients. Using this service, a

client can obtain the inference result on her data by a

trained model held by the server without disclosing the data

or leaning the model parameters. We make two contri-

butions to this field. First, we devise light-weight crypto-

graphic protocols designed specifically to exploit the unique

characteristics of BNNs. Second, we present dynamic ex-

ploration of the runtime-accuracy tradeoff of BNNs in a

single-shot training process. While previous works trained

multiple BNNs with different computational complexities

(which is cumbersome due to the slow convergence of

BNNs), we train a single BNN that can perform inference

under different computational budgets. Compared to Crypt-

Flow2, the state-of-the-art in oblivious inference of non-

binary DNNs, our approach reaches 2× faster inference at

the same accuracy. Compared to XONN, the state-of-the-art

in oblivious inference of binary networks, we achieve 2× to

11× faster inference while obtaining higher accuracy.

1. Introduction

There is an increasing surge in cloud-based inference

services that employ deep learning models. In this setting,

the server trains and holds the DNN model and clients query

the model to perform inference on their data. One major

shortcoming of such service is the leakage of clients’ private

data to the server, which can hinder commercialization in

certain applications. For instance, in medical diagnosis [1],

clients would need to expose their “plaintext” health infor-

mation to the server, which violates patient privacy regula-

tions such as HIPAA [2].

One attractive option for ensuring clients’ content pri-

vacy is the use of modern cryptographic protocols as they

provide provable security guarantees [3–13]. Let f(θ, x)

*indicates equal contribution

be the inference result on client’s input x using server’s pa-

rameters θ. By executing cryptographically-secure opera-

tions, client and server can jointly compute f(θ, x) without

revealing x to the server or θ to the client. We refer to this

process as oblivious inference in the remainder of the paper.

Unlike plaintext inference, oblivious inference protects the

privacy of both parties. The challenge, however, is the ex-

cessive computation and/or communication overhead asso-

ciated with privacy-preserving computation. For example,

the contemporary state-of-the-art for performing oblivious

inference on a single CIFAR-10 image requires exchange

of ∼ 3.4 GB of data and takes ∼ 10 seconds [14].

Early research on oblivious inference mostly focused

on developing protocols for inference of a given DNN

model, without making major modifications to the model

itself [3–13]. Recently, a body of work has explored mod-

ifying the DNN architecture such that the resulting model

is more amenable to secure computation [14–17]. Other

potential directions for enhancing oblivious inference could

include pruning [18], tensor decomposition [19], quantiza-

tion [20], and Binary Neural Networks (BNNs) [21]. In

this work, we study BNN as a candidate for fast and scal-

able oblivious inference. We show that a BNN has sev-

eral unique characteristics that allow translating its compu-

tations to simple and efficient cryptographic protocols.

The benefits of employing BNNs for oblivious inference

were first noted by XONN [14]. Despite achieving signif-

icant runtime improvement compared to non-binary DNN

inference, there are opportunities provided by BNNs that

have not been leveraged by XONN. Part of the inefficiency

of XONN is due to the usage of a single secure computa-

tion protocol as a blackbox for all neural network layers af-

ter the input layer. In this work, we introduce a new hybrid

approach where the underlying secure computation proto-

col is customized to each layer, such that the total execu-

tion cost for oblivious inference on all layers is minimized.

We design a composite custom secure execution protocol,

specifically optimized for BNN operations, using standard



security primitives. Our protocol significantly improves the

efficiency of XONN as we show in our experiments.

Runtime

A
cc

ur
ac

y 
(%

)

70

75

80

85

90

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ours XONN CryptFlow2 Delphi SafeNet AutoPrivacy

Figure 1: Accuracy and runtime of our oblivious BNN in-

ference, compared with contemporary research that have

the same server-client scenario setting as us (two-party,

honest but curious). Among these, XONN [14] evaluates

BNNs, whereas Cryptflow2 [12], Delphi [17], SafeNet [15],

and AutoPrivacy [13] evaluate non-binary models.

One standing challenge in oblivious inference is find-

ing architectures that are both accurate and amenable to

secure computation. Since BNNs suffer from long train-

ing time and poor convergence, searching for such architec-

tures could be quite inefficient. We address the search inef-

ficiency challenge by training a single BNN that can operate

under different computational budgets. Our adaptive BNN

offers a tradeoff between accuracy and inference time, with-

out requiring to train separate models. Figure 1 presents the

tradeoff achieved by our flexible BNN on the 7-layer VGG

network trained on CIFAR-10. With the combined power of

our custom oblivious inference protocols and adaptive BNN

training schemes, our method outperforms prior art both in

terms of accuracy and runtime. Our solution is ∼ 2× faster

than Cryptflow2 [12], the state-of-the-art non-binary DNN

inference framework, and 2× to 11× faster than XONN, the

previous oblivious BNN inference framework.

2. Scenario and Threat Model

Figure 2 presents the scenario in oblivious inference.

The neural network architecture f is known by both server

and client. The server holds the set of trained parameters,

i.e., θ = {θ1, . . . , θL}, and the client holds the input query

to the neural network, i.e., x. The two parties engage in a

secure function evaluation protocol, where the client learns

the inference result y = f(θ, x). Similar to prior work, we

consider the honest-but-curious scenario [10–17]. In this

threat model, the two parties follow the protocol that they

agree upon to compute the output, yet they may try to learn

about the other party’s data as much as they can. As such,

the protocol should guarantee the following requirements:

• x or f(θ, x) are not revealed to the server.

• θ is not revealed to the client.

• Client and server do not learn intermediate activations.

Figure 2: The server and client use a secure function eval-

uation (SFE) protocol to perform oblivious inference. At

the end of the protocol, client learns y = f(θ, x) without

learning server’s parameters θ or revealing x to server.

3. Background

This section provides a high-level outline of the nec-

essary terminologies. Following the convention in secure

computation literature, we refer to server and client as Al-

ice and Bob, respectively.

Secure Function Evaluation Protocol. During oblivious

inference, Alice and Bob engage in a Secure Function Eval-

uation (SFE) protocol, which is essentially a set of rules

specifying the messages communicated between them. By

following these rules, they jointly compute the output of a

function that takes the inputs from both of them without

disclosing any information about Alice’s data to Bob and

vice versa. Depending on protocol agreements, the result of

the computation can be exposed to both parties, only one of

them, or neither of them.

Additive Secret Sharing (AS) is a method for distribut-

ing a secret x between Alice and Bob such that Alice holds

JxKA = x+ r and Bob holds JxKB = −r, where r is a ran-

dom value. Individually, both JxKA and JxKB are random

values, hence, Alice and Bob cannot independently deci-

pher the original message x. Only by combining JxKA and

JxKB can one recover the actual secret as x = JxKA+ JxKB .

There exists standard SFE protocols to perform addition and

multiplication on secret-shared data such that the result is

also shared between the two parties. We employ these pro-

tocols in oblivious inference to ensure that neither the input

nor the output of a layer is revealed to the involved parties.

We refer curious readers to [22] for more details.

Oblivious Transfer (OT) is a protocol between two par-

ties – a sender (Bob) who has two messages (µ0, µ1), and

a receiver (Alice) who has a selection bit i ∈ {0, 1} [23].

Through OT, Alice obtains the intended message µi, with-

out revealing the selection bit i to Bob. Alice does not learn

the other message µ1−i. OT requires public key cryptogra-

phy, which is costly in general. In the following, we intro-

duce more efficient methods for OT computation.

OT extension enables extending a constant number of ‘base

OTs’ to a large number of OTs through cheaper symmet-

ric key cryptography [24]. The first step in OT-extension

is called Random OT (ROT) [25]. In ROT, Alice pro-

vides the selection bit i and Bob does not provide any in-

put. After ROT execution, Bob receives two random 128-



Figure 3: Illustration of plaintext inference (top) and our proposed equivalent oblivious inference (bottom). We denote linear

layers by CONV and FC, Batch-Normalization by BN, Binary Activation by BA, and Max-Pooling by MP. Here, Xi, and Y i,

and θi are the input, output, and weight/bias parameters of the linear layer, respectively. ηi denotes BN parameters, and Ŷ is

the output of binary activation.

bit keys (k0, k1) and Alice receives ki. The final step

of OT-extension is as follows: Bob computes {v0, v1} =
{µ0 ⊕H(k0), µ1 ⊕H(k1)}, where the ⊕ operator denotes

bit-wise XOR and H(k) is a cryptographically-secure ran-

dom number generator [26] with k as the seed. Bob trans-

mits {v0, v1} to Alice, who computes µi = vi ⊕H(ki).

In Section 4.1, we design a protocol for oblivious matrix

multiplication, which enables oblivious evaluation of con-

volution and fully-connected layers. We build our protocol

by only using OT and AS which we outlined above. How-

ever, AS and OT are not efficient for evaluating non-linear

activations and Max-pooling.

Garbled Circuit (GC) is an SFE protocol that can be used

for evaluation of an arbitrary function (linear or non-linear).

The downside of GC is its heavy communication overhead.

Therefore, we limit its usage to nonlinear operations. We

refer curious readers to [27–29] for more details about GC.

4. Cryptographically Secure BNN Inference

BNNs were originally introduced to minimize memory

footprint and computation overhead of plaintext inference.

In this section, we provide insights on why BNNs are also

useful for very efficient and fast oblivious inference.

The first favorable property of BNNs is enforcing the

weights to +1 or -1. With this restriction, multiplying a fea-

ture x by a weight w is equivalent to computing either +x

or −x. This simple property becomes useful when com-

puting vector dot products of the form
∑N

i=1 wixi, which

can be computed via N conditional additions/subtractions.

We show in Section 4.1 that conditional summations can be

computed using OT and AS, both of which are known to be

very efficient and light-weight cryptographic tools.

In oblivious inference, nonlinear operations are evalu-

ated through heavy cryptographic primitives such as GC, re-

sulting in large runtime and communication overheads. The

large communication cost of GC is directly related to the

bit-widths of GC inputs. The second advantage of BNNs

is their 1-bit hidden layer feature representation, which sig-

nificantly reduces the GC evaluation cost when compared to

non-binary features. In Section 4.2, we expand on low-bit

nonlinear operations and their efficient GC evaluation.

We present the overall flow for oblivious BNN inference

in Figure 3. The inputs and outputs of all layers are in AS

format, e.g., server and client have JY iKA and JY iKB rather

than Y i. To obliviously evaluate linear layers (CONV or

FC), we propose a novel custom protocol for binary matrix

multiplication that directly works on AS data. We merge

batch normalization (BN), binary activation (BA), and max-

pooling (MP) into a single nonlinear function f(·). To se-

curely evaluate f(JY iKA, JY
iKB), three consecutive steps

should be taken:

1. Securely translating the input from AS to GC. This

step prepares the data to be processed by GC.

2. Computing the nonlinear layer through GC protocol.

3. Securely translating the result of the GC protocol to

AS. This step prepares the data to be processed in the

following linear layer.

Using this hybrid approach, we achieve a significantly faster

oblivious inference compared to the state-of-the-art [14].

4.1. Linear Layers

Fully-connected and convolutional layers require com-

puting Y = WX , with weight matrix W and input X . In

secure matrix multiplication, the input is secret shared be-

tween the server and the client, i.e., X = JXKA + JXKB .

Bob (the client) has JXKB whereas Alice (the server) has

the weight W and JXKA
1. The matrix multiplication is

computed as follows:

W (JXKA + JXKB) = W JXKA +W JXKB (1)

Alice can compute W JXKA locally and only W JXKB needs

secure evaluation. After evaluating Y = WX ,

• Alice gets JY KA but does not learn JXKB or JY KB .

1 At the first layer, only client has the input share, hence JXKA = 0



Algorithm 1: One-time setup for matrix-mult.

Input: from Alice W ∈ {−1,+1}M×N

Output: to Alice KA ∈ Z
M×N

Output: to Bob {K0
B ∈ Z

M×N ,K1
B ∈ Z

M×N}
Remark:

KA[m,n] =

{
K0

B [m,n] if W [m,n] = −1

K1
B [m,n] if W [m,n] = 1

1 for m ∈ [M ] do

2 for n ∈ [N ] do

3 Alice and Bob engage in ROT where:

• Alice inputs i = W [m,n]+1
2

4 • Alice receives KA[m,n]
5 • Bob receives {K0

B [m,n],K1
B [m,n]}

• Bob gets JY KB but does not learn W or JY KA.

The above computation is performed in in two phases:

(1) the setup phase, shown in Algorithm 2, where Alice and

Bob perform ROTs. Note that the setup phase only depends

on the weight matrix which remains unchanged over a large

number of inferences. Therefore this phase is performed

only once and the cost is amortized among all future obliv-

ious inferences. (2) the inference phase, shown in Algo-

rithm 2, which is performed separately for each inference.

Initially, Alice sets her output share to W JXKA (line 1) and

Bob sets his share to zero (line 2). Next, they obliviously

evaluate W JXKB one row at a time in the outer loop of Al-

gorithm 2 (lines 3-14). Specifically, the m-th iteration of

the outer loop evaluates the m-th row of the output as:

yn = JynKA + JynKB =

N∑

n=1

W [m,n]X[n, :]

The inner loop of Algorithm 2 (lines 6-12) computes the

above summation by running OT for n ∈ [N ]. After each

OT invocation, Alice receives either µ0 = r − JX[n, :]KB
or µ1 = r + JX[n, :]KB depending on the selection bit. It

is easy to see that µi (known by Alice) and −r (known by

Bob) are the arithmetic shares of W [m,n]JX[n, :]KB .

4.2. Nonlinear Layers

In this section, we outline and leverage characteristics

of BNNs for oblivious inference of nonlinear layers. The

cascade of batch normalization (BN) and binary activation

(BA) takes input feature y and returns ŷ = sign(αy+β) =
sign(y + β

α
), where α and β are the BN parameters. Since

both α and β belong to the server, the parameter η = β
α

can be computed offline. The GC evaluation of BN and BA

only entails adding η to y and computing the sign of the re-

sult, which can be evaluated by relatively low GC cost [30].

Moreover, binary Max-Pooling can be efficiently evaluated

Algorithm 2: Secure binary matrix-mult.

Input: from Alice W ∈ {−1,+1}M×N

Input: from Alice KA ∈ Z
M×N

Input: from Alice JXKA ∈ Z
N×L

Input: from Bob K0
B ∈ Z

M×N

Input: from Bob K1
B ∈ Z

M×N

Input: from Bob JXKB ∈ Z
N×L

Output: to Alice JY KA ∈ Z
M×L

Output: to Bob JY KB ∈ Z
M×L

Remark: j is the number of inferences so far

Remark: JY KA + JY KB = W (JXKA + JXKB)

1 Alice locally sets JY KA = W JXKA ∈ Z
M×L

2 Bob locally sets JY KA = 0 ∈ Z
M×L

3 for m ∈ [M ] do

4 Alice locally sets JyKA = JY (m, :)KA
5 Bob locally sets JyKB = JY (m, :)KB
6 for n ∈ [N ] do

7 Bob generates random vector r ∈ Z
L

8 Bob computes:{
v0 = H(j,K0

B [m,n])⊕ (r − JX[n, :]KB)

v1 = H(j,K1
B [m,n])⊕ (r + JX[n, :]KB)

9 Bob sends v0, v1 to Alice

10 Knowing i = W [m,n]+1
2 , Alice computes:

µi = H(j,KA[m,n])⊕ vi
11 Alice locally updates JyKA = JyKA + µi

12 Bob locally updates JyKB = JyKB − r

13 Alice locally updates JY (m, :)KA = JyKA
14 Bob locally updates JY (m, :)KB = JyKB

at the bit-level. Taking the maximum in a window of bina-

rized scalars is equivalent to performing logical OR among

the values, which is also efficient in GC [30].

Algorithm 3 presents our efficient protocol for oblivious

evaluation of nonlinear layers in BNNs, which levereges

the insights discussed above. Our protocol receives secret-

shared data JY KA and batch-normalization parameter values

η = β
α

from the server, as well as JY KB from the client. It

then computes Ŷ by applying batch normalization, binary

activation, and max-pooling on Y . Upon completion of the

protocol, server and client receive JŶ KA and JŶ KB , respec-

tively, which they use to evaluate the proceeding layer.

4.3. Communication Cost

Recall that each layer execution is done via SFE pro-

tocol, where the two involved parties cooperatively com-

pute output shares of their own. During the protocol, each

party may perform certain computation, storage, or random

data generation internally on their own device. In privacy-

preserving computation, these type of local processes are

deemed as free operations. In practice, the runtime of the



Algorithm 3: Protocol for secure non-linear opera-

tions.

Input: from Alice JY KA
Input: from Alice η

Input: from Bob JY KB
Output: to Alice JŶ KA
Output: to Bob JŶ KB
Remark: JŶ KA + JŶ KB = f(JY KA + JY KB + η)
Remark: f(·) denotes BN, BA, and optional MP.

1 Alice locally computes JY KA + η

2 Bob locally generates random tensor R

3 Alice and Bob engage in GC where:

4 • Alice inputs JY KA + η

5 • Bob inputs JY KB and R

6 • GC computes F =R+ f(JY KA+η+JY KB)
7 • GC returns F only to Alice

8 Alice sets JŶ KA = F

9 Bob sets JŶ KB = −R

Table 1: Communication Cost for different stages of our

oblivious inference protocols. Here, b is the bitwidth for

arithmetic sharing2. κ is a security parameter, and its stan-

dard value is 128 in recent literature. For max-pooling, w

is the window size. In cases where max-pooling is applied,

the dimensionality is reduced from L to L′ ≈ L
w2 .

Stage Underlying Operation Communication (bits)

Mat-Mult Y ←W (JXKA + JXKB) NbML

BN+BA Ŷ ← sign(JY KA + η + JY KB) 5κbML

MP Ŷ ← maxpoolw×w(Ŷ ) 2(w2 − 1)κML′

SS JŶ KA ← Ŷ +R 3κbML′

process is dominated by the exchange of messages between

the two parties, not the internal computations. In our pro-

tocols (Algorithms 2& 3), message exchanges occur during

OT or GC invocations. We provide the communication cost

of our protocols in Table 1. By plugging in the parame-

ters of this table, one can compute the total execution cost

for oblivious inference of a given BNN architecture. As we

show in our experiments, the communication cost is closely

tied with the runtime of our protocols.

5. Training Adaptive BNN

One of the primary challenges of BNNs is to ensure in-

ference accuracy comparable to the non-binarized model.

Since the introduction of BNNs, there have been tremen-

dous efforts to improve inference accuracy by increasing

the number of channels per convolution layer [31], increas-

ing the number of computation bits [32], or introducing new

2To ensure correctness, b should be set to ⌈Log(N) + 1⌉. In practice,

software libraries only support multipliers of 8. Hence, we set b to the

smallest multiplier of 8 bigger than or equal to ⌈Log(N) + 1⌉.

connections and nonlinear layers [33,34], to name a few. In

this paper, we improve the accuracy of the base BNN by

multiplying its width, e.g., by training an architecture with

twice as many neurons at each layer. In practice, specify-

ing the appropriate width for a BNN architecture requires

exploring models with various widths, which can be quite

time-consuming and cumbersome. Each model with a cer-

tain width should be trained and stored separately. What ag-

gravates the problem is that BNNs suffer from convergence

issues unless the data augmentation and training hyperpa-

rameters are carefully selected [35].

A related field of research is training dynamic

DNNs [36], with the goal of providing flexibility at infer-

ence time. In this realm, we find Slimmable Networks [37]

quite compatible to our problem setting and adapt them to

BNNs. Our goal is to train a single network with certain

maximum width, say 4× the base network, in a way that the

model can still deliver acceptable accuracy at lower widths,

e.g., 1× or 2× the base network. Once this model is trained,

it can operate under any of the selected widths, thus, provid-

ing a tradeoff between accuracy and runtime.

Slimmable BNNs Definition. Let us denote the base BNN

as M1 and represent BNNs with s× higher width at each

layer with Ms. Our goal is to train Ms1 ⊂ Ms2 ⊂ Msn

for a number of widths {si}
n
i=1. The weights of Msi are a

subset of the weights of Msi+1
. Therefore, having Msn we

can configure it to operate as any Msi for i ≤ n.

Training Slimmable BNNs. For a given minibatch X , each

subset model computes the output as Ỹsi = Msi(X), re-

sulting in {Ỹs1 , . . . , Ỹsn} computed by Ms1 . . .Msn . The

ground-truth label Y is then used to compute the cumulative

loss function as
∑n

i=1 L(Y, Ỹsi), where L(·, ·) represents

cross-entropy. The BNN weights are then updated using the

standard gradient approximation rule suggested in [21].

6. Evaluations

Standard Benchmarks. We perform our evaluation on sev-

eral networks trained on the CIFAR-10 dataset, shown in

Table 2. The BC1 network has been evaluated by the ma-

jority oblivious inference papers [10–15, 17, 38, 39]. Other

models are evaluated by XONN [14], the state-of-the-art

for oblivious inference of binary networks. For brevity, we

omit details about layer-wise configurations and refer curi-

ous readers to [14] for further information.

Training. For all benchmarks, we use standard backprop-

agation algorithm proposed by [21] to train our binary net-

works. We split the CIFAR10 dataset to 45k training exam-

ples, 5k validation examples, and 10k testing examples, and

train each architecture for 300 epochs. We use Adam op-

timizer with initial learning rate of 0.001, and the learning

rate is multiplied by 0.1 after 101, 142, 184 and 220 epochs.

The batch size is set to 128 across all CIFAR10 training ex-



width

A
cc

ur
ac

y 
(%

)

70

75

80

85

90

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ours XONN 

(a) BC1

width

A
cc

ur
ac

y 
(%

)

60

70

80

90

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ours XONN 

(b) BC2

width

A
cc

ur
ac

y 
(%

)

70

75

80

85

90

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ours XONN 

(c) BC3

width

A
cc

ur
ac

y 
(%

)

80

85

90

95

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ours XONN 

(d) BC4

Figure 4: CIFAR-10 test accuracy of each architecture at different widths. Our Adaptive BNN trains a single network that

can operate at all widths, whereas previous work (XONN) trains a separate BNN per width.

Table 2: Summary of the trained binary network architec-

tures evaluated on the CIFAR-10 dataset.

Arch. Previous Papers Description

BC1
[10], [38], [39], [11], [14],

[17], [12], [15], [13]
7 CONV, 2 MP, 1 FC

BC2 [14] 9 CONV, 3 MP, 1 FC

BC3 [14] 9 CONV, 3 MP, 1 FC

BC4 [14] 11 CONV, 3 MP, 1 FC

periments. The training data is augmented by zero padding

the images to 40 × 40, and randomly cropping a 32 × 32
window from each zero-padded image.

Evaluation Setup. The training codes are implemented in

Python using the Pytorch Library. We use a single Nvidia

Titan Xp GPU to train all benchmarks. We design a library

for oblivious inference in C++. For implementation of OT

and GC, we use the standard emp-toolkit [40] library. To

run oblivious inference, we translate the model description

and trained parameters from Pytorch to the equivalent de-

scription in our C++ library. For measurements, we run our

oblivious inference code on a computer with 2.2 GHz Intel

Xeon CPU and 16 GB RAM. For runtime measurements,

we consider two real-world network settings, namely LAN

with a throughput of 1.25 GBps, round trip time of 0.25ms,

and WAN with a throughput of 20 MBps, round trip time of

50ms. Reported runtimes do not include the setup time.

6.1. Evaluating Flexible BNNs

Let us start by evaluating our adaptive BNN training. We

train slimmable networks with maximum 4× width of the

base models presented in Table 2. During training, we re-

iterate through subsets of widths {1×, 1.5×, . . . , 4×} and

perform gradient updates as explained in Section 5.

Figure 4 presents the test accuracy of each network at

different widths. We also report the accuracy of indepen-

detly trained networks reported by XONN. The test accu-

racy of a particular base BNN architecture can be improved

by increasing its width. Our adaptive networks obtain better

accuracy than independently trained BNNs at each width.

Once the adaptive network is trained, the server can provide

oblivious inference service to clients, which we discuss in

the following section.

6.2. Oblivious Inference

Recall that the runtime of oblivious inference is domi-

nated by data exchange between client and server. We com-

pare the communication cost and runtime of our custom

protocol with XONN’s GC implementation in Figure 5. The

horizontal axis in each figure presents the network width.

The left and right vertical axes respectively show the run-

time (in seconds) and communication (in Giga-Bytes). The

figure shows that for all the benchmarks, the runtime and

communication of our method are significantly smaller than

XONN. As seen, increasing the network width results in

higher communication and runtime, which is the cost we

width

R
un

tim
e 

(s
)

C
om

m
. (

G
B

)

0

20

40

60

0

5

10

15

20

1.5 2.0 2.5 3.0 3.5 4.0

Ours (s) XONN (s)
Ours (GB) XONN (GB)

(a) BC1

width

R
un

tim
e 

(s
)

C
om

m
. (

G
B

)

0

5

10

15

20

0

2

4

6

1.5 2.0 2.5 3.0 3.5 4.0

Ours (s) XONN (s)
Ours (GB) XONN (GB)

(b) BC2

width

R
un

tim
e 

(s
)

C
om

m
. (

G
B

)

0

20

40

60

0

4

8

12

16

20

1.5 2.0 2.5 3.0 3.5 4.0

Ours (s) XONN (s)
Ours (GB) XONN (GB)

(c) BC3

width

R
un

tim
e 

(s
)

C
om

m
. (

G
B

)

0

50

100

150

200

0
10
20
30
40
50
60
70

1.5 2.0 2.5 3.0 3.5 4.0

Ours (s) XONN (s)
Ours (GB) XONN (GB)

(d) BC4

Figure 5: Runtime and communication cost of each architecture at different widths.



pay for higher inference accuracy.

width

Im
pr

ov
em

en
t (

x)

1
3
5
7
9

11
13

1.0 1.5 2.0 2.5 3.0 3.5 4.0

BC1 BC2 BC3 BC4

(a) Runtime

width
Im

pr
ov

em
en

t (
x)

3
5
7
9

11
13

1.0 1.5 2.0 2.5 3.0 3.5 4.0

BC1 BC2 BC3 BC4

(b) Communication

Figure 6: Improvements in LAN runtime and communica-

tion compared to XONN. Our protocols achieve 2× to 11×
in runtime and 4× to 11× communication reduction.

C
om

m
. (

G
B

)

0.0
0.5
1.0
1.5
2.0
2.5

Linear Nonlinear

XONN Ours

Figure 7: Breakdown of communication cost at linear and

nonlinear layers for BC2 network. Our protocol signifi-

cantly reduces XONN’s GC-based linear layer cost, with

a slight increase in nonlinear layer cost.

Figure 6 summarizes the performance boost achieved by

our protocols, i.e., 2× to 11× lower runtime and 4× to 11×
lower communication compared to XONN. The enhance-

ment is more significant at higher widths, which shows the

scalability for our method. To illustrate the reason behind

our protocol’s better performance, we focus our attention to

the BC2 network at width 2.5, and show the breakdown of

its communication cost in Figure 7. For the XONN proto-

col, most of the cost is from linear operations, which we re-

duce from 2.16GB to 0.15GB. In nonlinear layers, our cost

is slightly more that XONN’s, i.e., 0.25GB versus 0.09GB,

which is due to the extra cost of conversion between AS

and GC. Overall, the total communication is reduced from

2.25GB to 0.4GB compared to XONN.

Comparison to Non-binary Models. Among the architec-

tures presented in Table 2, BC1 has been commonly evalu-

ated in contemporary oblivious inference research. In Fig-

ure 1 we compare the performance of our method to the

best-performing earlier work on this benchmark. The verti-

cal and horizontal axes in the figure represent test accuracy

and runtime, hence, points to the top-left corner are more

desirable. Our method achieves a better accuracy/runtime

tradeoff than all contemporary work while providing flexi-

bility. Compared to Cryptflow2 (the most recent oblivious

inference framework at the time of this paper), our method

achieves ∼ 2× faster inference at the same accuracy.

width

R
un

tim
e 

(s
)

1

5

50

500

1.0 1.5 2.0 2.5 3.0 3.5 4.0

BC1 BC2 BC3 BC4

Figure 8: Inference runtime in WAN setting with ∼
20 MBps bandwidth and ∼ 50 ms network delay.

Evaluation in Wide Area Network (WAN). So far we re-

ported our runtimes for the setting where client and server

are connected via LAN, which is the most common assump-

tion among prior work. We now extend our evaluation to

the WAN setting, where the bandwidth is ∼ 20MBps and

the delay is ∼ 50ms. The aforesaid bandwidth and de-

lay correspond to the connection speed between two AWS

instances located in “US-West-LA-1a” and “US-East-2a”.

Runtimes are reported in Figure 8, showing varying infer-

ence time from 13 to 367 seconds depending on architecture

and width. The results show the great potential of BNNs for

commercial use. Indeed, the delay introduced by oblivious

inference might not be tolerable in many applications that

require real-time response, e.g., Amazon Alexa. However,

there exist many applications where guaranteeing privacy

is much more crucial than runtime, and several seconds or

even minutes of delay can be tolerated. We evaluate two

such applications in the following section.

6.3. Evaluation on Private Tasks

In this section, we study the application of oblivious in-

ference in face authentication and medical data analysis.

Both applications involve sensitive features that the client

wishes to keep secret: revealing medical data is against the

HIPPA [2] regulation, and facial features can be used by ma-

licious hackers to authenticate into the client’s personal ac-

counts. Since we do not have access to real private data, our

best choice is to simulate these tasks using similar datasets

that are publicly available to the research community. We

evaluate our method on FaceScrub [41,42] and Malaria Cell

Infection [43] as representatives for face authentication and

medical diagnosis, respectively.

Figure 9 shows example samples from each dataset. We

were able to download ∼ 57, 000 images from the links

provided by FaceScrub authors, of which we use 45000 for

training, 6000 for validation, and 6000 for testing. The

Malaria dataset is split to ∼ 24800 samples for training,

∼ 1300 for evaluation, and ∼ 1300 for testing. We train

the BC2 architecture at width 3 and 1 on FaceScrub and

Malaria. The accuracy and performance results in the WAN

setting are summarized in Table 3. Our model reaches

70.2.1% inference accuracy on FaceScrub and 94.7% ac-



Figure 9: examples of input samples and labels from each

dataset. For training, we resize Facescrub and Malaria cell

images to 50× 50 and 32× 32, respectively.

curacy on Malaria infection detection. The networks in-

cur runtimes of 1-3 and 10-30 seconds in LAN and WAN

settings, showing great potential for practical deployment.

Note that in a commercial application the network architec-

ture can be selected more carefully and more training data

can be collected to achieve a better accuracy and runtime.

Table 3: Example BNNs trained for face recognition and

medical application. We use the BC2 architecture at width

3 and 1 for FaceScrub and Malaria, respectively. Runtimes

are measured in the WAN setting.

Task Classes Accuracy Comm.
Runetime (s)

LAN WAN

FaceScrub 530 70.8% 404 MBs 2.2 32.2

Malaria 2 94.7% 80.5 MBs 0.7 11.5

7. Related Work

Oblivious inference was shown to be conceptually prac-

tical for small sized neural networks in CryptoNets [44].

Using CryptoNets, an inference on MNIST data would take

∼ 300 seconds, which motivated researcher to invest in

the field. Since then, a plethora of more efficient protocols

for oblivious inference have been proposed [3–13]. These

works mainly focus on optimization of security primitives

for oblivious inference, without making major modifica-

tions to the model.

A second line of research has been focused on iden-

tifying DNN models that are inherently amenable to se-

cure execution protocols. Several DNN modification exam-

ples include replacing ReLU operations with square func-

tion [15, 17, 44], using dimensionality reduction at the in-

put layer [45], and neural architecture search [16]. Concur-

rently, researchers in ML community have devised DNN

optimization techniques such as pruning [18], quantiza-

tion [20], tensor factorization [19], and binary neural net-

works [21]. Among the above, BNNs are especially com-

pelling candidates for oblivious inference, since they trans-

late linear arithmetic to bitwise operations. XONN [14]

was the first work to notice the especial use case of bi-

nary networks for cryptographically secure inference using

GC [28], noting that XNOR operations that frequently ap-

pear in BNNs can be evaluated for free in GC.

Despite improving oblivious inference time, XONN

does not completely utilize the full set of opportunities pro-

vided by BNNs. Instead of using GC as a black box, we

propose a hybrid protocol where GC is only used for non-

linear operations. We propose a novel protocol for matrix

multiplication based on secret sharing and oblivious trans-

fer. By exploiting the characteristics of BNN linear opera-

tions, our protocol achieves up to 11× reduction in runtime

compared to XONN. A remaining challenge with BNNs is

their low inference accuracy, which XONN addresses par-

tially by brute-force training of many BNN models, and

choosing the one with proper accuracy/runtime for deploy-

ment. Alternatively, we show that BNNs can be trained via

the Slimmable Network training technique [37]. We pro-

vide accurate and efficient BNN benchmarks for oblivious

inference, that offer a tradeoff between execution cost and

inference accuracy.

Last but not least, variants of BNNs are being developed

to enhance inference accuracy, opening exciting avenues for

future research. Developing custom protocols to securely

evaluate residual connections [33], residual activation bina-

rization [32], and PReLU nonlinearity [34] are interesting

future directions for oblivious BNN inference. Our current

oblivious inference implementation does not support these

operations. However, the aforementioned techniques can be

integrated and tested in future work, which may or may not

result in improved accuracy-runtime tradeoff.

8. Conclusion

This paper studies the application of binary neural net-

works in oblivious inference, where a server provides a

privacy-preserving inference service to clients. Using this

service, clients can run the neural network owned by the

server, without revealing their data to the server or learning

the parameters of the model. We explore favorable char-

acteristics of BNNs that make them amenable to oblivi-

ous inference, and design custom cryptographic protocols

to leverage these characteristics. In contrast to XONN [14],

which uses GC to evaluate both linear and non-linear lay-

ers, we use GC only for nonlinear layers. We present a

custom protocol for linear layers using OT and AS, which

leads to 2× to 11× performance improvement compared to

XONN. We also address the problem of low inference ac-

curacy by training adaptive BNNs, where a single model is

trained to be evaluated under different computational bud-

gets. Finally, we extend our evaluations to computer vision

tasks that perform inference on private data, i.e., face au-

thentication and medical data analysis.



References

[1] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar,

Volodymyr Kuleshov, Mark DePristo, Katherine Chou,

Claire Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean.

A guide to deep learning in healthcare. Nature medicine,

25(1):24, 2019.

[2] The HIPAA Privacy Rule. https://www.hhs.gov/

hipaa/for- professionals/privacy/index.

html.

[3] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi.

Cryptodl: Deep neural networks over encrypted data. arXiv

preprint arXiv:1711.05189, 2017.

[4] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low

latency privacy preserving inference. In International Con-

ference on Machine Learning, pages 812–821. PMLR, 2019.

[5] Florian Bourse, Michele Minelli, Matthias Minihold, and

Pascal Paillier. Fast homomorphic evaluation of deep dis-

cretized neural networks. In Annual International Cryptol-

ogy Conference, pages 483–512. Springer, 2018.

[6] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Al-

bert Haque, and Li Fei-Fei. Faster cryptonets: Leveraging

sparsity for real-world encrypted inference. arXiv preprint

arXiv:1811.09953, 2018.

[7] Amartya Sanyal, Matt Kusner, Adria Gascon, and Varun

Kanade. Tapas: Tricks to accelerate (encrypted) prediction

as a service. In International Conference on Machine Learn-

ing, pages 4490–4499. PMLR, 2018.

[8] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine,

Kristin Lauter, Saeed Maleki, Madanlal Musuvathi, and

Todd Mytkowicz. Chet: an optimizing compiler for fully-

homomorphic neural-network inferencing. In Proceedings of

the 40th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 142–156, 2019.

[9] Marshall Ball, Brent Carmer, Tal Malkin, Mike Rosulek, and

Nichole Schimanski. Garbled neural networks are practical.

IACR Cryptol. ePrint Arch., 2019:338, 2019.

[10] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivi-

ous neural network predictions via minionn transformations.

In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, pages 619–631,

2017.

[11] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-

drakasan. {GAZELLE}: A low latency framework for se-

cure neural network inference. In 27th {USENIX} Secu-

rity Symposium ({USENIX} Security 18), pages 1651–1669,

2018.

[12] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nis-

hanth Chandran, Divya Gupta, Aseem Rastogi, and Rahul

Sharma. Cryptflow2: Practical 2-party secure inference. In

Proceedings of the 2020 ACM SIGSAC Conference on Com-

puter and Communications Security, pages 325–342, 2020.

[13] Qian Lou, Bian Song, and Lei Jiang. Autoprivacy: Auto-

mated layer-wise parameter selection for secure neural net-

work inference. In Advances in Neural Information Process-

ing Systems, 2020.

[14] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim

Laine, Kristin E Lauter, and Farinaz Koushanfar. Xonn:

Xnor-based oblivious deep neural network inference. In

USENIX Security, 2019.

[15] Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang.

{SAFEN}et: A secure, accurate and fast neural network in-

ference. In International Conference on Learning Represen-

tations, 2021.

[16] Zahra Ghodsi, Akshaj Veldanda, Brandon Reagen, and Sid-

dharth Garg. Cryptonas: Private inference on a relu bud-

get. In Advances in Neural Information Processing Systems,

2020.

[17] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan,

Wenting Zheng, and Raluca Ada Popa. Delphi: A cryp-

tographic inference service for neural networks. In 29th

{USENIX} Security Symposium ({USENIX} Security 20),

2020.

[18] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1389–1397, 2017.

[19] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim

Choi, Lu Yang, and Dongjun Shin. Compression of deep

convolutional neural networks for fast and low power mobile

applications. arXiv preprint arXiv:1511.06530, 2015.

[20] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,

and Yuheng Zou. Dorefa-net: Training low bitwidth convo-

lutional neural networks with low bitwidth gradients. arXiv

preprint arXiv:1606.06160, 2016.

[21] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran

El-Yaniv, and Yoshua Bengio. Binarized neural networks:

Training deep neural networks with weights and activations

constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830,

2016.

[22] Mikhail Atallah, Marina Bykova, Jiangtao Li, Keith Frikken,

and Mercan Topkara. Private collaborative forecasting and

benchmarking. In Proceedings of the 2004 ACM workshop

on Privacy in the electronic society, pages 103–114, 2004.

[23] Moni Naor and Benny Pinkas. Computationally secure

oblivious transfer. Journal of Cryptology, 18(1), 2005.

[24] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.

Extending oblivious transfers efficiently. In Crypto, volume

2729. Springer, 2003.

[25] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and

Michael Zohner. More efficient oblivious transfer and ex-

tensions for faster secure computation. In Proceedings of the

2013 ACM SIGSAC conference on Computer & communica-

tions security, pages 535–548, 2013.

[26] Christof Paar and Jan Pelzl. Understanding cryptography: a

textbook for students and practitioners. Springer Science &

Business Media, 2009.

[27] Sophia Yakoubov. A gentle introduction to yao’s garbled

circuits, 2017.



[28] Andrew Yao. How to generate and exchange secrets. In

Foundations of Computer Science, 1986., 27th Annual Sym-

posium on, 1986.

[29] Vladimir Kolesnikov and Thomas Schneider. Improved gar-

bled circuit: Free XOR gates and applications. In Interna-

tional Colloquium on Automata, Languages, and Program-

ming. Springer, 2008.

[30] Benjamin Mood, Debayan Gupta, Henry Carter, Kevin But-

ler, and Patrick Traynor. Frigate: A validated, extensible, and

efficient compiler and interpreter for secure computation. In

EuroS&P), pages 112–127. IEEE, 2016.

[31] Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Deb-

bie Marr. Wrpn: Wide reduced-precision networks. arXiv

preprint arXiv:1709.01134, 2017.

[32] Mohammad Ghasemzadeh, Mohammad Samragh, and Fari-

naz Koushanfar. Rebnet: Residual binarized neural net-

work. In 2018 IEEE 26th Annual International Sympo-

sium on Field-Programmable Custom Computing Machines

(FCCM), pages 57–64. IEEE, 2018.

[33] Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen,

and Christoph Meinel. Meliusnet: Can binary neural net-

works achieve mobilenet-level accuracy? arXiv preprint

arXiv:2001.05936, 2020.

[34] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-

Ting Cheng. Reactnet: Towards precise binary neural net-

work with generalized activation functions. In European

Conference on Computer Vision, pages 143–159. Springer,

2020.

[35] Wei Tang, Gang Hua, and Liang Wang. How to train a com-

pact binary neural network with high accuracy? In Pro-

ceedings of the AAAI Conference on Artificial Intelligence,

volume 31, 2017.

[36] Lanlan Liu and Jia Deng. Dynamic deep neural networks:

Optimizing accuracy-efficiency trade-offs by selective exe-

cution. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 32, 2018.

[37] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and

Thomas Huang. Slimmable neural networks. arXiv preprint

arXiv:1812.08928, 2018.

[38] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,

Ebrahim M Songhori, Thomas Schneider, and Farinaz

Koushanfar. Chameleon: A hybrid secure computation

framework for machine learning applications. In Proceed-

ings of the 2018 on Asia Conference on Computer and Com-

munications Security, pages 707–721, 2018.

[39] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul

Sharma, and Shardul Tripathi. Ezpc: programmable, ef-

ficient, and scalable secure two-party computation for ma-

chine learning. ePrint Report, 1109, 2017.

[40] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-

toolkit: Efficient MultiParty computation toolkit. https:

//github.com/emp-toolkit, 2016.

[41] FaceScrub. The FaceScrub dataset, 2020. http:

//engineering.purdue.edu/˜mark/puthesis,

(accessed July 3, 2020).

[42] Hong-Wei Ng and Stefan Winkler. A data-driven approach

to cleaning large face datasets. In IEEE international con-

ference on image processing, 2014.

[43] Malaria Cell Images, accessed on 01/20/2019. https:

//www.kaggle.com/iarunava/cell-images-

for-detecting-malaria.

[44] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin

Lauter, Michael Naehrig, and John Wernsing. CryptoNets:

Applying neural networks to encrypted data with high

throughput and accuracy. In International Conference on

Machine Learning, 2016.

[45] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz

Koushanfar. Deepsecure: Scalable provably-secure deep

learning. arXiv preprint arXiv:1705.08963, 2017.


