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Abstract

Convolutional autoencoders are now at the forefront of

image compression research. To improve their entropy cod-

ing, encoder output is typically analyzed with a second

autoencoder to generate per-variable parametrized prior

probability distributions. We instead propose a compression

scheme that uses a single convolutional autoencoder and

multiple learned prior distributions working as a competition

of experts. Trained prior distributions are stored in a static

table of cumulative distribution functions. During inference,

this table is used by an entropy coder as a look-up-table

to determine the best prior for each spatial location. Our

method offers rate-distortion performance comparable to

that obtained with a predicted parametrized prior with only

a fraction of its entropy coding and decoding complexity.

1. Introduction

Image compression typically consists of a transforma-

tion step (including quantization) and an entropy coding

step that attempts to capture the probability distribution of

a transformed context to generate a smaller compressed bit-

stream. Entropy coding ranges in complexity from simple

non-adaptive encoders [26, 24] to complex arithmetic coders

with adaptive context models [15, 23]. The entropy cod-

ing strategy has been revised to address the specificities of

learned compression. More specifically, for recent works

that make use of a convolutional autoencoder [12] (AE) as

the all-inclusive transformation and quantization step, the en-

tropy coder relies on a cumulative probability model (CPM)

trained alongside the AE [5]. This model estimates the cumu-

lative distribution function (CDF) of each channel coming

out of the AE and passes these learned CDFs to an entropy

coder such as range encoding [16].

Such a simple method outperforms traditional codecs

like JPEG2000 but work is still needed to surpass complex

codecs like BPG. Johannes Ballé et al. (2018) [6] proposed

analyzing the output of the convolutional encoder with an-

other AE to generate a floating-point scale parameter that

differs for every variable that needs to be encoded by the

entropy coder, thus for every location in every channel. This

method has been widely used in subsequent works but in-

troduces substantial complexity in the entropy coding step

because a different CDF is needed to encode every variable

in the latent representation of the image, whereas the single

AE method by Ballé et al. (2017) [5] reused the same CDF

table for every latent spatial location.

Our work uses the principle of competition of experts

[22, 14] to get the best out of both worlds. Multiple prior

distributions compete for the lowest bit cost on every spatial

location in the quantized latent representation. During train-

ing, only the best prior distribution is updated in each spatial

location, further improving the prior distributions special-

ization. CDF tables are fixed at the end of training. Hence,

at testing, the CDF table resulting in the lowest bitcost is

assigned to each spatial location of the latent representation.

The rate-distortion (RD) performance obtained is compa-

rable to that obtained with a parametrized distribution [6],

yet the entropy coding process is greatly simplified since it

does not require a per-variable CDF and can build on look-

up-tables (LUT) rather than the computation of analytical

distributions.

2. Background

Entropy coders such as range encoding [16] require cdfs

where, for each variable to be encoded, the probability that a

smaller or equal value appears is defined for every allowable

value in the latent representation space. Johannes Ballé et

al.’s seminal work (2017) [5] consists of an AE, computing a

latent image representation consisting in CL channels of size

HL ×WL, and a CPM, consisting of one CDF per latent out-

put channel, which are trained conjointly. The latent repre-

sentation coming out of the encoder is quantized then passed

through the CPM. The CPM defines, in a parametrized and

differentiable manner, a CDF per channel. At the end of

training, the CPM is evaluated at every possible value1 to

generate the static CDF table. The CDF table is not differen-

tiable, but going from a differentiable CPM to a static CDF

table speeds up the encoding and decoding process. The
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CDF table is used to compress latent representations with an
entropy coder, the approximate bit cost of a symbol is the
binary logarithm of its probability.

Ballé et al. (2018) improved the RD ef�ciency by re-
placing the unique CDF table with a Gaussian distribution
parametrized with a hyperprior (HP) sub-network [6]. The
HP generates a scale parameter, and in turn a different CDF,
for every variable to be encoded. Thus, complexity is added
by exploiting the parametrized Gaussian prior during the
entropy coding process, since a different CDF is required for
each variable in the channel and spatial dimensions.

Minnen et al. proposed a scheme where one of multi-
ple probability distributions is chosen to adapt the entropy
model locally [21]. However, these distributions are de�ned
a posteriori, given the encoder trained with a global entropy
model. Thus [21] does not perform as well as the HP scheme
[6] per [19, Fig. 2a]. In contrast, the present method jointly
optimizes the local entropy models and the AE in an end-to-
end fashion that results in greater performance. Minnen et al.
[19] later proposed to improve RD with the use of an autore-
gressive sequential context model. However, as highlighted
in [13], this is obtained at the cost of increased runtime
by several orders of magnitude. Subsequent works have
attempted to reduce complexity of the neural network archi-
tecture [10] and to bridge the RD gap with Minnen's work
[13], but entropy coding complexity has remained largely
unaddressed and has instead evolved towards increased com-
plexity [19, 7, 20] compared to [6]. The present work builds
on Balĺe et al. (2017) [5] and achieves the performance of
Ballé et al. (2018) [6] without the complexity introduced
by a per-variable parametrized probability distribution. We
chose Balĺe et al. (2017) as a baseline because it corresponds
to the basic unit adopted as a common reference and starting
point for most models proposed in the recent literature to im-
prove compression quality [6, 19, 13, 20]. Due to its generic
nature, our contribution remains relevant for the newer, often
computationally more complex, incremental improvements
on Balĺe et al. (2017).

3. Competition of prior distributions

Our proposed method introduces competitions of expert
[22, 14] prior distributions: a single AE transforms the image
and a set of prior distributions are trained to model theCDF
of the latent representation in each spatial location. For each
latent spatial dimension the CDF table which minimizes bit
cost is selected; that prior is either further optimized on the
features it won in the training mode, or its index is stored for
decoding in the inference mode. This scheme is illustrated
in Figure 1, and three sample images are segmented by
“winning” CDF table inFigure 2.

All prior distributions are estimated in parallel by consid-
eringNCDF CDF tables, and selecting, as a function of the
encoded latent spatial location, the one that minimizes the

Figure 1. AE compression scheme with competition of prior distri-
butions. The AE architecture is detailed in [6, Fig. 4]. The indices
i denote the indices of CDF tables that minimizes the bitcount for
each latent spatial dimension. Loss = Distortion +� bitCost.

Figure 2. Segmentation of three test images [1]: each distinct color
represents one of 64 CDF tables used to encode a latent spatial
location (16 � 16 pixels patch)

entropy coder bitcount. The CDF table index is determined
for each spatial location by evaluating each CDF table in
inference. This can be done in a vectorized operation given
suf�cient memory. During training the CPM is evaluated
instead of CDF tables such that the probabilities are up to
date and the model is differentiable, and the bit cost is re-
turned as it contributes to the loss function. The cost of CDF
table indices has been shown to be neglectable due to the
reasonably small number of priors, which in turns results
from the fact that little gain in latent code entropy has been
obtained by increasing the number of priors.

In all our experiments , the AE architecture follows the
one in Balĺe et al. (2018) [6], without the HP, since we found
that the AE from [6] offers better RD than the one described
in Ballé et al. (2017) [5], even with a single CDF table. A
functional training loop is described inAlgorithm 1.








