
Self Texture Transfer Networks for Low Bitrate Image Compression

Shoma Iwai, Tomo Miyazaki, Yoshihiro Sugaya, Shinichiro Omachi

Department of Communications Engineering, Graduate School of Engineering,

Tohoku University

{shoiwai, tomo, sugaya, machi}@iic.ecei.tohoku.ac.jp

Abstract

Lossy image compression causes a loss of texture, espe-

cially at low bitrate. To mitigate this problem, we propose a

novel image compression method that utilizes a reference-

based image super-resolution model. We use two image

compression models and a self texture transfer model. The

image compression models encode and decode a whole in-

put image and selected reference patches. The reference

patches are small but compressed with high quality. The

self texture transfer model transfers the texture of refer-

ence patches into similar regions in the compressed image.

The experimental results show that our method can recon-

struct accurate texture by transferring the texture of refer-

ence patches.

1. Introduction

Recently, many machine learning-based image compres-

sion methods have been proposed. Some methods outper-

form human-crafted compression methods, such as BPG [4]

and VVC. Most of them have an encoder, decoder, and

entropy estimator. They are trained to optimize the rate-

distortion trade-off in an end-to-end manner.

To improve the rate-distortion performance, some works

have proposed effective entropy estimators. Balle et al. [3]

have proposed hyperprior network. Minnen et al. [17] have

introduced PixelCNN [20] based auto-regressive context

model. Guo et al. [7] have proposed 3-D global context

model. Other works investigate architecture of autoencoder.

Chen et al. [5] adopt a non-local attention module in the en-

coder and decoder. Akutsu et al. [2] use RAM block [11]

for feature extraction.

Though many methods use mean square error (MSE)

or MS-SSIM for training criteria, these losses lead to

blurry results. To overcome this problem, some meth-

ods [18, 1, 16, 8] adopt GAN framework [6]. GAN-based

method can generate photo-realistic images. Rippel and

Bourdev [18] introduced adversarial training. Agustsson et

al. [1] achieved to reconstruct perceptually high-quality im-

𝑋!"#$% 𝑌!"#$%

Refine Compression
Model 𝑓&

crop

crop

𝑌'()!"(𝑌*+,(
𝑋*+,(

𝑋-$%

Self Texture Transfer Model 𝑔

Base Compression Model 𝑓

Figure 1. Our method overview.

ages even at extremely low bit rate. Mentzer et al. [16]

have proposed a high-fidelity GAN-based image compres-

sion model. Iwai et al. [8] proposed two-stage training and

network interpolation to avoid unstable training and unde-

sirable noise.

Although GAN-based method can reconstruct sharp im-

ages, it is difficult to recover accurate texture at low bitrate.

To compensate for the loss of texture, we propose a self tex-

ture transfer network. It is inspired by the state-of-the-art

reference-based image super-resolution method [22]. We

spend additional bits to reconstruct small parts of the image

with high quality and transfer their texture to similar regions

in the image. To do this, we use three networks: a base

compression network, refine compression network, and self

texture transfer network. First, we compress a whole image

by the base compression network. Second, we crop patches

from the image and compress them by the refine compres-

sion network. These patches have richer texture, and we

use them as reference patches. Then, we transfer the texture

of them into the compressed image by self texture transfer

1



Encoder

Decoder

Hyper 
Encoder

Hyper 
Decoder

Context
Model

𝑥

Q

Q

AE

AD

0101001..

AE

1101011..

AD𝑥"

𝑤, 𝜇, 𝜎

𝑦

𝑦"

𝑧̂

𝑧

𝑦"

Figure 2. Compression model

network.

2. Proposed Method

2.1. Overview

Fig 1 shows our overall method. First, we compress

the input image Xinput by the base compression model f

and obtain a reconstruction Xbase = f(Xinput). Next, we

manually choose the patches Ybase from the Xbase. We

crop the same position and obtain the real patches Yinput

from Xinput. Then we encode and decode the residual

Yinput − Ybase by the refine compression model and get

refine patches Yrefine = f ′(Yinput − Ybase). Finally,

we enhance the texture of Xbase according to Yrefine by

self texture transfer model g. The final output is Xout =
g(Xbase, Ybase, Yrefine). Hence, a receiver needs the posi-

tion of reference patches and the latent code of Xbase and

Yrefine for decoding.

2.2. Compression Model

Fig 2 shows the architecture of the base and refine com-

pression models. They have the same architecture. The base

compression model handles a whole image, and the refine

compression model compresses only the selected patches

with high quality. Our compression model consists of an

encoder, decoder, hyper-encoder, hyper-decoder, and con-

text model. The encoder transforms an input image x into

latent code y, and the decoder reconstructs the image from

quantized latent code ŷ. Inspired by Akutsu et al. [2],

we use RAM block [11] in the encoder and decoder. The

rest networks: hyper-encoder, hyper-decoder, and context

model, estimate the entropy of ŷ. The hyper-encoder and

hyper-decoder provide side-information for entropy estima-

tion. The context model is an auto-regressive model that

estimates the parameters of the distribution of ŷ. Since we

use Gaussian Mixture model for distribution estimation, it

estimates three parameters: weight w, mean µ, and stan-

dard deviation σ for each position of ŷ. Then we calculate

the probability mass function of ŷ and transform it into bit-

stream by arithmetic coding. Inspired by Guo et al. [7], we

adopt causal global prediction in the context model.

2.3. Self Texture Transfer Model

Our self texture transfer model is based on the reference-

based image super-resolution method [22]. Fig 3 shows

the structure of the self texture transfer model. It enhances

the quality of Xbase by using reference patches Yrefine. It

consists of three modules: a feature extraction module, at-

tention module, and fusion module. First, the feature ex-

traction module extracts deep features from the base image

Xbase. Next, the attention module calculates the similarity

between each point of Xbase and Ybase, and searches the

most similar point. Then, the fusion module transfers the

texture of Yrefine into Xbase according to the similarity. In

the following subsections, we will show the details of these

modules.

2.3.1 Feature Extraction Module

For feature extraction module, we adopt RFB-

ESRGAN [19], which is based on ESRGAN [21]. It

took first place on NTIRE 2020 Perceptual Extreme

Super-Resolution Challenge [23]. The structure of the

feature extraction module is shown in fig 3. It has 16

residual in residual dense blocks (RRDBs) and 8 residual

in residual dense receptive field blocks (RRFDBs). Each

RRDB contains three residual dense blocks, and each of

them has five convolution layers. Likewise, each RRFDB

contains three residual dense receptive field blocks, and

each of them has five receptive field blocks (RFBs) [15].

The RFB consists of convolution layers which have various

kind of kernel size.

To reduce memory usage, we use an intermediate feature

map of the base decoder Finter as the input of this module,

rather than decoded image Xbase. Its spatial size is H
4
× W

4
,

where H and W are height and width of an input image

Xinput, respectively.

2.3.2 Attention Module

The attention module calculates two kinds of attention

maps: hard attention map T and soft attention map S.

First, learnable texture extractor (LTE) extracts three fea-

ture maps: query Q, key K, and value V from Xbase, Ybase,

and Yrefine, respectively.

Q = LTE(Xbase) (1)

K = LTE(Ybase) (2)

V = LTE(Yrefine) (3)

The architecture of LTE is the same as VGG-19 [13]. Sec-

ond, we calculate relevance map R:

R = QKT (R ∈ R
n×m, Q ∈ R

n×d,K ∈ R
m×d), (4)

2



Feature
Extraction

Module

Attention
Module

Fusion
Module

𝐹!"#$%

𝑋!"#$

𝑌%$&'($

𝑌!"#$
𝑆, 𝑇

𝑋#$%

Feature Extraction Module

C
o

n
v

R
R

D
B

R
R

F
D

B

R
R

D
B

⋯ ⋯

R
R

F
D

B

R
F
B

16 blocks 8 blocks

H
a

rd
 &

 S
o

ft
 

A
tt

e
n

ti
o

n

𝑆, 𝑇

LTE𝑌%$&!"$
𝑉

LTE𝑌'()$
𝐾

LTE𝑋'()$
𝑄

Attention Module

𝑆, 𝑇

T
e

x
tu

re
T

ra
n

s
fe

r

U
p

T
e

x
tu

re
T

ra
n

s
fe

r

C
o

n
v

𝑋#$%

𝑋&'()

T
e

x
tu

re
T

ra
n

s
fe

r

U
p

Self-texture Transfer Model

Fusion Module Texture Transfer

𝑇 𝑆

Concat Conv

Figure 3. Self texture transfer model

where n, m, and d are HQ×WQ, HK ×WK , and the chan-

nels of feature maps, respectively. R represents the similar-

ity between each spatial point in Q and K. For example, ri,j
denotes the similarity between query qi and key kj . Then,

we calculate hard attention map T = (t0, · · · , tn) and soft

attention map S = (s0, · · · , sn). ti represents the feature of

V in the most relevant position for query qi. si represents

the similarity between qi and the most similar key. These

attention maps are calculated as follows:

hi = arg max
j

ri,j (5)

ti = vhi
(6)

si = max
j

ri,j , (7)

where hi, vi, and ri,j denote the index of most relevant po-

sition, the element of V and R, respectively.

2.3.3 Fusion Module

The fusion module transfers the texture of Yrefine into

Xbase by fusing the attention maps and features extracted

by the feature extraction module. As shown in fig 3, it has

three texture transfer layers, two up-sampling layers, and a

final convolution layer. The texture transfer layer fuses hard

attention map T and feature map by concatenation and con-

volution. Soft attention map S is used to avoid inaccurate

texture transferring. The operation is as follows:

Ffusion = F +Conv(Concat(F, T ))⊙ S, (8)

where F and Ffusion are an input and output feature map,

respectively. Finally, we obtain the output image Xout by

adding Xbase to the final convolution layer’s output.

2.4. Training Strategy

Our training strategy has three stages. First, we train the

base compression model. We use distortion loss and rate

loss for training. Second, we train only the refine compres-

sion model, so the base compression model is fixed. We use

MS-SSIM loss and rate loss in this stage because MS-SSIM

optimized model can reconstruct fine texture than MSE op-

timized model. Finally, we train the self texture transfer

model. The loss function in this stage is almost the same

as ESRGAN [21], but we use LPIPS [24] instead of VGG

perceptual loss [9]. We use RaGAN [10] for adversarial

training. The loss function of all stages are as follows.

L1 = λdLd + Lrate (9)

L2 = λMS−SSIMLMS−SSIM + Lrate (10)

L3 = λl1Ll1 + λadvLadv + λLPIPSLLPIPS (11)

3. Experimental Settings

For the CLIC2021 image compression track, we trained

three different bit-rate models: 0.075, 0.15, and 0.3 bpp

in CLIC validation dataset. For the distortion loss in the

first stage, we used MSE loss for the 0.075 bpp model, and

MS-SSIM loss for the rest model. Though MS-SSIM loss

is effective to preserve texture, it tends to fail in preserv-

ing structure or contents especially at low bit rate. So we

chose MSE loss for the lowest bitrate model. In the first

stage training, we adjusted the weight parameter λd so that

the total bit rate will not exceed the specified bit rate. In

the second stage, we trained the refine compression model

so that the average bit rate of CLIC validation dataset be-

comes 0.20, 0.25, and 0.25 bpp for 0.075, 0.15, and 0.3 bpp

model, respectively. In the third stage, we trained the self

texture transfer model with λl1 = 0.01, λadv = 0.005, and

λLPIPS = 4.0 for all three bit-rate models.

For training, we used CLIC training dataset and subsets

of Open Image dataset [14]. We used 256 × 256 patches

extracted from training images in the first stage and 192 ×

192 patches in the second and third stages. During third

stage training, we randomly chose reference patches from

the image. We used Adam optimizer [12], and the learning

rate is set to 1 × 10−4. The training iteration of the first,

second, and third stages are about 1M , 700K, and 300K,

respectively.

3



Reference Patch 𝑌!"#$%"

Original Ours w/o transfer Attention Map

0.0347 bpp

0.0285 bpp

0.0337 bpp (10833 byte / 962 byte)

0.0287 bpp (9117 byte / 928 byte)

Figure 4. Qualitative results, reference patches, and attention map. The numbers in column ”Ours” represent the total bitrate, data size of

the base image, and data size of the reference patches, respectively.

bpp PSNR MS-SSIM

Ours 0.074 27.696 0.91327

w/o transfer 0.076 27.876 0.92488

Ours 0.150 27.719 0.95983

w/o transfer 0.148 27.737 0.96186

Ours 0.293 29.472 0.97932

w/o transfer 0.295 29.591 0.98010

Table 1. Quantitative results on CLIC validation dataset. Our team

name is ”iiclab”.

4. Results

To confirm the validity of self texture transfer model, we

trained our model without the refine compression model,

attention module, and fusion module. In this model, the

RFB-ESRGAN based feature extraction module enhances

the output of the base compression model, but self texture

transfer is not used. For this model, we trained another base

compression model so that the bit-rate would be approxi-

mately the same. This model is denoted ”w/o transfer.”

Fig 4 shows the results. We chose two 128×128 patches

for reference (green and magenta squares in fig 4). As

shown in fig 4, our method reconstructs more accurate tex-

ture by transferring the texture of the reference patches into

other similar regions. On the contrary, the reconstructions

of the w/o transfer model are blurry or noisy.

The rightmost column of fig 4 shows attention maps. The

hue represents which patch is chosen as a reference for each

pixel (hard attention T ), and the brightness represents the

confidence of transferring (soft attention S). They show

that the attention module chooses appropriate regions as a

reference, and a soft attention map can represent similarity.

Table 1 shows the quantitative results. Though our

method recovers more plausible textures by transferring

features to a similar region, it does not improve per-pixel

fidelity. However, our main focus is on perceptual quality

rather than distortion.

5. Conclusion

In this paper, we proposed a self texture transfer model.

We use another image compression model to generate ref-

erence patches and transfer the texture of them into a com-

pressed image. Our experiments showed that our method

succeeds in transferring the texture. In future work, we

will consider an algorithm to choose the optimal refer-

ence patches. For the CLIC2021 competition, we manu-

ally chose the reference patches for encoding. However, for

practical usage, the encoding process should be fully auto-

matic.

4



References

[1] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, and

L. Van Gool. Generative adversarial networks for extreme

learned image compression. In The IEEE International Con-

ference on Computer Vision (ICCV), October 2019. 1

[2] H. Akutsu, A. Suzuki, Z. Zhong, and K. Aizawa. Ultra low

bitrate learned image compression by selective detail decod-

ing. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR) Workshops,

June 2020. 1, 2

[3] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston.

Variational image compression with a scale hyperprior. In In-

ternational Conference on Learning Representations, ICLR,

2018. 1

[4] F. Bellard. Bpg image format. 1

[5] T. Chen, H. Liu, Z. Ma, Q. Shen, X. Cao, and Y. Wang. Neu-

ral image compression via non-local attention optimization

and improved context modeling, 2019. 1

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.

Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in Neural Information

Processing Systems, pages 2672–2680. 2014. 1

[7] Z. Guo, Z. Zhang, R. Feng, and Z.Chen. Causal contextual

prediction for learned image compression, 2020. 1, 2

[8] S. Iwai, T. Miyazaki, Y. Sugaya, and S. Omachi. Fidelity-

controllable extreme image compression with generative ad-

versarial networks. In 25th International Conference on Pat-

tern Recognition (ICPR), page 8235–8242, January 2021. 1

[9] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In European

Conference on Computer Vision, 2016. 3

[10] A. Jolicoeur-Martineau. The relativistic discriminator: a

key element missing from standard gan. arXiv preprint

arXiv:1807.00734, 2018. 3

[11] J. Kim, J. Choi, M. Cheon, and J. Lee. Mamnet: Multi-path

adaptive modulation network for image super-resolution.

Neurocomputing, 402:38–49, Aug 2020. 1, 2

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In International Conference on Learning Rep-

resentations, ICLR, 2015. 3

[13] K.Simonyan and A. Zisserman. Very deep convolutional net-

works for large-scale image recognition, 2014. 2

[14] A. Kuznetsova, H. Rom, N Alldrin, J. Uijlings, I. Krasin, J.

Pont-Tuset, S. Kamali, S. Popov, M. Malloci, A. Kolesnikov,

and et al. The open images dataset v4. International Journal

of Computer Vision, 128(7):1956–1981, Mar 2020. 3

[15] S. Liu, D. Huang, and Y. Wang. Receptive field block net for

accurate and fast object detection. In The European Confer-

ence on Computer Vision (ECCV), September 2018. 2

[16] F. Mentzer, G. Toderici, M. Tschannen, and E. Agustsson.

High-fidelity generative image compression. Advances in

Neural Information Processing Systems, 33, 2020. 1

[17] D. Minnen, J. Ballé, and G. Toderici. Joint autoregressive

and hierarchical priors for learned image compression. In

Advances in Neural Information Processing Systems, pages

10771–10780. 2018. 1

[18] O Rippel and L. D. Bourdev. Real-time adaptive image com-

pression. In International Conference on Machine Learning,

ICML, volume 70 of Proceedings of Machine Learning Re-

search, pages 2922–2930. PMLR, 2017. 1

[19] T. Shang, Q. Dai, S. Zhu, T. Yang, and Y. Guo. Perceptual ex-

treme super-resolution network with receptive field block. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR) Workshops, June 2020.

2

[20] A. van den Oord, N. Kalchbrenner, L. Espeholt, K.

Kavukcuoglu, O. Vinyals, and A. Graves. Conditional image

generation with pixelcnn decoders. In Advances in Neural

Information Processing Systems, pages 4790–4798. Curran

Associates, Inc., 2016. 1

[21] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and

C. Change Loy. Esrgan: Enhanced super-resolution gener-

ative adversarial networks. In The European Conference on

Computer Vision Workshops (ECCVW), September 2018. 2,

3

[22] F. Yang, H. Yang, J. Fu, H. Lu, and B. Guo. Learning texture

transformer network for image super-resolution. In CVPR,

June 2020. 1, 2

[23] K. Zhang, S. Gu, and R. Timofte. Ntire 2020 challenge on

perceptual extreme super-resolution: Methods and results. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR) Workshops, June 2020.

2

[24] R. Zhang, P. Isola, A. Efros, E. Shechtman, and O. Wang.

The unreasonable effectiveness of deep features as a percep-

tual metric. In CVPR, 2018. 3

5


