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Abstract

Multistage, or serial, fusion refers to the algorithms se-

quentially fusing an increased number of matching results

at each step and making decisions about accepting or re-

jecting the match hypothesis, or going to the next step.

Such fusion methods are beneficial in the situations where

running additional matching algorithms needed for later

stages is time consuming or expensive. The construction of

multistage fusion methods is challenging, since it requires

both learning fusion functions and finding optimal decision

thresholds for each stage. In this paper, we propose the use

of single neural network for learning the multistage fusion.

In addition we discuss the choices for the performance mea-

surements of the trained algorithms and for the selection of

network training optimization criteria. We perform the ex-

periments using three face matching algorithms and IJB-A

and IJB-C databases.

1. Introduction

The benefits of fusing the recognition results of multiple

pattern recognition in biometrics area are well understood

and expected, and a great variety of the fusion algorithms

have been presented in the literature [18, 5]. Two differ-

ent fusion architectures could be distinguished: parallel and

serial. Parallel architecture assumes that recognizers exe-

cute independently and all recognition results are available

before fusion; fusion algorithm takes all the information

and derives fused comparison scores in a single procedure.

Serial architecture runs recognizers sequentially; after next

recognizer’s results are available, they are fused with the re-

sults of previously run recognizers, and the decision is made

on whether to accept recognition results and finish, or reject

recognition results and proceed to the next recognizer. Most

of the developed fusion algorithms are parallel and research

of serial fusion methods is rather sparse. For example, the

overview article on fusion in biometric applications [5] has

only three references on serial fusion works, and [13] de-

scribes serial fusion as novel and not fully explored.

The main reason for the use of the serial fusion is to save

the time or other costs of running multiple recognition algo-

rithms. Faster, and possibly less reliable, recognizers could

be deployed first; if their results have sufficient confidence,

there is no need to run slow, but possibly more precise,

remaining recognizers. Generally, it is expected that the

parallel fusion algorithm taking matching results from all

recognizers should have higher recognition accuracy than

the serial fusion algorithm, since earlier stages of serial fu-

sion do not utilize all the information and their performance

should suffer. We can also view serial fusion as a partic-

ular type of parallel fusion implemented in a decision tree

like manner, where upper nodes of decision tree correspond

to earlier stages of serial fusion; such restriction on fusion

algorithm should have detrimental effect on performance.

Though it might be possible that implemented serial fusion

algorithm have superior accuracy, it is likely that the cor-

responding parallel fusion algorithm was not implemented

properly, or only a limited number of suboptimal parallel

fusion algorithms was used for comparison [21].

The example of 3-stage fusion system is presented in

Fig. 1. At each stage k, the results of corresponding bio-

metric matcher are obtained and a fusion function Fk cal-

culates fused score using the results of matchers 1, . . . , k.

The fused score is then compared to thresholds θmk and θnk
determining whether match or non-match decision could be

made. If no decision is made, the algorithm proceeds to the

next stage. In general, to train such serial fusion system one

needs to learn all fusion functions Fk and thresholds θmk
and θnk . The difficulty in training such systems is caused by

interdependence between these learnable functions and pa-

rameters. For example, if we change some threshold, then

the distribution of samples at later stages will change. If we

change the fusion function, then the corresponding thresh-

olds will also have to be changed. If current stage is im-

proved, then the previous stage needs to change, so that

more samples proceed to current stage.

Given the complexity of training procedure might ex-

plain the low number of works investigating this type of fu-

sion. The question on how the performance of serial fusion
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Figure 1. Sample serial fusion architecture consisting of three

stages.

algorithms should be measured stands as another barrier for

their development. Whereas parallel fusion has clear perfor-

mance objective, such as accuracy in recognition results, the

time costs have to be incorporated into performance mea-

sures for serial fusion. It appears, that currently there is no

standard way to report the performance of serial fusion al-

gorithms with accuracy and time cost trade-offs.

In this paper, we consider a construction of serial (or

multistage) fusion algorithm using a single neural network.

The advantage of such approach is the simplicity and uni-

formity in learning different stages of fusion. We also dis-

cuss how the performance of multistage fusion algorithms

could be measured by optimizing a cost function including

both accuracy and time.

2. Previous Work

The motivation for the earlier works on multistage fu-

sion was the weakness of existing computing hardware and

the desire to reduce the matching time while maintaining

accuracy advantages by utilizing multiple recognition algo-

rithms. For example, El-Shishiny et al. [4] stress the im-

provements of matching time in a three stage pattern classi-

fication system. Some later works emphasized the need to

reduce the time in some particular big scale or time sensi-

tive applications. Hong and Jain [7] introduced the mul-

tistage system to address the large time required to per-

form the biometric recognition in large databases. In this

work, the faster face recognizer runs first to produce the

small list of possible match candidates, and the slower fin-

gerprint matcher runs next on reduced list to get final re-

sults. Note, that it is possible that face matcher could fail to

list the genuine person among candidates, and the accuracy

performance of such fused system could be lower than the

performance of slower parallel fusion system, or the finger-

print matcher alone. In another example, Cordella et al. [2]

investigates the use of multistage fusion in a time sensitive

task of computer intrusion detection.

On the other hand, some works on multistage fusion

stress accuracy performance benefits with smaller empha-

sis on time improvements. For example, Pudil et al. [14]

present a serial fusion algorithm based on particular values

of error rates FAR and FRR achieved at different stages,

and show that fusion has better accuracy performance than

any single combined recognizer. Similarly, Marcialis et

al. [11] calculate error and time costs for proposed serial fu-

sion algorithm, and show that overall costs, including time,

are better than costs for individual recognizers, as well as,

parallel fusion method.

Another idea for utilizing serial fusion is the attempt to

build a better performing classifier ensembles. For exam-

ple, Last et al. [10] use serial fusion to combine the recog-

nition results of the classifiers utilizing increasing subsets

of features. The classifiers with smaller feature sets work

faster, and are, possibly, more stable at the tails of class dis-

tributions; incorporating them first into serial fusion system

might achieve time and accuracy gains. This idea is closely

related to general framework of boosting [6], but the perfor-

mance gains of boosting methods are explained differently

and have little relation to the task of time reduction investi-

gated in serial fusion methods.

Note, that most works on serial fusion propose only spe-

cific algorithms based on particular performance points of

the individual recognizers, such as the thresholds delivering

some predetermined values of FAR and FRR. Essentially,

such fusion methods are constructed in a heuristic manner

with defined structure of the algorithm and some parameters

obtained from training data. The trade-off between recogni-

tion accuracy and the time costs is not considered, and the

optimization of the total system cost is not achieved.

More theoretically sound framework for optimizing mul-

tistage fusion learning based on relative costs of recogni-

tion error rates and times was presented in Trapeznikov et

al. [20]. In contrast to our cost function defined later, this

work used cost parameters defined for each particular stage.

The optimization procedure was decomposed as the com-

bination of individual optimizations for each stage. Since

such optimizations depend on other stages, these optimiza-

tions for all the stages were done sequentially and repeti-

tively until the convergence of the whole system.

In our proposed algorithm we utilize similar framework

of total system cost optimization. Instead of training fu-

sion functions separately at each stage, we propose build-

ing a single neural network modeling fusion functions at all

stages. We also propose to separate the threshold optimiza-

tion delivering best accuracy/time trade-off from the main

fusion learning algorithm, so that the performance of serial

fusion methods would be evaluated similar to other fusion

methods.

3. Performance Measures

In this work we assume that we are dealing with bio-

metric verification system, and the system’s task is to con-

firm or deny the claim of biometric identity. The imple-

mentation of biometric system typically includes the cal-
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Figure 2. Proposed multistage fusion network architecture.

culation of the comparison score between the probe and

reference templates. In verification systems this score is

compared to some predetermined threshold to confirm or

deny the verification claim. Two types of errors are present

when making this decision - confirming the match for non-

mated pair of probe and reference templates, and denying

the match for mated pair. We label the error rates of this

decision correspondingly as FAR(θ), false accept rate, and

FRR(θ), false reject rate, both depending on chosen com-

parison score threshold θ.

The trade-off between two error rates is typically repre-

sented by ROC curve, and the operating threshold for the

biometric system deployment can be chosen in a number of

ways. Frequently, the threshold is chosen so that the FAR

is no larger than some small number, e.g. FAR(θ) = .1%.

It is a reasonable approach, but a more theoretically opti-

mal method of choosing operating threshold will rely on

Bayesian risk or cost minimization [19]. If we denote the

cost of making false accept error as λFA, and the cost of

making the false reject error as λFR, then the total cost, or

risk, of our decision is

C(θ) = λFAFAR(θ) + λFRFRR(θ) (1)

The optimal operating threshold θ is found by minimizing

the cost C(θ). Now, if we want to incorporate the matching

time into the cost equation, then we would have to add a

third term into like this:

C(θ) = λFAFAR(θ) + λFRFRR(θ) + λTT (θ) (2)

where T (θ) is the total time of running the system, and λT is

the time cost. But there is a problem with such equation: us-

ing the single score threshold parameter θ, we would not be

able to properly balance both matching error rate and time

costs. For example, if we set θ so that the matching time

is limited by some constant, then both FAR and FRR will

be set. Alternatively, if θ is used as a threshold to the final

comparison score of the system, then it would have little in-

fluence on its running time. From a more general point of

view, if our matching system has three variable performance

characteristics, then it is reasonable to assume that their re-

lationships are controlled by two parameters; the set of pos-

sible performance values thus constitutes a two-dimensional

surface in three-dimensional performance value space. In

contrast, traditional matching systems of eq. 1 have two

performance values, whose relationships is represented by

ROC curve - a one-dimensional curve in two-dimensional

performance value space.

Given these considerations, we will assume that the mul-

tistage fusion system has to be controlled by two parame-

ters, say θs and θt. In our implementation we will primarily

associate θs with the trade-off between two matching er-

ror rates, FAR and FRR, and θt will mostly control the

matching time, and thus will control the trade-off between

time and two error rates. Thus, we will rewrite the cost

equation of our matching system as

C(θs, θt) =λFAFAR(θs, θt) + λFRFRR(θs, θt)

+ λTT (θs, θt)
(3)

Note, that all performance values (FAR, FRR, T ) still

depend on both threshold parameters. For example, if we

change the threshold θt to reduce the running time T , then

we might expect that matching error rates, FAR and FRR,

might increase. From the other side, if we change the

threshold associated with matching rates, θs, then it is pos-

sible that the fusion score will reach the decision threshold

set by θs at earlier or later stage, and, correspondingly, the

running time T will be reduced or increased.

In contrast to traditional matching systems, finding opti-

mal threshold parameters in proposed multistage fusion sys-

tem requires a little more computation. Instead of iterating

over the possible values of a single threshold, we have to

iterate over values of threshold pair (θs, θt) and calculate



FAR, FRR, T for each pair. Effectively, the time to cal-

culate the optimal system thresholds is O(n2 log(n)), while

for traditional systems it is O(n log(n)), where n is the total

number of test samples.

4. Multistage Fusion Network

In this work we propose the use of the single neural net-

work for fusing biometric comparison scores in the multi-

stage systems. The diagram of the proposed system is given

in Fig. 2. The structure of the network mirrors the work of

the multistage fusion system - each stage is represented by a

separate fusion block, and the execution flows from the first

stage to the last.

The comparison score from the mth matching algorithm

is not available to the fusion blocks at stages 1, . . . ,m− 1,

but only at stages m and later. The fused score from each

stage is available as a separate output of the neural network.

Such network structure allows the calculation of fused score

at stage m even if matching algorithms m+1, . . . ,M have

not run and the comparison scores from these algorithms

are not available (M is the total number of stages). In prac-

tice, during testing run, after mth matching algorithm ex-

ecutes and its comparison score is available, we restart the

fusion network with all currently available scores from al-

gorithms 1, . . . ,m while substituting some dummy values

for algorithms m+1, . . . ,M ; the fused score from mth fu-

sion block is not affected by dummy values and we use it

to decide if fusion should be terminated or continued to the

next stage.

The base implementation of the network uses cross-

entropy loss function, in which all output fused scores are

trained to approximate the probability of genuine or impos-

tor verification attempt. Note, that since we want to use a

single threshold θt to advance to next stage, we map the

fused scores it to interval [−1, 1] for decision. Output val-

ues with large absolute values indicate more confident fuse

scores; we accept the fused score sk at stage k if its absolute

value is larger than the time threshold: |sk| > θt. The uni-

form training of the network implies that the fused scores at

each stage are comparable, and using same threshold θt for

early fusion decision is justified. At the end, the final fused

score is the score sk of the last run stage; it is compared

against θs to make accept or reject decision of the system.

4.1. Time cost sensitive optimization

Although the base implementation of the multistage fu-

sion network does offer a unified approach to training differ-

ent stages of the fusion function, it does not really account

for the time costs of different matchers. For example, if one

matcher runs longer than others, the base network will not

account for it. To do this, we modify the training loss func-

tion by varying the desired magnitude of the fused scores:

FAR 1% .1% .01%

FR1 96.48 93.28 87.73

FR2 95.51 91.23 84.23

FR3 91.43 84.22 70.54

Fusion 96.59 93.63 88.50

Table 1. Performance of the three face recognition algorithms and

a traditional fusion on IJB-A dataset. TAR (%) at different FAR

levels are presented.

L = LossCE(s, y)−

M∑

m=1

λms2m (4)

Here s = {s1, . . . , sM} are output fused score for M

stages, y is the desired output.

The reasoning for this equation and choice of parame-

ters is following. Larger λm will encourage fused score sm
to have larger magnitude to minimize the cost, and, corre-

spondingly, will make it more probable for the multistage

network to make a decision to accept or reject current fu-

sion results, rather than continue to the next stage. The op-

timal choice of λm therefore depends on the running time

of subsequent matchers m+ 1, . . . ,M ; larger running time

of these matchers leads to the need to terminate the fusion

at earlier stages and to the choice of larger optimal value of

λm. Implicitly, the choice of λm also depends on the perfor-

mance strength of subsequent matchers; stronger matchers

should lead to lower desired fusion scores and lower λm.

Without loss of generatlity we set the last parameter of λ to

zero: λM = 0. Since M is the last stage, we can’t delay the

matching decision and there is no need to perform time cost

related score adjustments at this stage.

In our implementation we treat λm as hyperparameters

during network training. Though it is preferable to have

some theoretical derivation for their optimal values, the re-

lationships between running time, matcher performance and

optimal choice of λm seems to be too complex to allow it.

Alternatively, we might wish to directly connect the opti-

mizing loss function and choice of λm to the cost function

of Eq. 3, but this seems to be even harder to achieve. An-

other complicating factor is that in our framework the op-

erating thresholds θs and θt are obtained after network is

trained, and thus increasing or decreasing λm might not

have direct effect on the rate of accepting samples at par-

ticular stage; the relationships between different λm seems

to be the important factor instead.

5. Experiments

For our experiments, we utilize the sets of face recog-

nition comparison scores from three face recognition algo-

rithms: FR1( [1]), FR2( [17]) and FR3( [15]). All three face



FAR 1% .1% .01%

FR1 97.68 95.37 90.50

FR2 96.12 91.77 83.46

FR3 94.49 89.14 80.58

Fusion 97.66 95.45 90.58

Table 2. Performance of the three face recognition algorithms and

a traditional fusion on IJB-C dataset. TAR (%) at different FAR

levels are presented.

recognizers are based on different configurations of deep

convolutional neural networks, and trained using different

datasets.

The comparison scores are derived from IARPA Janus

Benchmark-A (IJB-A) dataset [9] and from IARPA Janus

Benchmark-C (IJB-C) [12] dataset, which is a superset of

the original IJB-A. The testing protocols specify gallery

and probe templates with different numbers of constituent

face images and video frames (from 1 to more than 100).

The template feature vectors are obtained by averaging fa-

cial features vectors of images and video frames, and the

comparison scores between probe and reference templates

are obtained using cosine distance. We assume that each of

these algorithms takes time of 1.0 units to perform a com-

parison between two templates; since the templates are pre-

calculated as 128-dimensional feature vectors, this assump-

tion seems reasonable. In real life, the comparison proce-

dure will probably involve feature extraction by CNN for

probe templates, but we might assume that the time to do it

might also be the same for these algorithms.

IJB-A dataset provides the experimental protocol of 10

splits, and for each split subject disjoint training and testing

subsets are specified. In our experiments we utilized this

protocol by training a multistage fusion network on train-

ing subsets and testing on test subsets for each split. IJB-C

does not have such split separations, and all templates are

considered to be test templates. Therefore, for our exper-

iments, we created ten randomized splits with subject dis-

joint training and testing subsets similar to IJB-A protocol.

In both cases, the number of genuine samples per training

procedure is around 2,000, and we limited the number of

impostor samples to 100 per each genuine sample to avoid

instability issues during training. Half of the training set is

used for network training and other half for validation.

The presented fusion task is quite challenging since these

face matchers produce highly correlated comparison results,

and the addition of two matchers with lower performance

gives only very small improvements to the best performing

one. The traditional performance results from the neural

network fusion are presented in tables 1 and 2.

We implement each fusion block as fully connected net-

work with 2 hidden layers consisting of 10 nodes each.
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Figure 3. Sample ROC curves for different time thresholds t of the

same multistage fusion system.

Such network configuration seems to be sufficient to cap-

ture the distribution of comparison scores, while avoiding

overfitting issues. Implementation was based on Caffe net-

work library [8].

The implemented multistage fusion algorithms are com-

pared to two baseline algorithms:

1. The best algorithm performing alone; the running time

of this single algorithm is 1.0.

2. All three algorithms performing comparison and their

results are fused by traditional network (fully con-

nected with 2 hidden 10-node layers); the running time

of this method is 3.0.

The ‘Multistage’ fusion algorithm in tables 3 and 4 refers

to the base implementation of the multistage fusion network

described in the beginning of section 4. The ‘Optimization’

refers to the optimized algorithm described in section 4.1.

For both datasets, the hyperparameters λm of Eq. 4 were

chosen to be (λ1, λ2, λ3) = (.3, .3, 0).
The performance values for different cost functions, e.g.

1FRR+10FAR+ .01T , and for each algorithm are given

in the tables. Note, that we optimize the costs using Eq. 3,

so in each case potentially different thresholds θs and θt
are found, minimizing corresponding cost value. The com-

ponents of the resulting optimized cost, i.e. FAR(θs, θt),
FRR(θs, θt) and T (θs, θt), are given as well. Note, that the

summation of the components with corresponding weights

sums to the costs, and all numbers are the averages of ex-

periments using 10 splits of the datasets.

In all cases, we see that the multistage fusion does in-

deed result in the reduction of the total cost of system. Most

of the reduction seems to be caused by the transitioning to

multistage/two threshold system framework, and optimiza-

tion procedure of section 4.1 has relatively limited effect. It

is possible that the optimization will be more useful when



Algorithm
Performance 1FRR+10FAR 1FRR+100FAR 1FRR+1000FAR 1FRR+10000FAR

measures +.01T +.01T +.01T +.01T

Baseline 1

Cost .0807 .1266 .2295 .5242

FRR,FAR(%) 5.40,.168 8.78, .029 13.2,.0087 35.9,.0016

T 1.0 1.0 1.0 1.0

Baseline 2

Cost .0981 .1423 .2410 .5233

FRR,FAR(%) 5.49,.132 8.29,.029 12.34,.0088 34.81,.0015

T 3.0 3.0 3.0 3.0

Multistage

Cost .0784 .1214 .2187 .5047

FRR,FAR(%) 5.48,.132 8.52,.026 12.54, .0083 33.08, .0016

T 1.043 1.011 1.031 1.230

Optimization

Cost .0779 .1155 .1526 .2313

FRR,FAR(%) 5.47,.129 8.55,.020 12.77, .0015 17.17, .0005

T 1.032 1.015 1.039 1.065

Table 3. Multistage fusion algorithm performance on IJB-A dataset.

Algorithm
Performance 1FRR+10FAR 1FRR+100FAR 1FRR+1000FAR 1FRR+10000FAR

measures +.01T +.01T +.01T +.01T

Baseline 1

Cost .0654 .1060 .1706 .2832

FRR,FAR(%) 4.27,.126 7.23, .024 12.51,.0035 19.49,.0008

T 1.0 1.0 1.0 1.0

Baseline 2

Cost .0843 .1247 .1901 .3074

FRR,FAR(%) 4.07,.136 7.20,.023 12.66,.0034 19.57,.0008

T 3.0 3.0 3.0 3.0

Multistage

Cost .0644 .1044 .1690 .2798

FRR,FAR(%) 4.07,.135 7.23,.022 12.33, .0036 19.72, .0007

T 1.007 1.0008 1.003 1.007

Optimization

Cost .0639 .1037 .1692 .2782

FRR,FAR(%) 4.08,.130 7.14,.022 12.29,.0036 19.62,.0007

T 1.002 1.002 1.007 1.008

Table 4. Multistage fusion algorithm performance on IJB-C dataset.

working with more diverse recognizers, both in accuracy

and time performance characteristics.

As an additional illustration to the proposed multi-

stage fusion method and performance measures, in Fig.

3 we draw ROC curves obtained by fixing a time related

threshold θt and letting score threshold parameter θs to

change. As we discussed in section 3, these curves are

one dimensional sections of two-dimensional surface in

three dimensional performance value space: (FAR(θs, θt),
FRR(θs, θt), T (θs, θt)). The ROC curve corresponding to

the threshold value .50 has best performance, since in this

case almost none of fused scores at earlier stages is get-

ting accepted, and the ROC curve consists mostly from the

scores obtained at the last fusion stage. In contrast, the ROC

curve corresponding to the threshold .05 has most scores

obtained from in the first stage, and has worse performance.

Fig. 3 shows that it might be difficult to compare the per-

formance of multistage fusion systems using fixed value of

FAR, as it is done in many papers on biometric recognition.

Instead, we have to look at all three performance values, and

comparing their weighted sum in cost function seems to be

an adequate solution. Note also, that in tables 3 and 4 the

reduction of total cost from one algorithm to another does

not necessarily implies the reduction of a particular perfor-

mance value, e.g. FAR, but of the combination of all three

performance numbers.

From another point of view, suppose we want to achieve

a smaller FAR value for a given system. Intuitively, one

can think that this can be achieved by increasing the sys-

tem running time and by running later stage recognizers

more frequently. The experiments show that this might not

be always true. The comparison of 10FAR and 100FAR

columns in table 3 shows that the reduction in FAR did oc-

cur in spite of decrease in average running time (from 1.043
to 1.011 for multistage, and from 1.032 to 1.015 for op-

timized versions). This apparently strange behavior is ex-

plained by large increases in FRR. This example shows

that the use of two thresholds for optimizing the perfor-



Algorithm
1FRR+10FAR 1FRR+100FAR 1FRR+1000FAR 1FRR+10000FAR

+.01T +.01T +.01T +.01T

Baseline 1 .0848 .1283 .2108 .3908

Baseline 2 .0764 .1145 .1751 .2877

Multistage .0623 .0983 .1558 .2705

Optimization .0619 .0983 .1571 .2665

Table 5. Multi-sample fusion algorithm performance on IJB-C dataset, face recognizer 1.

Algorithm
1FRR+10FAR 1FRR+100FAR 1FRR+1000FAR 1FRR+10000FAR

+.01T +.01T +.01T +.01T

Baseline 1 .1291 .2105 .3400 .5734

Baseline 2 .1019 .1615 .2556 .4098

Multistage .0903 .1481 .2420 .3940

Optimization .0891 .1480 .2411 .3933

Table 6. Multi-sample fusion algorithm performance on IJB-C dataset, face recognizer 2.

mance of multi-stage system might lead to non-intuitive

FAR and FRR performance settings, and that relying on a

single total cost performance is a preferable approach.

6. Multi-sample score fusion

The multistage fusion architecture can also be utilized

in the problem of fusing multi-sample comparison scores,

where the scores are produced by the single matching al-

gorithm for the multiple observations of the same person.

In our experimental IJB-A and IJB-C, the facial templates

are created from the multiple images of the same person.

We can assume a scenario where these images are obtained

in a sequence, and there is a cost associated with the ac-

quisition of each subsequent image. The goal of the fusion

algorithm will be to not only fuse the corresponding com-

parison scores in a most efficient way, but to also decide

if it is beneficial to terminate the matching process given

already processed images, or continue acquiring and recog-

nizing new images. This scenario can also be in the set-

tings of continuous authentication and multi-frame fusion

for video authentication [3].

Note that the traditional multi-sample fusion [22, 16]

tries to achieve the best recognition accuracy by implic-

itly weighing the samples and agglomerating corresponding

feature vectors according to calculated weights. It might be

possible that during such fusion some samples would be as-

signed a weight of zero, and be omitted from the fused tem-

plate. Thus it might appear that such fusion is similar to the

multi-stage fusion task considered in the current paper. But

above papers still process all available samples to achieve

best performance and do not consider the time costs of ac-

quiring and processing multiple sample. In contrast, our

proposed multi-stage fusion architecture takes into account

the time costs, and can be used as a complementary step in

such systems.

In our experiments on multi-sample fusion we consider

each of three face recognizers separately. The gallery tem-

plates are obtained by averaging the feature vectors of all

images in the template as before, but for probe templates

we assume the sequential accumulation of features: given

first k probe template images, we construct k-th probe tem-

plate Fp,k by averaging feature vectors of these first k im-

ages. The k-th sequential comparison score is obtained by

matching gallery template Fg with this k-th probe template:

sk = Matcherm(Fg, Fp,k). Next, since we limited our

experiments to 3-stage fusion architecture and the number

of images in templates varies, for each gallery and probe

template pair we select at random 3 scores sk to be used

as inputs to multi-stage fusion network. If probe template

has less than three images, we exclude it from experiments.

It appears that this experiment arrangement directly corre-

sponds to realistic operating scenario in continuous authen-

tication system: the subsequent frames are processed and

feature vectors are agglomerated, and at random intervals

the template comparison, score fusion and decision to con-

tinue is performed.

The results of the multistage fusion experiments for such

operating scenario are presented in tables 5, 6 and 7 for cor-

responding face recognizers of FR1( [1]), FR2( [17]) and

FR3( [15]). IJB-C dataset was used for template calcula-

tion, and 10 random person-separated splits into training

and testing subsets were generated as before. For clarity,

we omitted the corresponding FAR, FRR and average run-

ning time performance numbers.

The time cost optimization of multi-stage network pro-

posed in Eq. 4 had less effect on performance improvement

in these experiments. The tables show the optimized per-

formance achieved with relatively small parameter values

(λ1, λ2, λ3) = (.05, .05, 0). The larger values of (λ1, λ2 led



Algorithm
1FRR+10FAR 1FRR+100FAR 1FRR+1000FAR 1FRR+10000FAR

+.01T +.01T +.01T +.01T

Baseline 1 .1495 .2299 .3329 .4623

Baseline 2 .1196 .1887 .2778 .3945

Multistage .1078 .1754 .2622 .3756

Optimization .1071 .1751 .2626 .3773

Table 7. Multi-sample fusion algorithm performance on IJB-C dataset, face recognizer 3.

to rather mixed results. It is possible that the training of non-

optimized version of multi-stage network results in more

balanced output scores, whose values in different stages

better correlate with the time costs. Thus, more confident

score (having larger absolute value) reflects not only addi-

tional image data used to obtain it, but the proportional time

cost as well. The situation might be different for the task

of fusing different recognizers of previous section, where

additional algorithms lead to smaller improvements while

requiring significant running costs.

7. Conclusion

In this work we analyzed the problem of serial or mul-

tistage fusion and its relationship to the traditional parallel

fusion problem. We emphasized the need to incorporate the

trade-off between recognition accuracy error rates and time

costs into the evaluation of multistage fusion algorithms. In

our implementation of multistage fusion we separated the

optimization of the operating threshold parameters from the

fusion algorithm, and speculated on the need to have two

thresholds, and, correspondingly, two parameters control-

ling the system execution. Our fusion is implemented as a

single neural network where the learning of different stages

of fusion is defined by the loss function hyperparameters.

The experiments with two possible scenarios of utilizing

face recognizer, the fusion of recognition algorithms and the

fusion of scores at different stages of continuous authenti-

cation by the single recognizer, show good performance of

the proposed method.

As we mentioned in section 4.1 the hyperparameter so-

lution to connect different stages of the fusion system might

not be the best one. In the future work, it would be desir-

able to remove this limitation, and perform better optimized

training procedure. Note, that in this case, the running times

of each algorithm should be supplied as input parameters to

the network. It would also be desirable to better reflect the

final system cost given by Eq. 3 during the training of fusion

system. As noted in [11], the particular trade-off between

error rates might favor the use of one or the other recog-

nizer; in our case, the choice of cost function of Eq. 3 could

lead to particular choice of hyperparameters λm of Eq. 4.
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Castañón. Multi-stage classifier design, 2012. Steven C. H.

Hoi Wray Buntine 459–474 25. 2

[21] Andreas Uhl and Peter Wild. Parallel versus serial classi-

fier combination for multibiometric hand-based identifica-

tion. In International Conference on Biometrics, pages 950–

959, 2018. 1

[22] J. Yang, P. Ren, D. Zhang, D. Chen, F. Wen, H. Li, and G.

Hua. Neural aggregation network for video face recognition.

In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5216–5225, 2017. 7


