
A. Organization of the Supplementary Materials
The Supplementary Materials are organized as follows. We first derive the dynamics and learning rules for the weights and

biases in the energy-based and prototypical settings of EP in Section B and Section C respectively. Then, we give more details
about the scaling factor: chosen fixed or dynamical, in Section D. We discuss why the error signal has difficulties to flow in the
system when the neurons have a binary activation function in Section E. We finally detail all the software implementations in
Section F.

More precisely one can find:

• Experimental evidence showing the importance of the scaling factor (fixed in this section) for training systems with
binary weights (Section D).

• The derivation of the learning rule for the scaling factor, together with a description of the results obtained with this
training procedure, showing the acceleration that the learnt dynamical scaling factor provides (Section D).

• An empirical demonstration that the prediction is efficiently computed with an enlarged output layer for binary neural
networks (Section E).

• Training curves and their flipping metric (defined in Eq. (6)) monitored over epochs (Section F).

B. Training Fully Connected Layers Networks with Equilibrium Propagation
In this section, we describe and define all the operations we used to train with EP a fully connected neural network

recurrently connected through bidirectional synapses. We describe the dynamics and the underlying learning rules for the
weights and the biases in the energy-based and prototypical settings. The units of the system are denoted s = {h, y} where h
are the hidden units and y are the output units. The variable y is the one-hot encoded target vector. The inputs x are always
clamped and are static.

B.1. Energy-Based Settings

In the energy based settings, we introduce an energy function for the network, that defines the neuron dynamics during the
two phases of EP. We then derive the learning rules from the energy function.

B.1.1 Energy Function

We consider the following energy function [30]:

E(s, ρ(s), θ = {W, b}) :=
1

2

∑

i

si −
1

2

∑

i 6=j

Wijρ(si)ρ(si)−
∑

i

biρ(si) (17)

where ρ is the activation function of the neurons, Wij the weight connecting the unit si to sj and reciprocally as synapses are
symmetric for the system to converge and bi the bias of unit si.

We also define ` the cost function describing how far are the output units of the system (ŷ) from their target state (y). We
usually employ the mean squared error as a cost function with EP:

`(s, y) = MSE(s, y) :=
1

2

∑
||y− ŷ||2 (18)

where y denotes a given target output.

B.1.2 Dynamics

The dynamics of neurons in the free phase evolve according to the energy function E:

ds

dt
= −∂E

∂s
(19)

which translates for the neuron i and the energy function E defined in Eq.17 as:

dsi
dt

= −si + ρ′(si)(
∑

j 6=i

Wijρ(sj) + b) (20)

The system eventually settles to a fixed steady state s∗.
During the nudged phase the dynamics differs from the free phase as the neurons now evolve to decrease the cost function `:

ds

dt
= −∂E

∂s
− β ∂`

∂s
(21)

which translates for the hidden unit hi, the output unit ŷi and the target y to:

dhi

dt = −hi + ρ′(hi)(
∑
j 6=i

Wijρ(sj) + bi)

dŷi
dt = −ŷi + ρ′(yi)(

∑
j 6=i

Wijρ(hj) + bi) + β × (yi − ŷi)
(22)

The systems eventually reaches a second steady state denoted sβ∗ .

B.1.3 Learning Rule

Scellier & Bengio [30] showed that the gradient of the loss L∗ (defined in Eq. (...)) with respect to any parameter in the system
can be approximated by the derivative of the energy function E with regard to the parameter evaluated at the two equilibrium
points s∗ and sβ∗ :

− ∂L∗
∂θ

= lim
β→0

1

β

(
∂E

∂θ
(x, sβ∗ , θ)−

∂E

∂θ
(x, s∗, θ)

)
(23)

In the energy-based settings, the resulting learning rules for the weights and biases are expressed as a function of the two
steady states: {

∆Wij = 1
β (ρ(sβi,∗)ρ(sβj,∗)− ρ(si,∗)ρ(sj,∗))

∆bi = 1
β (ρ(sβi,∗)− ρ(si,∗))

(24)

B.2. Prototypical Settings

Ernoult et al. [8] introduced the prototypical settings for EP where the dynamics no longer derived from an energy function
in a continuous-time setting but more generally from a scalar primitive in a discrete-time setting. As in Ernoult et al. [8], we
chose a dynamics close to the one of conventional RNNs. We then write a primitive function from which the dynamics derives.
Finally we obtain the learning rules from the primitive function.

B.2.1 Dynamics

We choose the same discrete time dynamics as in [8]:

ht+1
i = ρ(

∑
j

Wijs
t
j + b)

yt+1
i = ρ(

∑
j

Wijh
t
j + b) + β × (yi − ŷi) where β = 0 during the free phase

(25)

The nudge still derives from the MSE cost function as defined in Eq. 18. The system also sequentially settles to two fixed
steady states s∗ and sβ∗ at the end of the free and the nudged phase respectively.

B.2.2 Primitive Function

We define the primitive function as the function from which the dynamics could derive:

st+1 ≈ ∂Φ

∂s
(26)

which gives, ignoring the activation function ρ:

Φ =
1

2
sTWs (27)

B.2.3 Learning Rule

Similarly to the energy-based settings, we now compute the gradient of the primitive function with regard to a parameter of the
system in order to perform optimization. The learning rule, expressed as a function of the two equilibrium points s∗ and sβ∗ ,
now reads:

∆θ =
1

β

(
∂Φ

∂θ
(x, sβ∗ , θ)−

∂Φ

∂θ
(x, s∗, θ)

)
(28)

The learning rules for the weights and the biases read:

{
∆Wij = 1

β (sβi,∗s
β
j,∗ − si,∗sj,∗)

∆bi = 1
β (sβi,∗ − si,∗)

(29)

C. Training Convolutional Networks with Equilibrium Propagation

In this section, we describe and define all operations used to train with EP a convolutional neural network recurrently
connected with symmetric synapses. We describe the dynamics and the underlying learning rules for the weights and the
biases in the prototypical and the energy-based settings. We denote N conv and N fc the number of convolutional layers and
fully connected layers in the convolutional system, and N tot = N conv +N fc. The units of the system are denoted by s and
listed from s0 = x the input to the output sN

tot

.

C.1. Operations involved in the convolutional system

We detail here the operations involved in the dynamics of a convolutional RNN in both the prototypical and the energy-based
settings.

• The 2-D convolution between w with dimension (Cin, Cout, F, F) and an input x of dimensions (Cin, Hin, Sin) and
stride one is a tensor y of size (Cout, Hout,Wout) defined by:

yc,h,s = (w ? x)c,h,s = Bc +

Cin−1∑

i=0

F−1∑

j=0

F−1∑

k=0

wc,i,j,kxi,j+h,k+s, (30)

where Bc is a channel-wise bias.

• The 2-D transpose convolution of y by w̃ is then defined in this work as the gradient of the 2-D convolution with respect
to its input:

(w̃ ? y) =
∂(w ? x)

∂x
· y (31)

• The dot product “•” generalized to pairs of tensors of same shape (C,H, S) writes:

a • b =

C−1∑

c=0

H−1∑

h=0

S−1∑

w=0

ac,h,sbc,h,s. (32)

• The pooling operation P with stride F and filter size F of x:

PF (x)c,h,s = max
i,j∈[0,F−1]

{
xc,F (h−1)+1+i,F (s−1)+1+j

}
, (33)

with relative indices of maximums within each pooling zone given by:

indP(x)c,h,s = argmax
i,j∈[0,F−1]

{
xc,F (h−1)+1+i,F (s−1)+1+j

}
= (i∗(x, h), j∗(x, s)). (34)

• The unpooling operation P−1 of y with indices indP(x) is then defined as:

P−1(y, indP(x))c,h,s =
∑

i,j

yc,i,j · δh,F (i−1)+1+i∗(x,h) · δsF (j−1)+1+j∗(x,s), (35)

which consists in filling a tensor with the same dimensions as x with the values of y at the indices indP(x), and zeroes
elsewhere. For notational convenience, we omit to write explicitly the dependence on the indices except when appropriate.
We can also see unpooling as the gradient of the pooling operation with respect to its input.

• The flattening operation F is defined as reshaping a tensor of dimensions (C,H, S) to (1, CHS). We denote by F−1 its
inverse.

C.2. Prototypical Settings

C.2.1 Equations of the dynamics

We derive here the dynamics of the convolutional network with symmetric connections and with the mean square error as loss
function in the prototypical settings. In this case, the dynamics reads:

sn+1
t+1 = ρ

(
P(wn+1 ? s

n
t) + w̃n+2 ? P−1(sn+2

t)
)
, ∀n ∈ [0, N conv − 2]

sN
conv

t+1 = ρ
(
P(wNconv ? sN

conv−1
t) + F−1(wNconv+1

> · sN
conv+1

t)
)
,

sN
conv+1

t+1 = ρ
(
wNconv+1 · F(sN

conv

t) + wNconv+2
> · sN

conv+2
t

)
,

sn+1
t+1 = ρ

(
wn+1 · snt + wn+2

> · sn+2
t

)
, ∀n ∈ [N conv + 1, N tot − 2]

sN
tot

t+1 = ρ
(
wNtot · sN

tot−1
t

)
+ β(y− sN

tot
t), with β = 0 during the first phase,

(36)

where we take the convention s0 = x, the input. In this case, we have sN
tot

= ŷ, the output layer. Considering the function:

Φ(x, s1, · · · , sN
tot

) =

Ntot−1∑

n=Nconv+2

sn+1> · wn · sn + sNconv+1 · wNconv+1 · F(sNconv)

+

Nconv−1∑

n=1

sn+1 • P (wn+1 ? s
n) + s1 • P (w1 ? x) ,

when ignoring the activation function, we have:

∀n ∈ [1, N tot] : snt ≈
∂Φ

∂sn
. (37)

C.2.2 Learning rules

We derive the learning from the primitive function with the help of Eq. 28. In the prototypical settings, the learning rules read:

∆w1 = 1
β

(
P−1(s1,β∗) ? x− P−1(s1∗) ? x

)

∀n ∈ [1, Nconv − 1] : ∆wn+1 = 1
β

(
P−1(sn+1,β

∗) ? sn,β∗ − P−1(sn+1
∗) ? sn∗

)

∆wNconv+1 = 1
β

(
sNconv+1,β
∗ · F

(
sNconv,β
∗

)>
− sNconv+1
∗ · F

(
sNconv
∗

)>
)

∀n ∈ [Nconv + 2, Ntot − 1] : ∆wn = 1
β

(
sn+1,β
∗ · sn,β

>

∗ − sn+1
∗ · sn>∗

)
(38)

C.3. Energy-Based Settings

C.3.1 Equations of the Dynamics

Inspired by the primitive function derived in the prototypical settings we define an energy function which applies to an
energy-based convolutional system, and rely on the same operations defined above:

E(x, s1, · · · , sN
tot

) =
1

2

Ntot∑

n=1

(sn)2 −
Ntot∑

n=1

bnρ(sn)− 1

2

Ntot−1∑

n=Nconv+2

ρ(sn+1)T .wn.ρ(sn)

− ρ(sNconv+1) · wNconv+1 · F(ρ(sNconv))−
Nconv−1∑

n=1

ρ(sn+1) • P (wn+1 ? ρ(sn))− ρ(s1) • P (w1 ? x)

The dynamics is then derived from this energy function with the help of Eq. 1:

∂s1

∂t
= −s1 +

∂ρ(s1)

∂s1
×
(
P(w1 ? ρ(x)) + w̃2 ? P−1(ρ(s2))

)
,

∂sn+1

∂t
= −sn+1 +

∂ρ(sn+1)

∂sn+1
×
(
P(wn+1 ? ρ(sn)) + w̃n+2 ? P−1(ρ(sn+2))

)
, ∀n ∈ [1, N conv − 2]

∂sN
conv

∂t
= −sN

conv

+
∂ρ(sN

conv

)

∂sNconv ×
(
P(wNconv ? ρ(sN

conv−1)) + F−1(wNconv+1
> · ρ(sN

conv+1))
)
,

∂sN
conv+1

∂t
= −sN

conv+1 +
∂ρ(sN

conv+1)

∂sNconv+1
×
(
wNconv+1 · F(ρ(sN

conv

)) + wNconv+2
> · ρ(sN

conv+2)
)
,

∂sn+1

∂t
= −sn+1 +

∂ρ(sn+1)

∂sn+1
×
(
wn+1 · ρ(sn) + wn+2

> · ρ(sn+2)
)
, ∀n ∈ [N conv + 1, N tot − 2]

∂sN
tot

∂t
= −sN

tot

+
∂ρ(sN

tot

)

∂sNtot ×
(
wNtot · ρ(sN

tot−1)
)

+ β(y− sN
tot

), with β = 0 during the first phase.

(39)

where again we have sN
tot

= ŷ, the output layer.

C.3.2 Learning Rules

We derive the learning from the primitive function with the help of Eq. 23. In the energy-based settings, the learning rules read:

∆w1 = 1
β

(
P−1(ρ(s1,β∗)) ? x− P−1(ρ(s1∗)) ? x

)

∀n ∈ [1, Nconv − 1] : ∆wn+1 = 1
β

(
P−1(ρ(sn+1,β

∗)) ? ρ(sn,β∗)− P−1(ρ(sn+1
∗)) ? ρ(sn∗)

)

∆wNconv+1 = 1
β

(
ρ(sNconv+1,β
∗) · F

(
ρ(sNconv,β
∗)

)>
− ρ(sNconv+1

∗) · F
(
ρ(sNconv
∗)

)>
)

∀n ∈ [Nconv + 2, Ntot − 1] : ∆wn = 1
β

(
ρ(sn+1,β
∗) · ρ(sn,β

>

∗)− ρ(sn+1
∗) · ρ(sn

>

∗)
)

, (40)

One should notice that we only need to store the activation ρ(s) of the neurons to compute the gradient for each parameter
which turns out to be very interesting when the activation function ρ outputs binary values, as we do in Section 4.

D. A Scaling Factor for Equilibrium Propagation
In this section, we discuss in detail the scaling factor introduced in Section 3. We first describe the initialization of the

scaling factor. We then show that a naive initialization for the scaling factor inspired by XNOR-Net leads to good performance,
but that tuning more precisely the scaling factor can increase the accuracy. Finally we derive learning rules for the scaling
factors allowing EP to optimize by itself the value of the scaling factors. We show that systems learning their scaling factors
better fit the training set but also learn faster.

D.1. Fixed Scaling Factor

D.1.1 Initializing α value

Rastegari et al. [29] introduced a scaling factor to normalize the binary weights in convolutional architectures with real-valued
activations. They obtained the value of the scaling factors by minimizing layer-wise the squared difference between the binary
weight vector B and the real-valued weight vector W, where B and W are vectors in Rn and n = c× f1 × f2 with c the
number of input channels, and f1 and f2 the sizes of the filter kernel. The factor α scales B in the following way:

W = αB (41)

They found that the optimal solution is given by:

α∗ =
||W||l1
dim(W)

(42)

In [29], the real-valued weights W are updated after each backward pas, and the scaling factor α is re-computed at each
forward pass.

For training systems with binary synapses through EP, we first use a scaling factor fixed at initialization. We describe in
Alg. 3 how we initialize the binary weights and the corresponding scaling factors layer-wise:

Algorithm 3 Initialize the scaling factors (α) layer-wise
Input: Architecture: {NLayers, NNeuronsperlayer}.
Output: System having binary weights (W b) and scaling factors (α) initialized

for each Layer do
winit = rand(N) —— winit is a random full-precision matrix
α = ||winit||l1

dim(winit)

W b = α× Sign(winit)
end for

The rand() function used in Alg. 3 stands for the native random initialization of Pytorch which is the Kaiming initialization
[12].

D.1.2 Naive initialization vs. our initialization

We found that the use of scaling factors α as initialized with Alg. 3 is crucial to ensure successful training. In fact, if the
synapses are initialized to low or too large, we face the vanishing gradient issue as the activation saturate at both 0 or 1. In
order to show this effect we trained a system with a fully connected architecture comprising 1 hidden layer of 4096 neurons,
with binary weights and full-precision activations, for 50 epochs on MNIST. We plot in Fig. 4 the test error obtained with Alg.
3 for different values of the fixed scaling factors The blue arrow indicate the value corresponding to an initialization of α with
Alg. 3 (we took the averaged value of both scaling factors in the network to obtain a point on the plot).

We see in Fig. 4 that the test error is highly dependent on the value of the scaling factor. The figure shows that for values of
α between about 0.012 and 0.025 the test error is at EP literature level. But even in this range it is not obvious to find the best
value for α. Moreover, we found that choosing arbitrarily the value of α in deep architectures (fully connected architecture
with 2 hidden layers or convolutional architectures) fails at ensuring successful training. We finally chose to initialize the
scaling factors with the method of Alg. 3 as this method is architecture-agnostic and reduces the number of hyperparameters
as we already have some to tune.

In the next section, we address the difficulty to select the best value of α in order to get the best testing accuracy by directly
learning the scaling factor with the help of EP.

D.2. Learning the Scaling Factor with EP

Results in the previous subsection show that optimizing the value of α can give rise to enhanced performance. Here we
show that this optimization can be achieved through EP. In the context of EP we can indeed derive a learning rule for any
parameter in the primitive or energy function. In this section, the scaling factor is first initialized with the method described in

Figure 4: Mean test error± standard deviation (computed with 3 trials each) of a 1 hidden layer fully connected neural network
on MNIST as a function of the scaling factor α - All dots represent the test error of training performed with α being arbitrarily
chosen - α initialized by the method described in D.1.1 is indicated by the blue arrow.

Alg. 3 and is then optimized with SGD with the gradient extracted by EP. For clarity, we decompose the binary weights W
from ±α to α× w where w = ±1.

D.2.1 Learning Rules in the Prototypical settings

Fully connected layers architecture.
For a given fully connected layer, the scaling factor α can be introduced in the primitive function of the system as:

Φ(s) =
1

2
α× sTws (43)

Eq. 28 then indicates that the learning rule for the scaling factors in a fully connected architecture in the prototypical
settings of EP is:

∆αl,l+1 =
1

2β

(
(sTl wsl+1)β − (sTl wsl+1))0

)
(44)

where l denotes the index of a layer in the system.
Convolutional architecture:
The scaling factors in use for the classifier are updated with the gradient given by the learning rule stated above.
For convolutional layers, we use one scaling factor per output feature map which gives Cout scaling factors for a layer with

Cout feature maps.
Thus for each channel in a convolutional layer c in Cout we can write:

P (Wn+1 ? s
n)c = αc × P (wn+1 ? s

n)c (45)

where Wn+1 = αc × wn+1 are the normalized weights for a channel and wn+1 ∈ {−1.1}. Following this observation, we
can also rewrite a primitive function with α as we did for the fully connected architecture. From this primitive function, we
can derive the learning rule for the scaling factors of the convolutional part which reads, channel-wisely:

{ ∀n ∈ [1, Nconv − 1] : ∆αn+1
c = 1

β ((sn+1
c • P (wn+1 ? s

n)c)
β − (sn+1

c • P (wn+1 ? s
n)c)

0)

∆α1
c = 1

β ((s1c • P (w1 ? x)c)
β − (s1c • P (w1 ? x)c)

0)
(46)

D.2.2 Learning Rules in the Energy-Based Settings

Fully connected layers architecture:
Similarly to the way we introduced α in the primitive function, we re-write the energy function of a fully connected layers

architecture as a function of α:

E(s) =
1

2

∑

i

si −
1

2

∑

i 6=j

αijwijρ(si)ρ(si)−
∑

i

biρ(si) (47)

Again, with the help of Eq. 23 we derive a learning rule for the scaling factors in a fully connected architecture in the
energy-based settings of EP which reads as follow:

∆αl,l+1 =
1

2β

(
(ρ(sTl)wρ(sl+1))β − (ρ(sTl)wρ(sl+1))0

)
(48)

where l denotes the index of a layer in the system.
Convolutional architecture:
The scaling factors in use for the classifier are updated with the gradient given by the learning rule stated above.
In our convolutional networks, we use one scaling factor per feature map which gives Cout scaling factors for a layer with

Cout feature maps. For each feature map, we have Eq. 45 verified and we can also easily derive the learning rule of the scaling
factors of the convolutional layers which reads, channel-wise:

{ ∀n ∈ [1, Nconv − 1] : ∆αn+1
c = 1

β ((ρ(sn+1
c) • P (Wn+1 ? ρ(sn)c))

β − (ρ(sn+1
c) • P (Wn+1 ? ρ(sn)c)

0))

∆α1
c = 1

β ((ρ(s1c) • P (W1 ? x)c)
β − (ρ(s1c) • P (W1 ? x)c)

0)
(49)

D.3. Benefits of Learning the Scaling Factor when the Synapses are Binary and the Activations Full-Precision

In the next Tables 3, 4 and 5, we report the training and test errors obtained with fixed and dynamical scaling factors on
MNIST and CIFAR-10 with different architectures, at mid-training and at the end of the training.

Learning the scaling factor accelerates the training. In these tables, we show that the training times are accelerated when
the scaling factor is dynamical instead of fixed after initialization. In particular for MNIST, the training is accelerated by a
factor over two compared to the fixed scaling, both for fully connected and convolutional architectures.

For CIFAR-10 the acceleration is not as large as for MNIST but we struggled to fine-tune the learning rate for the scaling
factors and thus better combinations could give larger acceleration.

Systems learning the scaling factors better fit the training set. Also in these tables we see that every trainings done with
dynamical scaling factors always better fit the training set than trainings done with fixed scaling factors. We also see in
these tables that every training done with dynamical scaling factors better fits the training set than with fixed scaling factors.
Training errors on MNIST are improved by 0.8% and 0.15% for fully connected layers architectures having 1 and 2 hidden
layers. The convolutional architecture trained on MNIST also gains 0.45% in terms of training error. Whereas the fully
connected architectures sees the test error also improved alongside the training error, the convolutional architecture sees a
slight degradation of the test error due tooverfitting.

The convolutional architecture trained on CIFAR-10 gains 1.1% training error.

Can learning the scaling factor reduce the memory requirements of the network? Finally, learning the scaling allows
to train a fully connected architecture with 1 hidden layer of only 512 hidden neurons (the architecture usually trained by EP
in the literature) with very low loss of accuracy: +0.2% testing error and +0.6% training error (see Table 3 and Fig. 1) whereas
with a fixed scaling factor we have +2% testing error and +3% training error (see Table 3 and Fig. 8). However, we did not
make this observation across all the architectures that we have studied and only rise it here as a curiosity.

Table 3: Mean Train and Test errors on MNIST (over 5 trials each) computed after 25 and 50 epochs for two shallow networks
with one and two hidden layers with binary synapses trained with EqProp - We denote in the Learn α column if the scaling
factor is learnt or not

25 Epochs 50 Epochs
Architecture Learn α Test (Train) Test (Train)

784-4096-10 7 2.14 (0.92) 2.07 (0.77)
784-4096-10 X 1.66 (0.03) 1.7 (0)
784-512-10 X 2.45 (1.24) 2.2 (0.7)
784-4096(2)-10 7 2.47 (0.4) 2.48 (0.15)
784-4096(2)-10 X 2.27 (0.02) 2.28 (0)

Table 4: Mean Train and Test errors on MNIST (over 5 trials each) with a convolution network with binary synapses trained
with EqProp - We denote in the Learn α column if the scaling factor is learnt or not

25 Epochs 50 Epochs
Architecture Learn α Test (Train) Test (Train)

1-32-64-(fc) 7 0.92 (0.63) 0.84 (0.46)
1-32-64-(fc) X 0.79 (0.16) 0.88 (0.047)

Table 5: Mean Train and Test errors on CIFAR-10 (over 5 trials each) with a convolution network with binary synapses trained
with EqProp - We denote in the Learn α column if the scaling factor is learnt or not

100 Epochs 500 Epochs
Architecture Learn α Test (Train) Test (Train)

3-68-128-256-256-(fc) 7 18.4 (13.4) 16.8 (6.9)
3-68-128-256-256-(fc) X 17.6 (11.86) 15.54 (5.54)

E. Propagation of the Error Signal with Binary Activations
In this section we discuss how the binary activation function can cancel the error signal flowing from the nudged output

neurons to the other upstream layers. We then explain how we can enhance the error signal in order to yield a nudging force
strong enough to propagate throughout the system.

E.1. The Error Signal Flows Into the System if the First Hidden Layer is Sensitive to it

A layered architecture trained with EP makes the system sensitive to the error signal if and only if neurons between the
output layer - where the error signal is applied - and a neuron of interest, are sensitive to the target. The first hidden layer is in
this sense a bottleneck for the error signal. It often receives more forward signal from the other hidden layers than backward
signal from the output layer which only has 10 neurons for MNIST and CIFAR-10. During the nudging phase of EP, only one
neuron in the output layer is nudged to be 1, the others being nudged to 0. And this little change in the output layer in not
sufficient for the first hidden layer to reach the criteria of good error signal Eq. 16. Therefore, the binary activations of the
neurons in the first hidden layer do not change and the error signal is blocked.

Once the first hidden layer changes its binary activations, the error signal can flow through the network. In fact, it has more
impact on the others hidden layers because it is often larger than the output layer and matches approximately the size of the
others layers thus it is more likely to impact the binary activation of the next hidden layer. Augmenting the error signal is
crucial to train systems with binary synapses and activations with EP.

h0
0

h1
0

h2
0

hn
0

.

.

.

y0

y1

y9

ŷ0

ŷ1

ŷ9

.

.

.

.

.

.

h0
0

h1
0

h2
0

hn
0

.

.

.

y00

y10

yN0

.

.

.

ŷ00

ŷ10

ŷN0

.

.

.

y01

y11

yN1

.

.

.

ŷ01

ŷ11

ŷN1

.

.

.

y09

y19

yN9

.

.

.

ŷ09

ŷ19

ŷN9

.

.

.

.

.

.

.

.

.

Class 0

Class 1

Class 9

Figure 5: Left: Schematic of the classic output layer with one output neuron per class - compared to Right: the enlarged output
layer where we have Nperclass output neurons per class - Hidden units are denoted by h, output units by yx and the target
units by ŷx - We represent the nudging of the output neurons by the corresponding target units with the small springs on the
schematic - For simplicity we drew this schematic for datasets having 10 output classes but it can be applied to any dataset -
Dashed arrows on the left hand of both networks indicate the bidirectional connections with the rest of the network

E.2. An Enlarged Output Layer for a Greater Error Signal

The scaling factors introduced in Section 3 to normalize the binary weights and not to saturate the activations show
limitations with binary activations. Neurons with binary activations can sometimes indeed no longer propagate the error signal.

We enlarged the output layer to solve this issue as described in Fig. 5. This enlargement of the output layer makes the
neurons having a binary activation again sensitive to the error signal and their activation can change during the nudging phase.
This opens the path to training deeper architectures with binary activations and weights with EP. Our solution is similar in
spirit to the augmented output layer used by [3].

E.3. Making Predictions with an Enlarged Output Layer

Usually an output layer has as many neurons as the number of classes in the dataset and the prediction is the argmax of the
output layer.

But when we train systems having binary activations the output layer is augmented and it is not straightforward to make a
prediction taking the argmax of the output layer. We describe here two methods to make a prediction with the enlarged output
layer. We used both methods in our simulations and show they give similar accuracy in the end.

Making predictions by averaging each sub-class. This first method allow us to retrieve a situation similar to the classic
output layer having one neuron per class. In fact we first average the internal state - or pre-activation - of each neuron belonging
to a class which gives 10 averaged values and the prediction is taken as the argmax of these averaged values.

Making predictions with one neuron per sub-class. The first method we describe above to make the prediction could
reveal to be computationally and time expensive and costly to realize on digital hardware. A second, more hardware-friendly,
method is to look at the state of only one output neuron per class and take the argmax of these ”single-neurons”.

Comparison of the two methods. We want to see if the second method, which constitutes a great simplification of the
prediction process, performs as well as the first method. For this purpose, we plot in Fig. 6 and Fig. 7 the difference of the
training and the testing errors of two fully connected architectures with binary synapses and activations and 1 and 2 hidden
layers trained on MNIST computed with the two methods described above. We see that for the network with 1 hidden layer,
the difference between the two methods does not exceed 0.1% for both training and testing errors. For the network with 2
hidden layers, despite the fact that the difference starts at a high level with more than 0.7% of difference for the testing error
and more than 1% for the training error, in the end of the training process the differences have decreased to almost 0%. Both
figures show the effectiveness of the second method at making the predictions at a lower cost both computationally and in time
than the first method.

F. Simulations Details - Hyperparameters and Training Curves

F.1. Binary Synapses

We detail in this section all settings and parameters used for the simulations for EP with binary synapses and full-precision
activations (hardsigmoid activation function). We ran the simulations with PyTorch and speed them up on a GPU. The duration
of the simulations runs from 30 mins for the shallow network to 5 days for the convolutional architecture on CIFAR-10.

For these simulations, we use the prototypical settings of EP for the sake of saving simulation time. The energy-based
settings would perform the same way but such models are much longer to train.

We found that comparatively to full-precision models trained by EP, the error signal vanishes through the system and thus
deep layers need a greater learning rate for the biases and greater γ for the weights. All hyperparameters are reported in Table
6.

The target is one-hot encoded and the prediction is computed by taking the argmax of the state of the output neurons. The
output layer is designed in a way that we have one output neuron per class of the dataset. We initialize the binary weights
taking the sign of randomly-initialized weights matrices.

We choose the sign of beta randomly at each mini-batch which is known to give better results [30, 20]. For all simulations
we used mini-batches of size of 64 as we found it performs better.

All figures report the mean of the training and testing errors computed with 5 trials each ± 1 standard deviation.

Figure 6: Difference of the train and test errors computed with the averaging method and the method with only one neuron per
subclass for a system with one hidden layer of 8192 neurons and 100 output neurons

Figure 7: Difference of the train and test errors computed with the averaging method and the method with only one neuron per
subclass for a system with two hidden layers of 8192 neurons and 8000 output neurons

MNIST - fully connected layer - 1 hidden layer. We train a network with a fully connected architecture and 1 hidden layer
on MNIST. We first tuned the EP hyperparameters (T , K, β) making EP gradient estimates match those given by BPTT [8].
At the same time we tuned BOP hyperparameters in order to fit the flipping metric (Eq. 6) in the range leading to successful
training as described in Section 3. We found that contrarily to Helwegen et al. [13], the flipping metric starts at high level
(between 0 and −4/− 5) and decreases over epochs to reach a region below -5.

We initialize one scaling factor per weight matrix with the method described in Alg. 3. When the scaling factors are learnt,
we use the same learning rate for all scaling factors. Despite the fact that the learning rule for the scaling factors requires the

sign of the weights ±1 for the computation, we found that using the scaled weights ±α performs the same way so we used the
scaled weight matrix to compute the gradient.

To reach an accuracy at levels of reported results in the literature with such architecture trained by EP on MNIST, we
needed to increase by 8 the number of neurons in the hidden layer as shown in Fig. 8 when the scaling factors are fixed which
justifies the architecture we trained: 784-4096-10.

We report all hyperparameters in Table 6. We initialize the biases with the native PyTorch random initialization and the
state of the neurons to zero as it has proven to perform better.

We performed two sets of simulations:

• Simulations where the scaling factors were fixed which achieve accuracy (Table 1, Fig. 9) close to those reported in the
EP literature: [8].

• Simulations where the scaling factors were learnt. We show that learning the scaling factors improves by a considerable
margin the training -0.7% and the testing -0.4% errors: Fig. 9, Fig. 10 and Table 3. We link the better testing error to a
better fit on the training set as the network seems to overfit a bit: the testing error starts to increase after 10 epochs which
also highlights the fact that when we learn the scaling factors, we can use less neurons per hidden layer and still get
accuracy close to those reported in the EP literature. We also report that the training is at least five times faster, as after 10
epochs the training and testing errors are below the levels obtained after 50 epochs with fixed scaling factors. Learning
the scaling factors makes the flipping metric of BOP to decrease more quickly than when the scaling factors are fixed.

Figure 8: Averaged train (blue) and test (orange) errors on MNIST with a fully connected architecture with one hidden layers
as a function of the number of hidden neurons - We average the errors over 5 trials and plot the average ± 1 standard deviation

MNIST - fully connected layer - 2 hidden layers. We train a network with a fully connected architecture which has 2
hidden layers on MNIST. We initially chose EP and BOP hyperparameters close to the hyperparameters chosen for training
the network with one hidden layer network and then fine-tuned them to achieve the best accuracy. The metric of BOP (Eq. 6)
also decreases over epochs to reach a level below -5 in the good range for BOP.

Again, we initialize with Alg. 3 one scaling factor per weight matrix which gives 3 scaling factors for this architecture.
We also use the same learning rate for all scaling factors and the scaled weights for computing the gradient as done with the
architecture which has 1 hidden layer.

We kept the same number of neurons (4096) in each hidden layer as for the architecture which has only 1 hidden layer.
We report all hyperparameters in Table 6. We initialize the weights with the native PyTorch random initialization and the

state of the neurons to zero as it has proven to perform better.
We performed two sets of simulations:

• Simulations where the scaling factors were fixed, which achieve accuracy (Table 1, Fig. 11) close to those reported in the
EP literature [8].

Figure 9: Top: Train (blue) and test (orange) error on
MNIST with a fully connected architecture with one hid-
den layer of 4096 neurons trained with EP with binary
synapses - The scaling factors are fixed - Down: metric of
weights flipped during an epoch, given for each weights
matrix from input to output

Figure 10: Top: Train (blue) and test (orange) error on
MNIST with a fully connected architecture with one hid-
den layer of 4096 neurons trained with EP with binary
synapses - The scaling factors are learnt - Down: metric of
weights flipped during an epoch, given for each weights
matrix from input to output

• Simulations where the scaling factors were learnt. We show that learning the scaling factors improves a lot the fit by
0.15% on the train set and thus improves the testing accuracy by 0.2% in Fig. 11, Fig. 12 and Table 3. Finally learning
the scaling factors also speed up the training by at least a factor 5.

Figure 11: Top: Train (blue) and test (orange) error on
MNIST with a fully connected architecture with two hid-
den layers of 4096 neurons trained with EP with binary
synapses - The scaling factors are fixed - Down: metric of
weights flipped during an epoch, given for each weights
matrix from input to output

Figure 12: Top: Train (blue) and test (orange) error on
MNIST with a fully connected architecture with two hid-
den layers of 4096 neurons trained with EP with binary
synapses - The scaling factors are learnt - Down: metric of
weights flipped during an epoch, given for each weights
matrix from input to output

MNIST - convolutional architecture: We train a convolutional network on MNIST. The architecture used consists in the
following: 2 convolutional layers of respectively 32 and 64 channels. We use convolutional kernels of size 5× 5, padding of 2
and a stride of 1. Each convolutional operation is followed by a 2 Max Pooling operation with a stride of 2. We flatten the
output of the last convolutional layer to feed the output layer of 10 neurons.

We tuned EP hyperparameters (T,K,β) making EP gradient estimates match the gradient given by BPTT [8]. We tuned
BOP hyperparameters to make the metric in the range below -5.

The scaling factors α are initialized channel-wise in each convolutional layer which gives 32 scaling factors for the first
convolutional layer and 64 scaling factors for the second convolutional layer with the architecture used here. Again we use the
scaled weights to compute the gradient of each scaling factor.

We performed two sets of simulations:

• Simulations where the scaling factors were fixed. We report accuracy slightly below the one reported with EP on MNIST
with the same convolutional architecture in [8]: -0.4% for the training and -0.2% for the testing errors. Two things one:
as underscored before, BOP seems to regularize the training with EP but also we used the sign of β randomly which is
known to better estimate the gradient given by EP and thus improve the training.

• Simulations where the scaling factors were learnt. Learning the scaling factors allow the system to better fit the training
set (-0.5% of training error). But this makes the system to overfit as the testing error increases to 0.88% after 50 epochs
after having reached a minimum at 0.76% after 25 epochs. Learning the scaling factors also decreases more the flipping
metric π as shown in Fig. 13, Fig. 14 and Table 4.

Figure 13: Top: Train (blue) and test (orange) error on
MNIST with a convolutional architecture with 2 convo-
lutional layers of respectively 32 and 64 channels trained
with EP with binary synapses - The scaling factors are
fixed - Down: metric of weights flipped during an epoch,
given for each weights matrix from input to output.

Figure 14: Top: Train (blue) and test (orange) error on
MNIST with a convolutional architecture with 2 convo-
lutional layers of respectively 32 and 64 channels trained
with EP with binary synapses - The scaling factors are
learnt - Down: metric of weights flipped during an epoch,
given for each weights matrix from input to output.

CIFAR-10 - convolutional architecture. We train a convolutional network on CIFAR-10. The architecture used consists in
the following: 3-64-128-256-256-fc(10): 4 convolutional layers of respectively 64, 128, 256 and 256 channels, one output
layer of 10 neurons. We use convolutional kernels of size 5× 5, padding of 2 and a stride of 1. Each convolutional operation is
followed by a 2 Max Pooling operation with a stride of 2. We flatten the output of the last convolutional layer to feed the
output layer.

Because we used twice as less feature maps at each convolutional layer to speed up our training simulations compared to
the original network Laborieux et al. [20], we used the available code 1 to run simulations with the same architecture as ours to

1The code is available at: https://github.com/Laborieux-Axel/Equilibrium-Propagation.

Figure 15: Top: Train (blue) and test (orange) error on
CIFAR-10 with a convolutional architecture with 4 con-
volutional layers of respectively 64, 128, 256 and 256
channels trained with EP with binary synapses - The scal-
ing factors are fixed - Down: metric of weights flipped
during an epoch, given for each weights matrix from input
to output.

Figure 16: Top: Train (blue) and test (orange) error on
CIFAR-10 with a convolutional architecture with 4 con-
volutional layers of respectively 64, 128, 256 and 256
channels trained with EP with binary synapses - The scal-
ing factors are learnt - Down: metric of weights flipped
during an epoch, given for each weights matrix from input
to output.

Table 6: Hyperparameters used for training systems with EP and binary synapses - lrBias are the learning rates used for
updating the biases with SGD and given from input to output layer - γ is layer-dependent and given from input to output layer

EP BOP
Dataset Method Architecture T K β γ τ lrBias

MNIST fc 784-4096-10 50 10 0.3 1e-4-1e-5 5e-7 0.05-0.025
MNIST fc 784-4096(2)-10 250 10 0.3 2e-5-2e-5-5e-6 5e-7 0.2-0.1-0.05
MNSIT conv 1-32-64-fc 150 10 0.3 5e-8 1e-8 0.1-0.05-0.025
CIFAR-10 conv 3-64-128-256(2)-fc 150 10 0.3 1e-7(2)-2e-7(2)-5e-8 1e-8 0.4-0.2-0.1-0.05-0.025

benchmark our technique.
We chose EP hyperparameters equal to those used for the convolutional architecture trained on MNIST as it has shown to

work well. We tuned BOP hyperparameters to make the metric in the good range for BOP.
The scaling factors α are initialized channel-wise in each convolutional layer which for instance gives 64 scaling factors for

the first convolutional layer with the architecture used here. Again we use the scaled weights to compute the gradient of each
scaling factor.

We performed two sets of simulations:

• Simulations where the scaling factors were fixed which achieve accuracy (Table 1, Fig. 15) close to those reported in the
EP literature ([20]).

• Simulations where the scaling factors were learnt. We show that learning the scaling factors improves a lot the fit by 1.4%
on the train set and thus improves the testing accuracy by 1.2% in Fig. 15, Fig. 16 and Table 5.

We pre-processed CIFAR-10 with the following data augmentation and normalization techniques before feeding it to the
system:

• Random Horizontal Flip with p = 0.5

• Random Crop with padding = 4

• Normalization with µ = (0.4914, 0.4822, 0.4465) and σ = (0.247, 0.243, 0.261) for each rgb input channel.

F.2. Binary Synapses and Activations

We detail in this section all settings and parameters used for the simulations of EP with binary synapses and binary
activations. We ran the simulations with PyTorch and sped them up on a GPU. For all simulations we used mini-batches of
size of 64 as we found it performs better. The time of the simulations runs from 30 mins for the shallow network to 5 days for
the convolutional architecture on CIFAR-10.

For the simulations of EP with binary synapses and binary activations we use the energy-based settings of EP with the rules
derived in Section 4 such as the pseudo-derivative of the Heavyside step function and the enlarged output layer.

In this section, we explore how τ can be finely tuned layer-wise in order to give the best performance while having the
same γ for all layers which could be more hardware friendly as we could use the same devices to store the momentum and
only change the threshold layer-wise. All hyperparameters are reported in Table 6.

The target is one-hot encoded and then replicated Nperclass times to match the size of the output layer. We make the
prediction with the two methods described in E.3. We initialize the binary weights taking the sign of randomly-initialized
weights matrices (native random initialization of Pytorch which is the Uniform Kaiming initialisation).

The input data is kept full-precision thus the MAC operation for the first layer of each architecture is full-precision and also
the gradient.

We choose the sign of beta randomly at each mini-batch which is known to give better results [30], [20] for all simulations
except when training the network with the fully connected architecture and which has 2 hidden layers where we only used
β > 0.

We used the Heaviside step function as the binary activation function as emphasised in Section 4. For defining the
pseudo-derivative function ρ̂

′
(s) (Eq. 14) we used σ = 0.5 despite using a binary activation.

All figures report the mean of the training and testing errors computed with 5 trials each ± 1 standard deviation.
MNIST - fully connected layer - 1 hidden layer: We train a network with a fully connected architecture and 1 hidden

layer on MNIST.
We chose EP hyperparameters (T , K, β) close to those used for training the same architecture but with binary synapses and

full-precision activations. At the same time we tuned BOP hyperparameters in order to fit the flipping metric in the range
leading to successful training as described in Section 3.

We initialize one scaling factor per weight matrix with the method described in Alg. 3. Simulations with a learnt scaling
factors gave results only for 1 hidden layer. When we deepened the network to be trained, learning the scaling factor does not
behave well, which we think it is due to the nudging strategy (notably when β < 0) which does not give an accurate estimation
of the gradient.

To reach an accuracy at the level of reported results in the literature with such architecture trained by EP on MNIST, we
needed to increase by 16 the number of neurons in the hidden layer which gives the architecture we trained: 784-8192-100.
We chose 100 output neurons as it is approximately the number of input units times the sparsity of MNIST data and 100 has
shown to perform the best.

We report all hyperparameters in Table 7. We initialize the biases with the native PyTorch random initialization and the
state of the neurons to one as it has proven to perform better.

We performed two sets of simulations:

• Simulations where the scaling factors were fixed which achieve accuracy (Table 2, Fig. 17) close to those reported in the
EP literature: [8].

• Simulations where the scaling factors were learnt. We show that learning the scaling factors only improve a little bit the
training error: -0.1% but not the testing error: Fig. 17, Fig. 18.

MNIST - fully connected layer - 2 hidden layers We train a network with a fully connected architecture and 1 hidden
layer on MNIST.

We chose EP hyperparameters (T,K,β) close to those used for training the same architecture but with binary synapses and
full-precision activations. At the same time we tuned BOP hyperparameters in order to fit the flipping metric in the range
leading to successful trainings as described in Section 4.

We initialize one scaling factor per weight matrix with the method described in Alg. 3.

Figure 17: Top: Train (blue) and test (orange) error on
MNIST with a fully connected architecture with one hid-
den layer of 8192 neurons trained with EP with binary
synapses and binary activations - The scaling factors are
fixed - Down: metric of weights flipped during an epoch,
given for each weights matrix from input to output.

Figure 18: Top: Train (blue) and test (orange) error on
MNIST with a fully connected architecture with one hid-
den layer of 8192 neurons trained with EP with binary
synapses and binary activations - The scaling factor is
learnt - Down: metric of weights flipped during an epoch,
given for each weights matrix from input to output.

We chose 6000 output neurons as it gives the best accuracy but also as it scales as the number of hidden neurons in the
penultimate hidden layer times some sparsity in the layer.

We initially perform a nudging with the sign of β chosen randomly at each mini-batch. But when we nudge the system with
β < 0, it appears that we should let the system evolve during K time steps with K very large (of the order of at least 500 time
steps). Finally, we chose to nudge only using the sign of β > 0 despite the trainings perform less than if we used the sign of
beta randomly. Monitoring the temporal evolution of some neurons in the network can also help at tuning EP hyperparameters.

To reach an accuracy at levels of reported results in the literature with such architecture trained by EP on MNIST, we used
the following architecture we trained: 784-8192-8192-6000. We report all hyperparameters in Table 7. We initialize the biases
with the native PyTorch random initialization and the state of the neurons to one as it has proven to perform better.

We report all hyperparameters in Table 7. We initialize the biases with the native PyTorch random initialization and the
state of the neurons to one as it has proven to perform better.

MNIST - convolutional architecture We train a convolutional network on MNIST. The architecture used consists in the
following: 2 convolutional layers of respectively 256 and 512 channels. We use convolutional kernels of size 5× 5, padding of
1 and a stride of 1. Each convolutional operation is followed by a 3 Max Pooling operation with a stride of 3. We flatten the
output of the last convolutional layer to feed the output layer of 700 neurons.

We tuned BOP hyperparameters to make the metric in the range below -5.
The scaling factors α are initialized channel-wise in each convolutional layer which gives 256 scaling factors for the first

convolutional layer and 512 scaling factors for the second convolutional layer with the architecture used here.
Again, learning the scaling factors did not show better accuracy and could be also linked to the nudging strategy.
We initialize the biases at 0 and the state of the neurons to one as it has proven to perform better.
Finally, here we adopted another nudging implementation: although the nudging is usually performed by adding the

derivative of the loss function with respect to the units of the output layer +β(y − ŷ), we implemented a constant nudge:
+β(y− ŷ∗), where ŷ∗ stands for the first steady state reached by the output units at the end of the first phase. This nudge has
shown to perform better than the classic nudge.

We report all hyperparameters in Table 7. We initialize the biases with the native PyTorch random initialization and the
state of the neurons to one as it has proven to perform better.

Figure 19: Top: Train (blue) and test (orange) error on MNIST with a fully connected architecture with two hidden layers of
8192 neurons trained with EP with binary synapses & binary neurons - The scaling factors are fixed - Down: metric of weights
flipped during an epoch, given for each weights matrix from input to output.

Figure 20: Top: Train (blue) and test (orange) error on MNIST with a convolutional architecture with 2 convolutional layers of
respectively 256 and 512 channels trained with EP with binary synapses & binary neurons - The scaling factors are fixed -
Down: metric of weights flipped during an epoch, given for each weights matrix from input to output.

Table 7: Hyperparameters used for training systems with EP and binary synapses with binary neurons - γ is layer-dependent
and given from input to output layer when multiple values are given - γ has the same value for all layers when a single value is
given.

EP BOP
Dataset Method Architecture T K β γ τ lrBias

MNIST fc 784-8192-100 20 10 2 2e-6 2.5e-7 - 2e-7 1e-7
MNIST fc 784-8192(2)-8000 30 80 2 1e-6 2e-8 - 1e-8 - 5e-8 1e-6
MNIST conv 1-256-512-1600(fc) 100 50 1 5e-8 8e-8 - 8e-8 - 2e-7 2e-6 - 5e-6 - 1e-5

