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Abstract

This paper presents a new attempt at using augmented

normalizing flows (ANF) for lossy image compression. ANF

is a specific type of normalizing flow models that augment

the input with an independent noise, allowing a smoother

transformation from the augmented input space to the la-

tent space. Inspired by the fact that ANF can offer greater

expressivity by stacking multiple variational autoencoders

(VAE), we generalize the popular VAE-based compression

framework by the autoencoding transforms of ANF. When

evaluated on Kodak dataset, our ANF-based model provides

3.4% higher BD-rate saving as compared with a VAE-based

baseline that implements hyper-prior with mean prediction.

Interestingly, it benefits even more from the incorporation of

a post-processing network, showing 11.8% rate saving as

compared to 6.0% with the baseline plus post-processing.

1. Introduction

End-to-end learned image compression [1, 2, 3, 4, 6,

9, 10] has recently made great progress in terms of com-

pression efficiency, showing comparable rate-distortion per-

formance to the state-of-the-art hand-crafted codecs, such

as the Versatile Video Coding (VVC) standard under the

All Intra configuration. This line of research started with

Balle et al. [1] proposing a variational autoencoder (VAE)-

based analysis and synthesis architecture together with a

learned global prior for entropy coding the image latents.

The global prior is later replaced with a hyper-prior struc-

ture in [2], which encodes additional side information to

enhance the density estimation of the image latents for bet-

ter entropy coding. Minnen et al. [10] further combines the

hyper-prior with an autoregressive prior model to make best

use of causal context information. Based on the same VAE-

based framework, Cheng et al. [4] improve the representa-

tion learning and the density estimation by introducing at-

tention modules in the autoencoder and Gaussian mixture

priors, respectively.

Deviating from these prior works, this paper makes a

new attempt at using normalizing flow (NF) models [5, 8]

for learning image representations and their prior distribu-

tions. The NF model is deep invertible models, which trans-

form input data into their latent representations via a bijec-

tive mapping, often implemented by an invertible network

composed of affine coupling layers (Fig. 1). The bijective

mapping allows the NF model to be trained by maximiz-

ing the exact data likelihood. In this paper, we turn to a

specific type of NF models, called augmented normalizing

flows (ANF) [7] (Fig. 1). Unlike the ordinary NF model,

the ANF augments the input with an independent noise. It

is argued in [7] that the augmented input space allows a

smoother transformation to the latent space. More impor-

tantly, VAE is shown to be a special case of ANF, which

can have greater expressivity by stacking multiple VAEs.

These insights motivate our use of ANF for generalizing

the popular VAE-based image compression framework.

Experimental results on Kodak dataset show that our

ANF-based approach outperforms an enhanced VAE-based

baseline (hyper-prior with mean prediction). In terms of

BD-rate saving with BPG as anchor, it achieves 3.3% more

rate saving than the baseline. Interestingly, it benefits even

more from the incorporation of a post-processing enhance-

ment network, showing 11.8% rate saving as compared to

6.0% with the baseline plus post-processing.

The remainder of this paper is organized as follows: Sec-

tion 2 overviews the VAE-based image compression and

augmented normalizing flows. Section 3 details our pro-

posed method. Section 4 presents experimental results.

Section 5 concludes this work.

2. Related Work

2.1. VAEbased Image Compression

End-to-end learned image compression usually includes

three major elements: analysis, entropy coding, and syn-

thesis. The analysis of an image x is done by converting

it through an encoding distribution qencπ (z|x) into a dis-

cretized latent representation z, the process of which in-
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Figure 1. The autoencoding transform of one-step ANF: the en-

coding transform (left) and the decoding transform (right).

volves quantization for lossy compression. The latent z is

then entropy encoded into a bitstream using a learned prior

pπ(z). The synthesis part decodes the bitstream and recon-

structs approximately the input x by a decoding distribution

pdecπ (x|z). All the network parameters, encapsulated in π,

are trained end-to-end by minimizing

L(π;x) = −Eqenc
π

(z|x)[log p
dec
π (x|z)]

︸ ︷︷ ︸

D

−Eqenc
π

(z|x)[log pπ(z)]
︸ ︷︷ ︸

R

,

(1)

where the first term, denoted by D, aims to minimize the

negative log-likelihood of x and the second term to mini-

mize the rate R needed for signaling z. Minimizing Eq. (1)

admits of the interpretation of maximizing the evidence

lower bound (ELBO) of a latent variable model specified

by pπ(z) and pdecπ (x|z), with qencπ (z|x) taking a uniform

distribution that models the effect of uniform quantization.

In a more general setting, a hyper-parameter λ is introduced

to balance D against R, yielding L(π;x) = D + λR.

2.2. Augmented Normalizing Flows

The ANF model is an invertible latent variable model.

It is composed of multiple autoencoding transforms, each

of which comprises a pair of the encoding and decoding

transforms as depicted in Fig. 1. Consider the example of

ANF with one autoencoding transform (i.e. one-step ANF).

It converts the input x coupled with an independent noise e
into a latent representation (y, z) with one pair of encoding

and decoding transforms:

gencπ (x, e) = (x, sencπ (x)⊙ e+menc
π (x)) = (x, z) (2)

gdecπ (x, z) = ((x− µdecπ (z))/σdecπ (z), z) = (y, z) (3)

where π is the network parameters. VAE is seen

to be a special case of one-step ANF by let-

ting e ∼ N (0, I), the encoding distribution

qencπ (z|x) = N (menc
π (x), (sencπ (x))2), the decoding

distribution pdecπ (x|z) = N (µdecπ (x), (σdecπ (x))2), with the

priors y and z following N (0, I), respectively.

From Fig. 1, the encoding gencπ or decoding gdecπ trans-

form implements an invertible affine coupling layer. Stack-

ing pairs of these coupling layers leads also to an invertible

network. As such, ANF can be trained by maximizing the

Figure 2. The proposed ANF-based image compression frame-

work: the autoencoding transforms for feature extraction (purple);

and the autoencoding transform of the hyper-prior (pink). Q de-

notes quantization with the nearest-integer rounding.

augmented joint likelihood, i.e. argmaxπ pπ(x, e):

pπ(x, e) = p(Gπ(x, e))

∣
∣
∣
∣
det

∂Gπ(x, e)

∂(x, e)

∣
∣
∣
∣
, (4)

where Gπ = gdecπN
◦ gencπN

◦ . . . ◦ gdecπ1
◦ gencπ1

is the alternate

composition of the encoding and decoding transforms with

π = {π1, · · ·, πN} and p(Gπ(x, e)) represents the specified

or learned prior distribution over the latent (y, z).
Huang et al. [7] proves that maximizing the augmented

joint likelihood pπ(x, e) in ANF amounts to maximizing a

lower bound on the marginal likelihood pπ(x), with the gap

attributed to the model’s incapability of modeling e inde-

pendently of x.

3. Proposed Method

3.1. ANFbased Compression Framework

Fig. 2 depicts our ANF-based image compression frame-

work. It includes two autoencoding transforms (i.e. two-

step ANF), with the upper one extended further to the right

to form a hierarchical ANF [7] that implements the hyper-

prior. The gencπ and gdecπ in the autoencoding transforms

follow Eqs. (2) and (3). The encoding and decoding trans-

forms of the hyper-prior are defined as:

hencπ3
(z2, eh) = (z2, eh +menc

π3
(z2)) = (z2, ĥ2) (5)

hdecπ3
(z2, ĥ2) = (⌊z2 − µdecπ3

(ĥ2)⌉, ĥ2) = (ẑ2, ĥ2) (6)

where ⌊·⌉ denotes the nearest-integer rounding.



Our ANF model operates by passing the augmented in-

put (x, ez, eh) through the autoencoding and hyper-prior

transforms, i.e. Gπ = gdecπ2
◦hdecπ3

◦hencπ3
◦gencπ2

◦gdecπ1
◦gencπ1

,

to obtain the latent representation (x2, ẑ2, ĥ2). In particu-

lar, x represents the input image, ez ∼ N (0, I) denotes the

augmented Gaussian noise, and eh ∼ U(−0.5, 0.5) simu-

lates the additive quantization noise of the hyper prior. To

reconstruct approximately the input x, we apply the inverse

mapping function G−1
π to the quantized latent (0, ẑ2, ĥ2),

where x2 is set to zero as will be explained next.

3.2. Latent Representation and Prior Distribution

In our scheme, z2 serves as the latent representation of

x and menc
π3

(z2) is the corresponding hyper prior. Both are

quantized element-wise to arrive at ẑ2 and ĥ2. Similar to

most VAE-based image compression, our scheme adopts

an additive noise for modeling quantizaiton. To this end,

we have ĥ2 = menc
π3

(z2) + eh, eh ∼ U(−0.5, 0.5) and

ẑ2 = ⌊z2−µ
dec
π3

(ĥ2)⌉ follow a distribution given by the con-

volution of N (0, (σdecπ3
(ĥ2))

2) and U(−0.5, 0.5). To have

the latent ẑ2 and the hyper prior ĥ2 capture most of the in-

formation of the input x, we require the latent x2 to follow

a zero-mean Gaussian with an extremely small variance σ2.

This justifies the use of zero for x2 in our decoding process.

To sum up, the joint prior distribution p(x2, ẑ2, ĥ2) of

our ANF model factorizes as:

p(x2, ẑ2, ĥ2) = p(x2)p(ẑ2|ĥ2)p(ĥ2) (7)

with

p(x2) = N (0, σ2)

p(ẑ2|ĥ2) = N (0, (σdecπ3
(ĥ2))

2) ∗ U(−0.5, 0.5)

p(ĥ2) = P
ĥ2|ψ

∗ U(−0.5, 0.5)

(8)

where ∗ denotes convolution and P
ĥ2|ψ

is a learned dis-

tribution parameterized by ψ. We have tacitly assumed

that p(x2), p(ẑ2|ĥ2), p(ĥ2) are factorial over the elements

of x2, ẑ2, ĥ2, respectively.

3.3. Training Objective

Training of our ANF model can be achieved by

minimizing the negative augmented log-likelihood, i.e.

argminπ − log pπ(x, ez, eh). This leads to the following

loss function:

L(x, ez, zh;π) = − log p(ĥ2)− log p(ẑ2|ĥ2) + λ1‖x2 − 0‖2

− log

∣
∣
∣
∣
det

∂Gπ(x, ez, eh)

∂(x, ez, eh)

∣
∣
∣
∣
,

(9)

The Jacobian log-determinant in Eq. (9) prevents the col-

lapse of the latent space. In our implementation, we replace

Figure 3. Rate-distortion comparison on Kodak dataset.

Table 1. Comparison of model size and BD-rate (BPG as anchor).
Codec [2] w/ mean [2] w/ mean + post Ours Ours + post

Parameters 13.4M 13.8M 11.4M 11.8M

BD-rate -1.2% -6.0% -4.8% -11.8%

it with a reconstruction loss λ2‖x − x̂‖2, which exerts a

similar effect on the latent space but focuses more on the

reconstruction quality.

4. Experiments

4.1. Settings and Implementation Details

Network Architectures: Our autoencoding and hyper-

prior transforms share similar architectures to that in [2].

All the autoencoding transforms in our model have separate

network weights. To maintain an overall model size compa-

rable to that of [2], we reduce the number of channels in ev-

ery convolutional layer to 96. Table 1 compares our model

size with [2]. We also experiment with a post-processing

quality enhancement network (denoted as + post), the ar-

chitecture of which is shared between our method and the

baseline [2] for a fair comparison. Note that the network

weights may vary for end-to-end optimization.

Training: For training, we use vimeo-90k dataset. It

contains 91,701 training videos, each having 7 frames. Dur-

ing a training epoch, we randomly choose one frame from

each video and crop it to 256 × 256. We choose the Adam

optimizer with a batch size of 96. The learning rate is fixed

at 1e−4. The two hyper-parameters (Section 3.3) are cho-

sen such that λ1 = 0.01 ∗ λ2 and λ2 is one of the values

from {0.05, 0.02, 0.01, 0.005}. In particular, we first train

our model for the highest rate point. It is then fine tuned

with few epochs to obtain the models for lower rate points.

Evaluation: We evaluate our model on Kodak dataset,

which includes 24 uncompressed 768 × 512 images. To

evaluate the rate-distortion performance, we report rates in

bits per pixel (bpp) and quality in PSNR-RGB. Our base-

lines include BPG and the enhanced version of [2], which

incorporates the hyper-prior mean prediction.
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Figure 4. Visualization of our ANF transformation.

Figure 5. Subjective quality comparison between the original (left), ours + post (middle), and BPG (right). Ours + post: 27.29dB / 0.69bpp.

BPG: 26.83dB / 0.68bpp.

4.2. Ratedistortion Performance

From Fig. 3, we see that without the post-processing net-

work, our ANF model shows slightly better performance

than the hyper-prior scheme with mean prediction, espe-

cially at low rates. It further improves the BD-rate saving

by around 3.4% (Table 1). Interestingly, our scheme can

benefit more from the incorporation of the post-processing

network, showing much more significant improvement over

the competing baseline in terms of BD-rate savings (11.8%

vs. 6.0%). Moreover, the improvement can be seen across

the entire bit rate range.

4.3. Qualitative Results

Fig. 4 visualizes how our ANF model (Fig. 2) transforms

the input image from x into x2 and sheds light on its inner

workings. Recall that the latent x2 should be a zero im-

age, whose pixel values are mostly zero (Section 3.2). For

better visualization, zero values are indicated by gray color.

From Fig. 2, the first ANF layer encodes the input x into

a latent representation z1, which is decoded to give an es-

timate of the mean and variance of x (top left). It is seen

that the mean image (top middle) contains enhanced high-

frequency details of x. As a result, the centered and nor-

malized output x1 (top right) becomes a low-pass filtered

signal of x. In a sense, the first ANF layer acts as a low-pass

filter. Similarly, the second ANF layer operates as another

low-pass filter to remove the remaining high-frequency de-

tails in x1, yielding a nearly zero image as x2 (the bottom

row of Fig. 4). Fig. 5 presents a subjective quality compar-

ison between decoded images.

5. Conclusion

This paper introduces an ANF-based image compres-

sion system. It is motivated by the facts that VAE, which

forms the basis of end-to-end learned image compression,

is a special case of ANF and that ANF can offer greater ex-

pressivity by stacking multiple VAEs. Experimental results

confirm the superiority of our ANF-based scheme over a

VAE-based baseline when they are operated under the same

setting. In addition, we demonstrate that the autoencoding

transforms of ANF act as progressive low-pass filters.
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