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Abstract

The growing interest in exploring thermal face biomet-

rics is mostly due to the robustness of thermal imagery to

face spoofing attacks. However, this robustness lies in the

acquisition of thermal properties by the thermal sensor and

is limited to presentation attacks. In this paper, we pro-

pose a new type of attack on thermal face recognition sys-

tems, performed at the post-sensor level. In the visible spec-

trum, this attack would be carried out by simply injecting a

face image of the claimed identity into the communication

channel right after the sensor. However, unlike visible face

images that are abundantly available on the web, thermal

face images are not easy to obtain. Therefore, we propose

to generate synthetic thermal attacks by converting visible

face images into the thermal spectrum. To perform visible-

to-thermal spectrum conversion, we use a cascaded refine-

ment network trained using contextual loss. In a scenario

where the attacker has prior knowledge about the spoof-

ing countermeasure of the system, we introduce a new loss

computed at the local binary pattern (LBP) maps level to

fool an LBP-based spoofing attack detection algorithm. The

vulnerability of thermal face biometric systems to the pro-

posed attack is then assessed using two existing baselines

of spoofing attack detection. When compared to the chal-

lenging presentation attack using silicone masks, the equal

error rate has increased from 0.20% to 11.60% and from

2.28% to 58.54% when exposed to the proposed synthetic

attack, using the two spoofing attack detection baselines.

1. Introduction

Automatic face recognition is one of the most intuitive

and convenient biometric systems as it offers a contactless

and non-intrusive process. Face biometric systems have im-

mensely evolved to achieve human-level performance. For

these reasons, face biometric systems are now widely de-

ployed in countless applications from border control to face

unlock on mobile devices. With this growing usage of face

biometric systems, it is commonly acknowledged that this

technology is exposed to multiple threats [12, 18, 21]. Eight

different levels of attacks have been defined in [12, 24], a

ninth level of attack that occurs on the spoofing countermea-

sure unit can be considered. Figure 1 illustrates the different

levels of attacks on face biometric systems. The two most

vulnerable points in a face biometric system are marked by

1 and 2 in Figure 1, corresponding to direct or physical ac-

cess and indirect or logical access. Face biometric systems

might be the most vulnerable among all biometric systems,

as faces are accessible on social networks or through captur-

ing a photograph at a distance without the victim’s consent.

Direct or physical access attacks occur at the pre-sensor

level and is referred to as presentation attack. According to

ISO/IEC30107 standards [2], presentation attack is defined

as ”the presentation of an artefact or of human characteris-

tics to a biometric capture subsystem in a fashion intended

to interfere with system policy”. This attack can be car-

ried out either to impersonate/spoof a genuine user to gain

unauthorised access, or to evade the biometric system by

concealing the attacker’s identity. The presented artefact

can consist of a fake biometric sample of the claimed iden-

tity (photograph, mask, etc) in spoofing scenarios, or some

alteration or falsification [8, 9] applied to the attacker’s bio-

metric sample in evasion scenarios. Recent research stud-

ies [3, 11, 5, 8, 23] have proved that using thermal imagery

might be the most effective solution to presentation attack

detection. Thermal imagery detects electromagnetic radia-

tions in the mediumwave MWIR (3 - 8µm) and longwave

infrared spectrum LWIR (8 - 15µm) in which most of the

heat energy of human faces is emitted. The thermal signa-

ture of the human face thus provides evidence of the user’s

liveness. Artifacts presented by the impostor exhibit differ-

ent thermal characteristics of those of a face, leading to a

straightforward presentation attack detection solution.

Indirect or logical access attacks, on the other hand, oc-

cur at the post-sensor level. For this scenario, it is assumed

that the attacker has access to the communication channel
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Figure 1: Levels of attacks on face biometric systems.

between the sensor and the feature extraction module, as

shown in Figure 1. This attack intercepts the face sample

acquired by the sensor and substitutes it with a fake sample

of the claimed identity. These attacks in the visible spec-

trum include replay attacks [12], adversarial attacks [26],

face morphing attacks [20]. Face samples are easy to obtain

to spoof conventional visible spectrum-based face biomet-

ric systems. However, this isn’t the case for thermal face

biometric systems, as thermal images are not abundantly

available as is the case of visible images.

While until very recently the deployment of thermal

technologies would have been very expensive to deploy and

thus an un-realistic alternative to presentation attack detec-

tion, the use of thermal imagery is now a reality. It is per-

haps for this reason thermal imagery is gaining a lot of at-

tention and starting to be deployed across many applications

requiring high levels of security. Therefore, it is essential to

study all the vulnerabilities of thermal face biometric sys-

tems and the threats they may encounter.

In this paper, we propose a new attack on biometric sam-

ples at the post-sensor level for thermal face biometric sys-

tems. The robustness of thermal face biometric systems

lies in the process of acquisition characterising thermal sen-

sors. Therefore, the indirect access attacks, that occur at

the post-sensor level, are an obvious threat to the reliabil-

ity of thermal face biometric systems. We presume that

the attacker injects into the thermal face biometric system

a fake thermal face sample representing the thermal signa-

ture of the claimed identity. This type of attack on ther-

mal face biometric systems, to the best of our knowledge,

has not yet been explored in the literature. Since thermal

face images are nearly impossible to obtain, the new attack

we are proposing consists of generating synthetic thermal

face images by converting images acquired in the visible

spectrum to the thermal spectrum. We also consider the

scenario where the attacker has prior knowledge about the

spoofing countermeasure used in the system and uses it to

adapt his/her synthetic attack to better spoof the system. We

assess the vulnerability of the existing countermeasure ap-

proaches designed for thermal spectrum when exposed to

the proposed synthetic attacks.

The remainder of this paper is organised as follows. Sec-

tion 2 presents briefly the studies carried out for spoofing

attacks on the thermal spectrum. Section 3 introduces our

approach to generate the proposed thermal attack, and the

modifications we applied to obtain a more challenging at-

tack for a given spoofing attack detection approach. Sec-

tion 4 details the process to generate the proposed synthetic

attacks and presents a quality assessment of the generated

thermal images. Section 5 reports the experimental setup

defined for the evaluation of two existing baselines of spoof-

ing attack detection when exposed to the proposed attacks,

followed by results and discussion. Conclusions are pre-

sented in Section 6.

2. Related work

First attempts of spoofing attacks included techniques as

simple as the presentation of a photograph from the claimed

identity on a printed paper or on a mobile device screen,

which can alter the performance of algorithms operating ex-

clusively on 2D images. Some prompt solutions have been

proposed such as requiring an eye blink, smile, or other vi-

sual reactions to prove the liveness of the user, yet this can

be easily tricked using video replay attacks. New sensor-

based presentation attack countermeasures have also been

considered, as these sensors deliver complementary visual

information. 3D sensors [7, 13] unravel the lack of depth in-

formation when a printed photograph or a video played on

a device is presented. A much more robust sensor against

these attacks is thermal cameras, as it provides proof of

the user’s liveness simply through acquisition [4]. When



presenting these aforementioned attacks, the acquired ther-

mal sample will present some properties that are differ-

ent from those of a human face thermal signature. More

elaborate and high-cost methods of spoofing have later ap-

peared to manufacture 3D masks, which are robust to 3D

sensor-based presentation attack detection. Thermal sen-

sors remain highly robust against rigid 3D mask attacks,

as the rigid mask presents a uniform pattern with a much

lower temperature than an average human face. However,

this robustness can be affected when a flexible silicone or

latex mask-based attack is presented, as it can get heated

when worn by the attacker’s face. Recent studies [3, 11, 5]

do however show that even though the robustness of ther-

mal sensor-based presentation attack detection drops, ther-

mal modality remains the most robust among other studied

modalities such as visible spectrum, depth maps, and near-

infrared spectrum. As for evasion, the attack can consist of

face disguise and it can go as far as getting plastic surgery.

While this can practically interfere with visible spectrum-

based face biometric systems, thermal technology has been

proved substantially robust to these attacks as well [8, 23].

Face disguise can easily be detected since the used acces-

sories present different thermal properties from those of a

human face [8]. Thermal imagery can also identify plastic

surgeries, as the resulted alteration of blood vessels appear

as cold areas in the face [23].

A preliminary study was carried out, by Bhattacharjee

et al. [4], to explore the usage of multi-channel informa-

tion for presentation attack detection. The study considered,

along with the visible spectrum, data from thermal, near-

infrared, and depth channels. The authors demonstrated that

3D masks and 2D attacks can easily be detected in the ther-

mal spectrum by using the mean facial intensity of the face

region. In [5], the authors proved the vulnerability of com-

mercial face recognition systems to custom silicone masks.

They also propose, as a solution for presentation attack de-

tection, to use the mean facial intensity, as proposed in [4].

Agarwal et al. [3] introduced a multispectral database of la-

tex mask attacks including visible, near-infrared, and ther-

mal spectra. The authors performed different experiments

for face verification and presentation attack detection inde-

pendently for each spectrum. For presentation attack detec-

tion, they proved that the thermal spectrum is the most ro-

bust in comparison to visible and near-infrared spectra. The

best performing system was based on redundant discrete

wavelet transform (RDWT), Haralick features, and support

vector machine (SVM). However, the results reported on the

thermal spectrum are questionable since the thermal data

seems to be acquired using FLIR MSX1 mode which adds

visible light details to the thermal images. George et al. [11]

present a new multi-channel database containing different

2D and 3D attacks. A multi-channel convolutional neural

1https://www.flir.com/discover/professional-tools/what-is-msx/

network was proposed in [11] for presentation attack detec-

tion. Besides, a score level fusion was performed combin-

ing the scores of each channel’s presentation attack detec-

tion algorithm. For thermal spectrum, a presentation attack

detection algorithm, based on local binary pattern (LBP)

feature extraction followed by logistic regression classifica-

tion, had outperformed the RDWT-Haralick-SVM baseline

proposed by [3]. In [8], a disguise database in the visible

and thermal spectrum was proposed. The authors proposed

to combine patches from visible and thermal images for pre-

sentation attack detection.

3. Visible-to-thermal spectrum conversion

A new attack on thermal face biometric systems is pro-

posed in this work. This attack occurs at the post-sensor

level and is obtained by converting available visible face

images to thermal spectrum. In this section, we introduce

the used approach to convert visible images to thermal spec-

trum. A customisation of the used approach is later pre-

sented to generate more challenging attacks to a given ap-

proach of the thermal spectrum-based presentation attack

detection. Finally, implementation details of the proposed

approaches are given.

3.1. Cascaded refinement network for spectrum
conversion

Visible-to-thermal spectrum conversion was carried out

using cascaded refinement networks (CRN) [15, 17]. Se-

lecting CRN network for our visible-to-thermal spectrum

conversion was driven by the fact that it scales seamlessly

to high-resolution yielding more realistic images. CRN [6]

is a feed-forward convolutional neural network consisting

of a cascade of refinement modules, each module operating

at a given resolution, as illustrated in Figure 2. CRN model

synthesises images progressively starting at the lowest res-

olution (4×4 in our implementation), then feature maps are

incrementally refined duplicating the resolution at each step

until reaching the target image resolution (128×128 in our

implementation).

The parameters optimisation of the CRN network is per-

formed using contextual loss (CX) [19], which aims to com-

pare regions with similar semantic details while preserving

the context of the entire image. Our loss function can be

modeled as a combination of two losses: style loss and

content loss, as defined by Gatys et. al [10]. The style

loss is computed between the generated thermal image and

the ground truth thermal image. Minimising the style loss

yields to generate artificial images with the same properties

as the target thermal image. The content loss is computed

between the input visible image and the generated thermal

image. The content loss aims at preserving details as facial

attributes, while tolerating some local deformations that are

required to perform the visible-to-thermal style conversion.
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Figure 2: Illustration of the proposed architecture to perform visible-to-thermal spectrum conversion. The highlighted blocks

of the diagram illustrate the introduced loss for the customised approach.

Both losses are computed at embedding level, extracted us-

ing VGG19 [25]. The CRN loss can be formulated as fol-

low:

LCRN (G, IV is, ITh) = α1LCX(Φls(G(IV is)),Φls(ITh))+

α2LCX(Φlc(G(IV is)),Φlc(IV is))

(1)

Where IV is, ITh and G denote the input visible image, the

ground truth thermal image and the generator (i.e. visi-

ble to thermal synthesis model), respectively. Φlc
and Φls

refer to the VGG19 embeddings extracted at content lay-

ers conv4_2 level and style layers level conv3_2 and

conv4_2, respectively.

3.2. Customised CRN for attack synthesis

Here, we explore the scenario in which the attacker has

obtained some prior information about the spoofing attack

detection approach used in the targeted thermal face bio-

metric system.

The study, carried out by George et al. in [11], has

proven that the spoofing attack detection algorithm based

on LBP feature extraction is outperforming the solution pro-

posed by [3]. Therefore, we consider the LBP-based spoof-

ing attack detection as our reference approach on which the

attacker has some prior information. Consequently, we cus-

tomised our visible-to-thermal spectrum conversion model

in a way that it intends to generate thermal images of which

the LBP map is more similar to the LBP map of thermal

ground truth images, or simply put more similar to the LBP

map of thermal bonafide samples. LBP was originally in-

troduced by Ojala et al. [22] for texture analysis, but later

on, it was extensively explored in numerous applications.

Particularly, it has shown its efficiency for face analysis.

In Figure 2, the architecture of the two used approaches

to perform visible-to-thermal spectrum conversion is illus-

trated. Our LBP-based customisation of the CRN model is

highlighted in red. The part of the diagram that is not high-

lighted, represents the basic CRN model, where we observe

the loss at content level computed between the input visible

image and the synthetic thermal image, and the loss at style

level between the synthetic thermal image and the thermal

ground truth (bonafide) image. In addition to the loss de-

fined for the basic CRN model, we introduced a new loss



that is computed at the LBP map level. The LBP map is

generated using a uniform pattern, 8 sample points in the

neighborhood on the circle of radius 1. To compute this

loss function, we propose to use contextual loss computed

on LBP maps, but solely at the style level, as our objective

is to generate thermal attacks of which the LBP maps are

closer to the LBP map of thermal bonafide images. We ex-

tracted the VGG19 embedding vectors from LBP maps of

the synthetic thermal image and the thermal ground truth, at

style layers. Consequently, the total loss of the conversion

model, in this case, is defined as follow:

LTotal(G, IV is, ITh) = λ1LCRN (G, IV is, ITh)+

λ2LCX(Φls(LBP (G(IV is))),Φls(LBP (ITh)))
(2)

In addition to the annotation defined in the equation 1,

LBP denotes the LBP map. For the remainder of the pa-

per, we refer to the visible-to-thermal conversion models as

CRN, CRN+CX(LBP) to denote the basic CRN model and

the CRN model combined with the contextual loss at style

level computed on LBP maps, respectively.

3.3. Implementation details

VIS-TH face database [16] is used to train our visible-

to-thermal spectrum conversion models. This database is

publicly available and contains face images in both visible

and thermal spectra with a pixel resolution of 1920×1080

for the visible images and 160×120 for the thermal images

with a spectral response range of 7.5 - 13.5µm. Unlike

the few existing databases of visible and thermal face, this

database is acquired simultaneously using the dual-sensor

camera Flir DUO R [1] considering a wide range of facial

variations. The database contains in total 1050 pairs of im-

ages collected from 50 subjects of different ages, gender,

and ethnicities. During training, we excluded one variation

as it was acquired in total darkness, which yields 1000 pairs

of face images. Visible and thermal images are registered

and re-sampled to 128×128 pixels.

The training of the two proposed models of visible-to-

thermal spectrum conversion was performed with a learning

rate of 1e-4. The CRN model was trained for 40 epochs and

CRN+CX(LBP) model for 90 epochs. The weights assigned

to the different losses α1, α2, λ1 and λ2 were adjusted using

Grid Search.

4. Indirect attack synthesis

In this section, the dataset, from which the synthetic ther-

mal attacks are generated, is first introduced. A quality as-

sessment of the synthetic thermal images is then performed.

4.1. CSMAD dataset for indirect attack synthesis

Choosing the Custom Silicone Mask Attack Dataset

(CSMAD) [5] is motivated by the fact that this dataset con-

tains the most challenging attack on thermal face biometric

systems, and therefore it will be considered as a baseline at-

tack. In other words, the vulnerability of the spoofing attack

detection approaches to the new attack, proposed in this pa-

per, will be assessed and compared to the vulnerability to

the silicone masks attack.

CSMAD contains presentation attacks made of six

custom-made silicone masks. Face images are collected

from 14 subjects. Bonafide samples were collected from

all subjects. Extra bonafide samples were acquired for few

subjects for which they were wearing eyeglasses. Attack

samples were acquired for all 6 masks but worn by dif-

ferent attackers. Additional attack samples were recorded

with the masks attached to their provided stands. The CS-

MAD provides bonafide and attack acquisitions, consisting

of videos of 5 to 10 seconds, in the visible, near-infrared and

thermal spectrum, and also depth maps collected simultane-

ously. The dataset was collected under 4 different illumina-

tion conditions. In our study, we have only considered data

from the visible and thermal spectrum.

Figure 3 presents few attack samples. We can observe,

in column (a), where the mask is worn by the attacker it gets

warm exhibiting a thermal face sample that looks more like

a face. Whereas for the attacks where the mask is attached

to a stand, we can barely differentiate the mask from the

background in the thermal spectrum, as they probably have

similar temperatures.

(a) (b)

Figure 3: Samples of presentation attack of CSMAD

database in visible and thermal spectrum. (a) worn masks

(b) standing masks.



4.2. Quality assessment of the synthetic attacks

Bonafide samples of the CSMAD dataset, which are

acquired in the visible spectrum, are fed to the visible-

to-thermal spectrum conversion models presented, in sec-

tion 3, to generate the synthetic attack. Two of the illumi-

nation conditions were discarded as they altered the quality

of the synthetic images resulting in black areas in the face

caused by missing information in the visible spectrum.

Figure 4 illustrates the synthetic attacks in column (c),

and (d). We note that the synthetic thermal images present

a realistic pattern of thermal signature. Some details, such

as hair and eyebrows, are converted into low pixel values

reflecting regions with lower temperature compared to the

face region. However, we can observe that the synthetic

thermal images, when compared to thermal ground truth in

column (b), present more details in some facial traits such as

eyes and mouth. This is expected as the synthetic thermal

images are generated from data with a different source of

information. Comparing the synthetic thermal images gen-

erated using the two proposed visible-to-thermal spectrum

conversion models, we note that the two sets, (c) and (d), of

synthetic images are remarkably similar, we can note few

minor differences that are almost not visually perceptible.

(a) (b) (c) (d)

Figure 4: Samples of synthetic attacks. (a) visible bonafide

(b) thermal bonafide (ground truth) (c) synthetic attacks us-

ing CRN (d) synthetic attacks using CRN+CX(LBP).

A quality assessment of the synthetic thermal attacks

obtained by the two proposed approaches is performed

in terms of peak signal-to-noise ratio (PSNR), structural

similarity index measure (SSIM), brightness and contrast.

PSNR and SSIM are computed between the synthetic ther-

mal images and the thermal bonafide samples (ground

truth). The brightness and the contrast quality metrics [14]

are measured for each set of images, then a similarity score

was deduced by comparing the quality measures of the syn-

thesised thermal images obtained using the two different

models to the quality measures of the bonafide thermal im-

ages. Table 1 reports the quality metrics obtained for the

two visible-to-thermal conversion models. Except for the

brightness metric, we observe that the obtained results do

not reflect a high fidelity of the synthetic thermal images

to the ground truth. As illustrated out in Figure 4, the

synthetic attacks are generated from visible face images

which provide different information compared to the ther-

mal spectrum. The visible-to-thermal conversion models

aim to generate thermal-like images but they cannot pre-

dict accurately the thermal signature. However, we observe

that the CRN+CX(LBP) model generates thermal images

that are more similar to the ground truth (bonafide) ther-

mal images than the CRN model, which demonstrates the

utility of the LBP loss term in improving the quality of the

synthesised thermal images.

5. Evaluation of face spoofing attack detection

for indirect synthetic attack

In this section, we carry out a performance evaluation

of spoofing attack detection when confronting the new pro-

posed synthetic attack in order to quantify the threat caused

by the synthetic attack. First, we present the spoofing at-

tack detection algorithms used for the evaluation. Then, we

introduce our experimental setup followed by the reported

results and discussion.

5.1. Spoofing attack detection baselines

The selected baselines of spoofing attack detection were

previously presented in studies of the robustness of thermal

spectrum against spoofing attacks [4, 5, 3, 11].

Mean facial intensity (MFI) As defended in [4, 5], mean

facial intensity is a simple but efficient solution to prove the

user’s liveness in the thermal spectrum. This argument can

be endorsed by the fact that face regions are rather bright in

the thermal spectrum, while presentation attacks are quite

dark since they are at a significantly lower temperature than

faces. This is also valid for silicone mask attacks since it is

expected that the attack region will be relatively darker than

the face region even when worn by the attacker. Mean facial

intensity can be used merely as a spoofing attack detection

score.

Local Binary Patterns and Logistic Regression

(LBP+LR) Local binary patterns (LBP) are used to

represent the texture variation between bonafide samples

and attack samples. Subsequently, logistic regression (LR)
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Figure 5: Score distribution of mean facial intensity baseline for bonafide and attack samples. (a) synthetic attack CRN (b)

synthetic attack CRN+CX(LBP)

PSNR SSIM Brightness Contrast

CRN 15.576 (±4.246) 0.610 (±0.103) 0.943 (±0.061) 0.738 (±0.183)

CRN+CX(LBP) 15.616 (±4.208) 0.618 (±0.107) 0.945 (±0.062) 0.747 (±0.210)

Table 1: Quality assessment of the synthetic attacks.

is used to build a classifier to label samples as bonafide

or attack. LBP features are normalised before training the

LR model. We have applied normalisation to zero mean

and unit standard deviation using parameters extracted only

from the bonafide feature set. Given an LR-trained model,

the output of this spoofing attack detection is a probability

of a sample being bonafide.

5.2. Experiments and results

The performance evaluation of the presented spoofing

attack detection baselines is performed on the CSMAD

dataset along with the synthetic attacks obtained using the

different visible-to-thermal conversion models. CSMAD

dataset provides video samples that are split into frames.

Spoofing attack detection scores are computed at the frame

level.

Face regions are cropped by extracting the face coordi-

nates on the visible spectrum and projecting them on ther-

mal face images. Mean facial intensity is computed across

the face region. Figure 5 illustrates the score distribution of

mean facial intensity for bonafide samples and attack sam-

ples. The score distribution of the bonafide samples is il-

lustrated in green and the silicone mask attack in blue in

Figures 5a and 5b. We observe that the two score distribu-

tions hardly overlap. However, the score distribution for the

synthetic attack generated by the two different models of

visible-to-thermal spectrum conversion significantly over-

laps with the score distribution of the bonafide samples. Ac-

cordingly, we can deduct that the proposed synthetic attack

has led to a failure of the spoofing attack detection solution

based on mean facial intensity.

For the LBP+LR baseline, we split the CSMAD dataset

into 14 partitions, each partition corresponds to a specific

subject. For each cross-validation fold, 13 partitions are se-

lected to train the spoofing attack detection model and the

remaining partition is used for testing. The splitting of the

dataset is defined in a way to ensure a disjoint set of sub-

jects so that the spoofing attack detection model does not

learn subject-specific information. Figure 6 presents the de-

tection error tradeoff (DET) curves corresponding to each

of the studied attacks. For the silicone mask attack, we

observe that the LBP+LR based spoofing attack detection

report a considerably low error, reflecting this solution’s ro-

bustness against silicone mask attacks. The performance

of the LBP+LR baseline drastically decreases when dealing

with the proposed synthetic attacks. In a scenario of an ex-

tremely secure spoofing attack detection system where al-

most no attacker will be able to breach the system, if we

permit a false acceptation rate of 0.1% for instance, we will

obtain a false alarm rate of 30-33%. Comparing the perfor-

mance of the spoofing attack detection solution for the syn-

thetic attack obtained by the two different models of spec-

trum conversion, we note that combining the CRN module

with the loss computed at the LBP map level led to more



MFI LBP-LR

Silicone mask attack 2.286 0.207

Synthetic attack CRN 58.543 7.432

Synthetic attack CRN + CX(LBP) 56.513 11.603

Table 2: Equal error rate (%) of spoofing attack detection

baselines when exposed to different attacks.

challenging attacks.

Figure 6: Detection error tradeoff (DET) curves of LBP+LR

spoofing attack detection baseline for different attacks.

The equal error rates reported by the two spoofing attack

baselines for the different attacks are gathered in Table 2.

It is observable that the proposed synthetic attacks repre-

sents a considerably high threat, in comparison to silicone

mask attack that is considered so far a challenging attack

for thermal spectrum. The equal error rate has increased

from 2.28% to 58.54% and from 0.20% to 11.60% for mean

facial intensity and LBP+LR spoofing attack detection, re-

spectively.

When the attacker does not have any prior knowledge

about the spoofing countermeasure implemented in the sys-

tem, the performance of the spoofing attack detection sig-

nificantly drops when it faces the synthetic attack generated

by CRN model. We perceive that the equal error rate in-

creased from 0.20% to 7.43%. Although when the attacker

does indeed have a prior information about the spoofing

countermeasure that is being employed, he/she can use this

information in a way to customise his/her attack to have

higher chances to breach the system. This scenario is ex-

ecuted for visible-to-thermal spectrum conversion model

CRN + CX(LBP), where we have used the LBP map infor-

mation to better attack the LBP+LR based spoofing attack

detection system.

It is worth noting that the equal error rate has increased

from 0.20% for silicone mask attacks to 11.60% for syn-

thetic thermal attacks using a visible-to-thermal spectrum

conversion model that has been trained on a limited number

of samples from VIS-TH dataset [16]. Interest in thermal

imagery for face biometrics is increasing steadily, thus we

can presume that the amount of thermal face data that will

be publicly available will grow significantly, which will lead

to synthesising highly realistic thermal images which will

be difficult to differentiate from bonafide thermal images.

6. Conclusion

Deploying thermal technology in face biometric systems

requires an extensive study of its implications and the risk

it may encounter. In this paper, we proposed a new attack

on thermal face biometric systems, that takes place at the

post-sensor level. This thermal attack is generated through

visible-to-thermal spectrum conversion of visible face im-

ages that are available on the social networks or acquired

sneakily from a distance. A quality assessment of the syn-

thetic attacks has been performed by comparing the gen-

erated thermal images to thermal bonafide samples. Sub-

sequently, the threat of the proposed synthetic attack was

measured through an assessment of the vulnerability of two

existing spoofing attack detection solutions, designed for

thermal spectrum, to these attacks. This evaluation reported

a significant drop in performance of the two used baselines

when they face the proposed synthetic attack compared to

when they are exposed to silicone mask attack, the most

challenging attack for thermal spectrum studied so far. A

scenario representing an attacker that has prior knowledge

of the spoofing attack detection solution deployed in the

biometric system is also explored. For LBP-based spoof-

ing attack detection system, we have adjusted the visible-

to-thermal spectrum conversion model in a way that it aims

to generate thermal images of which the LBP map is closer

to the LBP map of thermal bonafide samples. The obtained

synthetic attacks using the customised spectrum conversion

model have increased the error rate reported by the targeted

spoofing attack detection approach.

We have proven through this study that, even though it is

true that thermal spectrum is extremely robust against pre-

sentation attacks, this does not deny the fact that new at-

tacks customised for thermal imagery might act as a serious

threat.
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metric face presentation attack detection with multi-channel

convolutional neural network. IEEE Transactions on Infor-

mation Forensics and Security, 15:42–55, 2019.

[12] Anil K Jain, Karthik Nandakumar, and Abhishek Nagar. Bio-

metric template security. EURASIP Journal on advances in

signal processing, 2008:1–17, 2008.

[13] Sooyeon Kim, Yuseok Ban, and Sangyoun Lee. Face

liveness detection using a light field camera. Sensors,

14(12):22471–22499, 2014.

[14] Khawla Mallat, Naser Damer, Fadi Boutros, and Jean-

Luc Dugelay. Robust face authentication based on dy-

namic quality-weighted comparison of visible and thermal-

to-visible images to visible enrollments. In 2019 22th In-

ternational Conference on Information Fusion (FUSION),

pages 1–8. IEEE, 2019.

[15] Khawla Mallat, Naser Damer, Fadi Boutros, Arjan Kuijper,

and Jean-Luc Dugelay. Cross-spectrum thermal to visible

face recognition based on cascaded image synthesis. In 2019

International Conference on Biometrics (ICB), pages 1–8.

IEEE, 2019.

[16] Khawla Mallat and Jean-Luc Dugelay. A benchmark

database of visible and thermal paired face images across

multiple variations. In 2018 International Conference of

the Biometrics Special Interest Group (BIOSIG), pages 1–5.

IEEE, 2018.

[17] Khawla Mallat and Jean-Luc Dugelay. Facial landmark de-

tection on thermal data via fully annotated visible-to-thermal

data synthesis. In submitted to 2020 International Joint Con-

ference on Biometrics (IJCB), 2020.
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