





C.3. Energy-Based Settings
C.3.1 Equations of the Dynamics

Inspired by the primitive function derived in the prototypical settings we define an energy function which applies to an
energy-based convolutional system, and rely on the same operations defined above:
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The dynamics is then derived from this energy function with the help of Eq. 1:
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where again we have s = ¢, the output layer.

C.3.2 Learning Rules

We derive the learning from the primitive function with the help of Eq. 23. In the energy-based settings, the learning rules read:
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One should notice that we only need to store the activation p(s) of the neurons to compute the gradient for each parameter
which turns out to be very interesting when the activation function p outputs binary values, as we do in Section 4.
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D. A Scaling Factor for Equilibrium Propagation

In this section, we discuss in detail the scaling factor introduced in Section 3. We first describe the initialization of the
scaling factor. We then show that a naive initialization for the scaling factor inspired by XNOR-Net leads to good performance,
but that tuning more precisely the scaling factor can increase the accuracy. Finally we derive learning rules for the scaling
factors allowing EP to optimize by itself the value of the scaling factors. We show that systems learning their scaling factors
better fit the training set but also learn faster.



D.1. Fixed Scaling Factor
D.1.1 Initializing o value

Rastegari et al. [29] introduced a scaling factor to normalize the binary weights in convolutional architectures with real-valued
activations. They obtained the value of the scaling factors by minimizing layer-wise the squared difference between the binary
weight vector B and the real-valued weight vector W, where B and W are vectors in R" and n = ¢ x f; X fy with c the
number of input channels, and f; and f, the sizes of the filter kernel. The factor « scales B in the following way:

W =aB 41)
They found that the optimal solution is given by:
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In [29], the real-valued weights W are updated after each backward pas, and the scaling factor « is re-computed at each
forward pass.

For training systems with binary synapses through EP, we first use a scaling factor fixed at initialization. We describe in
Alg. 3 how we initialize the binary weights and the corresponding scaling factors layer-wise:

Algorithm 3 Initialize the scaling factors (&) layer-wise

Input Architecture: {Ny,ayers, NNeuronsperlayer }-
Output System having binary weights (17°) and scaling factors () initialized

for each Layer do

w™ = rand(N) —— w™" is a random full-precision matrix
_ W™ )
= dimwmt )
WP = a x Sign(w™ )
end for

The rand() function used in Alg. 3 stands for the native random initialization of Pytorch which is the Kaiming initialization

[12].

D.1.2 Naive initialization vs. our initialization

We found that the use of scaling factors « as initialized with Alg. 3 is crucial to ensure successful training. In fact, if the
synapses are initialized to low or too large, we face the vanishing gradient issue as the activation saturate at both 0 or 1. In
order to show this effect we trained a system with a fully connected architecture comprising 1 hidden layer of 4096 neurons,
with binary weights and full-precision activations, for 50 epochs on MNIST. We plot in Fig. 4 the test error obtained with Alg.
3 for different values of the fixed scaling factors The blue arrow indicate the value corresponding to an initialization of o with
Alg. 3 (we took the averaged value of both scaling factors in the network to obtain a point on the plot).

We see in Fig. 4 that the test error is highly dependent on the value of the scaling factor. The figure shows that for values of
« between about 0.012 and 0.025 the test error is at EP literature level. But even in this range it is not obvious to find the best
value for av. Moreover, we found that choosing arbitrarily the value of « in deep architectures (fully connected architecture
with 2 hidden layers or convolutional architectures) fails at ensuring successful training. We finally chose to initialize the
scaling factors with the method of Alg. 3 as this method is architecture-agnostic and reduces the number of hyperparameters
as we already have some to tune.

In the next section, we address the difficulty to select the best value of « in order to get the best testing accuracy by directly
learning the scaling factor with the help of EP.

D.2. Learning the Scaling Factor with EP

Results in the previous subsection show that optimizing the value of « can give rise to enhanced performance. Here we
show that this optimization can be achieved through EP. In the context of EP we can indeed derive a learning rule for any
parameter in the primitive or energy function. In this section, the scaling factor is first initialized with the method described in
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Figure 4: Mean test error & standard deviation (computed with 3 trials each) of a 1 hidden layer fully connected neural network
on MNIST as a function of the scaling factor « - All dots represent the test error of training performed with « being arbitrarily
chosen - « initialized by the method described in D.1.1 is indicated by the blue arrow.

Alg. 3 and is then optimized with SGD with the gradient extracted by EP. For clarity, we decompose the binary weights W
from +a to o X w where w = £1.

D.2.1 Learning Rules in the Prototypical settings
Fully connected layers architecture.
For a given fully connected layer, the scaling factor a can be introduced in the primitive function of the system as:
1 T
O(s) = Fa X s ws 43)

Eq. 28 then indicates that the learning rule for the scaling factors in a fully connected architecture in the prototypical
settings of EP is:

Aoy 41 = % (Twsisr) — (5T ws1e1))”) (44)

where [ denotes the index of a layer in the system.
Convolutional architecture:
The scaling factors in use for the classifier are updated with the gradient given by the learning rule stated above.

For convolutional layers, we use one scaling factor per output feature map which gives Coyt scaling factors for a layer with
Cout feature maps.

Thus for each channel in a convolutional layer ¢ in Coy; We can write:

P (Whiaxs")e = acx P(wny1xs"), (45)



where Wi 11 = a¢ X w41 are the normalized weights for a channel and wy 1 € {—1.1}. Following this observation, we
can also rewrite a primitive function with « as we did for the fully connected architecture. From this primitive function, we
can derive the learning rule for the scaling factors of the convolutional part which reads, channel-wisely:

{ \V/TL S [17NCOI]V - 1] : Aa2+1 = l((‘92-"_1 'P(wn-&-l *Sn)c) - (82+1 hd 7) (wn-i-l *Sn)c)o) (46)

Aag = *((sg @ P (w1 *x),) — (sg@P (wrx))")

D.2.2 Learning Rules in the Energy-Based Settings

Fully connected layers architecture:
Similarly to the way we introduced « in the primitive function, we re-write the energy function of a fully connected layers
architecture as a function of o

1 1
E(s) =5 Z Si— 5 Z aij wij p(si)p(si) — Z bip(si) (47
i i #j i
Again, with the help of Eq. 23 we derive a learning rule for the scaling factors in a fully connected architecture in the
energy-based settings of EP which reads as follow:

Aoy 41 = % (s Ywp(s141)) — (o7 Ywp(s141))°) (48)

where [ denotes the index of a layer in the system.

Convolutional architecture:

The scaling factors in use for the classifier are updated with the gradient given by the learning rule stated above.

In our convolutional networks, we use one scaling factor per feature map which gives Coyt scaling factors for a layer with
Cout feature maps. For each feature map, we have Eq. 45 verified and we can also easily derive the learning rule of the scaling
factors of the convolutional layers which reads, channel-wise:

{ Y € [1, Neony = 1] Aag*t = 2((p(s¢+") @ P (W1 % p(s"))) = (p(sg™!) @ P (Wia x p(s"),)°)) (49)
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D.3. Benefits of Learning the Scaling Factor when the Synapses are Binary and the Activations Full-Precision

In the next Tables 3, 4 and 5, we report the training and test errors obtained with fixed and dynamical scaling factors on
MNIST and CIFAR-10 with different architectures, at mid-training and at the end of the training.

Learning the scaling factor accelerates the training. In these tables, we show that the training times are accelerated when
the scaling factor is dynamical instead of fixed after initialization. In particular for MNIST, the training is accelerated by a
factor over two compared to the fixed scaling, both for fully connected and convolutional architectures.

For CIFAR-10 the acceleration is not as large as for MNIST but we struggled to fine-tune the learning rate for the scaling
factors and thus better combinations could give larger acceleration.

Systems learning the scaling factors better fit the training set. Also in these tables we see that every trainings done with
dynamical scaling factors always better fit the training set than trainings done with fixed scaling factors. We also see in
these tables that every training done with dynamical scaling factors better fits the training set than with fixed scaling factors.
Training errors on MNIST are improved by 0.8% and 0.15% for fully connected layers architectures having 1 and 2 hidden
layers. The convolutional architecture trained on MNIST also gains 0.45% in terms of training error. Whereas the fully
connected architectures sees the test error also improved alongside the training error, the convolutional architecture sees a
slight degradation of the test error due tooverfitting.
The convolutional architecture trained on CIFAR-10 gains 1.1% training error.






E.2. An Enlarged Output Layer for a Greater Error Signal

The scaling factors introduced in Section 3 to normalize the binary weights and not to saturate the activations show
limitations with binary activations. Neurons with binary activations can sometimes indeed no longer propagate the error signal.

We enlarged the output layer to solve this issue as described in Fig. 5. This enlargement of the output layer makes the
neurons having a binary activation again sensitive to the error signal and their activation can change during the nudging phase.
This opens the path to training deeper architectures with binary activations and weights with EP. Our solution is similar in
spirit to the augmented output layer used by [3].

E.3. Making Predictions with an Enlarged Output Layer

Usually an output layer has as many neurons as the number of classes in the dataset and the prediction is the argmaxof the
output layer.

But when we train systems having binary activations the output layer is augmented and it is not straightforward to make a
prediction taking the argmaxof the output layer. We describe here two methods to make a prediction with the enlarged output
layer. We used both methods in our simulations and show they give similar accuracy in the end.

Making predictions by averaging each sub-class. This first method allow us to retrieve a situation similar to the classic
output layer having one neuron per class. In fact we first average the internal state - or pre-activation - of each neuron belonging
to a class which gives 10 averaged values and the prediction is taken as the argmaxof these averaged values.

Making predictions with one neuron per sub-class. The first method we describe above to make the prediction could
reveal to be computationally and time expensive and costly to realize on digital hardware. A second, more hardware-friendly,
method is to look at the state of only one output neuron per class and take the argmax of these “’single-neurons”.

Comparison of the two methods. We want to see if the second method, which constitutes a great simplification of the
prediction process, performs as well as the first method. For this purpose, we plot in Fig. 6 and Fig. 7 the difference of the
training and the testing errors of two fully connected architectures with binary synapses and activations and 1 and 2 hidden
layers trained on MNIST computed with the two methods described above. We see that for the network with 1 hidden layer,
the difference between the two methods does not exceed 0.1% for both training and testing errors. For the network with 2
hidden layers, despite the fact that the difference starts at a high level with more than 0.7% of difference for the testing error
and more than 1% for the training error, in the end of the training process the differences have decreased to almost 0%. Both
figures show the effectiveness of the second method at making the predictions at a lower cost both computationally and in time
than the first method.

F. Simulations Details - Hyperparameters and Training Curves
F.1. Binary Synapses

We detail in this section all settings and parameters used for the simulations for EP with binary synapses and full-precision
activations (hardsigmoid activation function). We ran the simulations with PyTorch and speed them up on a GPU. The duration
of the simulations runs from 30 mins for the shallow network to 5 days for the convolutional architecture on CIFAR-10.

For these simulations, we use the prototypical settings of EP for the sake of saving simulation time. The energy-based
settings would perform the same way but such models are much longer to train.

We found that comparatively to full-precision models trained by EP, the error signal vanishes through the system and thus
deep layers need a greater learning rate for the biases and greater y for the weights. All hyperparameters are reported in Table
6.

The target is one-hot encoded and the prediction is computed by taking the argmax of the state of the output neurons. The
output layer is designed in a way that we have one output neuron per class of the dataset. We initialize the binary weights
taking the sign of randomly-initialized weights matrices.

We choose the sign of beta randomly at each mini-batch which is known to give better results [30, 20]. For all simulations
we used mini-batches of size of 64 as we found it performs better.

All figures report the mean of the training and testing errors computed with 5 trials each & 1 standard deviation.
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Figure 6: Difference of the train and test errors computed with the averaging method and the method with only one neuron per
subclass for a system with one hidden layer of 8192 neurons and 100 output neurons
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Figure 7: Difference of the train and test errors computed with the averaging method and the method with only one neuron per
subclass for a system with two hidden layers of 8192 neurons and 8000 output neurons

MNIST - fully connected layer - 1 hidden layer. We train a network with a fully connected architecture and 1 hidden layer
on MNIST. We first tuned the EP hyperparameters (7', K, ) making EP gradient estimates match those given by BPTT [8].
At the same time we tuned BOP hyperparameters in order to fit the flipping metric (Eq. 6) in the range leading to successful
training as described in Section 3. We found that contrarily to Helwegen et al [13], the flipping metric starts at high level
(between 0 and —4/ — 5) and decreases over epochs to reach a region below -5.

We initialize one scaling factor per weight matrix with the method described in Alg. 3. When the scaling factors are learnt,
we use the same learning rate for all scaling factors. Despite the fact that the learning rule for the scaling factors requires the



sign of the weights 1 for the computation, we found that using the scaled weights +a performs the same way so we used the
scaled weight matrix to compute the gradient.

To reach an accuracy at levels of reported results in the literature with such architecture trained by EP on MNIST, we
needed to increase by 8 the number of neurons in the hidden layer as shown in Fig. 8 when the scaling factors are fixed which
justifies the architecture we trained: 784-4096-10.

We report all hyperparameters in Table 6. We initialize the biases with the native PyTorch random initialization and the
state of the neurons to zero as it has proven to perform better.

We performed two sets of simulations:

» Simulations where the scaling factors were fixed which achieve accuracy (Table 1, Fig. 9) close to those reported in the
EP literature: [8].

» Simulations where the scaling factors were learnt. We show that learning the scaling factors improves by a considerable
margin the training -0.7% and the testing -0.4% errors: Fig. 9, Fig. 10 and Table 3. We link the better testing error to a
better fit on the training set as the network seems to overfit a bit: the testing error starts to increase after 10 epochs which
also highlights the fact that when we learn the scaling factors, we can use less neurons per hidden layer and still get
accuracy close to those reported in the EP literature. We also report that the training is at least five times faster, as after 10
epochs the training and testing errors are below the levels obtained after 50 epochs with fixed scaling factors. Learning
the scaling factors makes the flipping metric of BOP to decrease more quickly than when the scaling factors are fixed.
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Figure 8: Averaged train (blue) and test (orange) errors on MNIST with a fully connected architecture with one hidden layers
as a function of the number of hidden neurons - We average the errors over 5 trials and plot the average + 1 standard deviation

MNIST - fully connected layer - 2 hidden layers. We train a network with a fully connected architecture which has 2
hidden layers on MNIST. We initially chose EP and BOP hyperparameters close to the hyperparameters chosen for training
the network with one hidden layer network and then fine-tuned them to achieve the best accuracy. The metric of BOP (Eq. 6)
also decreases over epochs to reach a level below -5 in the good range for BOP.

Again, we initialize with Alg. 3 one scaling factor per weight matrix which gives 3 scaling factors for this architecture.
We also use the same learning rate for all scaling factors and the scaled weights for computing the gradient as done with the
architecture which has 1 hidden layer.

We kept the same number of neurons (4096) in each hidden layer as for the architecture which has only 1 hidden layer.

We report all hyperparameters in Table 6. We initialize the weights with the native PyTorch random initialization and the
state of the neurons to zero as it has proven to perform better.

We performed two sets of simulations:

 Simulations where the scaling factors were fixed, which achieve accuracy (Table 1, Fig. 11) close to those reported in the
EP literature [8].
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Figure 17: Top: Train (blue) and test (orange) error on
MNIST with a fully connected architecture with one hid-
den layer of 8192 neurons trained with EP with binary
synapses and binary activations - The scaling factors are
fixed - Down: metric of weights flipped during an epoch,
given for each weights matrix from input to output.
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Figure 18: Top: Train (blue) and test (orange) error on
MNIST with a fully connected architecture with one hid-
den layer of 8192 neurons trained with EP with binary
synapses and binary activations - The scaling factor is
learnt - Down: metric of weights flipped during an epoch,
given for each weights matrix from input to output.

We chose 6000 output neurons as it gives the best accuracy but also as it scales as the number of hidden neurons in the
penultimate hidden layer times some sparsity in the layer.

We initially perform a nudging with the sign of 3 chosen randomly at each mini-batch. But when we nudge the system with
B < 0, it appears that we should let the system evolve during K time steps with K very large (of the order of at least 500 time
steps). Finally, we chose to nudge only using the sign of 8 > 0 despite the trainings perform less than if we used the sign of
beta randomly. Monitoring the temporal evolution of some neurons in the network can also help at tuning EP hyperparameters.

To reach an accuracy at levels of reported results in the literature with such architecture trained by EP on MNIST, we used
the following architecture we trained: 784-8192-8192-6000. We report all hyperparameters in Table 7. We initialize the biases
with the native PyTorch random initialization and the state of the neurons to one as it has proven to perform better.

We report all hyperparameters in Table 7. We initialize the biases with the native PyTorch random initialization and the
state of the neurons to one as it has proven to perform better.

MNIST - convolutional architecture We train a convolutional network on MNIST. The architecture used consists in the
following: 2 convolutional layers of respectively 256 and 512 channels. We use convolutional kernels of size 5 x 5, padding of
1 and a stride of 1. Each convolutional operation is followed by a 3 Max Pooling operation with a stride of 3. We flatten the
output of the last convolutional layer to feed the output layer of 700 neurons.

We tuned BOP hyperparameters to make the metric in the range below -5.

The scaling factors « are initialized channel-wise in each convolutional layer which gives 256 scaling factors for the first
convolutional layer and 512 scaling factors for the second convolutional layer with the architecture used here.

Again, learning the scaling factors did not show better accuracy and could be also linked to the nudging strategy.

We initialize the biases at 0 and the state of the neurons to one as it has proven to perform better.

Finally, here we adopted another nudging implementation: although the nudging is usually performed by adding the
derivative of the loss function with respect to the units of the output layer +3(y — ¢), we implemented a constant nudge:

+5(y — §4), where g, stands for the first steady state reached by the output units at the end of the first phase. This nudge has
shown to perform better than the classic nudge.

We report all hyperparameters in Table 7. We initialize the biases with the native PyTorch random initialization and the
state of the neurons to one as it has proven to perform better.
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Figure 19: Top: Train (blue) and test (orange) error on MNIST with a fully connected architecture with two hidden layers of
8192 neurons trained with EP with binary synapses & binary neurons - The scaling factors are fixed - Down: metric of weights
flipped during an epoch, given for each weights matrix from input to output.
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Figure 20: Top: Train (blue) and test (orange) error on MNIST with a convolutional architecture with 2 convolutional layers of
respectively 256 and 512 channels trained with EP with binary synapses & binary neurons - The scaling factors are fixed -
Down: metric of weights flipped during an epoch, given for each weights matrix from input to output.



Table 7: Hyperparameters used for training systems with EP and binary synapses with binary neurons - v is layer-dependent
and given from input to output layer when multiple values are given - - has the same value for all layers when a single value is
given.

EP BOP
Dataset Method Architecture T K g ~y T IrBias
MNIST fc 784-8192-100 20 10 2 2e-6 2.5e-7 - 2e-7 le-7
MNIST fc 784-8192(2)-8000 30 80 2 le-6  2e-8 - 1e-8 - 5e-8 le-6
MNIST conv 1-256-512-1600(fc) 100 50 1 S5e-8 8e-8-8e-8-2e-7 2e-6-5e-6-le-5




