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Abstract

Neural image compression (NIC) is a new coding

paradigm where coding capabilities are captured by deep

models learned from data. This data-driven nature en-

ables new potential functionalities. In this paper, we study

the adaptability of codecs to custom domains of interest.

We show that NIC codecs are transferable and that they

can be adapted with relatively few target domain images.

However, naive adaptation interferes with the solution opti-

mized for the original source domain, resulting in forget-

ting the original coding capabilities in that domain, and

may even break the compatibility with previously encoded

bitstreams. Addressing these problems, we propose Codec

Adaptation without Forgetting (CAwF), a framework that

can avoid these problems by adding a small amount of cus-

tom parameters, where the source codec remains embedded

and unchanged during the adaptation process. Experiments

demonstrate its effectiveness and provide useful insights on

the characteristics of catastrophic interference in NIC.

1. Introduction

Lossy image and video coding have been the corner-

stone of visual content sharing and communication, achiev-

ing high compression rates by allowing a small amount of

distortion. With the recent advances in machine learning

with neural networks, neural image compression (NIC) [13,

3, 12, 14] has emerged as a new powerful paradigm where

codecs optimize their parameters directly using data from

the domain of interest, leading to very competitive coding

performance. The main limitations for practical deployment

are high memory and computation requirements and lack

of flexibility. Recent works have addressed some of these

practical limitations, including memory and computational

complexity [18, 8], and variable rate [13, 7, 19, 6, 12]. But

the NIC paradigm can also enable novel functionalities.

Traditional coding formats (such as those from

JPEG [15] and MPEG families [17, 11, 5]) follow a care-
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Figure 1. Domain adaptation and forgetting in NIC: (a) naive adap-

tation results in forgetting, while (b) CAwF prevents forgetting.

fully designed syntax and reference decoder, which are

strictly defined by standards to enable interoperability and

backward compatibility. In contrast, NIC codecs discover

an implicit latent syntax through learnable parametric mod-

els. These parameters could be readjusted to improve the

performance in a custom domain or functionality. Fig. 1

shows possible scenarios involving such type of customiza-

tion, and illustrates potential compatibility issues. For in-

stance, an off-the-shelf learned codec optimized for a cer-

tain domain of interest (shown in red at t = 1 in Fig. 1a)

may not necessarily be optimal for another domain, with

performance suffering due to higher bitrate and/or higher

distortion. The trainable nature of learned codecs is a con-

venient mechanism to customize the off-the-shelf codec,

resulting in an adapted codec with lower rate and distor-

tion in that domain of interest (shown in blue in Fig. 1a at

t = 2). There are many potential use cases of this function-

ality, such as privately adapted codecs for photographers’

personal collections, or an on-board camera with a codec

adapted to the specific vehicle. In traditional codecs, adapt-

ing to specific applications would require designing specific

tools or even new coding formats. In NIC, this functional-

ity can be reinterpreted as domain adaptation [16], which in

machine learning refers to the reuse and adaptation of the



knowledge [1] learned in a source model to improve perfor-

mance in a target domain where data is scarce.

The main limitation of such codec adaptation process is

that the new parameters are not optimal for the source do-

main anymore (phenomenon known as forgetting [9] in con-

tinual learning [10], see Fig. 1a). This can manifest as lower

rate-distortion (RD) performance when encoding images of

the source domain (i.e. RD forgetting). This drop in perfor-

mance is more significant in small models, often required

in resource-limited scenarios or when efficiency is a con-

cern. Furthermore, the codec becomes incompatible with

bitstreams encoded with the original version of the codec.

While the decoder is able to generate an image, the result

is disastrous (i.e. catastrophic forgetting). Thus, preventing

forgetting is crucial when the codec must remain compati-

ble and with good performance in the source domain.

In this work, we first study the adaptability of learned

codecs. For cases where forgetting is a concern, we then

propose an incremental architecture (see Fig. 1b) that pre-

vents both RD and catastrophic forgetting by fixing the

source codec and using a small number of additional cus-

tom parameters to learn target-specific patterns. In this way,

the previous version of the codec remains embedded in the

codec and can be used independently when necessary.

In summary, the main contributions of this work are:

• We introduce the problem of domain adaptation in

neural image compression (DANICE), and the related

problem of forgetting the original coding capabilities.

In this way we connect concepts of traditional image

coding and machine learning, such as backward com-

patibility, domain adaptation and forgetting.

• We study the adaptability of NIC codecs and propose

selective fine tuning for cases with few target images.

• We characterize how forgetting manifests in NIC

codecs, proposing a framework that prevents forget-

ting by design, while ensuring optimal rate-distortion

performance and backward compatibility.

2. Adapting NIC codecs

2.1. NIC framework

The most common framework consists of a learn-

able feature autoencoder1, combined with quantization and

learnable entropy coding [3, 12, 4]. The encoder b =
f (x; θ, ν) maps the input image x ∈ X ⊂ R

N to the

bitstream b. The decoder reconstruct the image as x̂ =
g (b;φ, ν). The full model is determined by its parameters

ψ = (θ,φ, ν) (i.e. encoder, decoder, entropy model).

1Our autoencoder combines convolutional and (I)GDN [2] layers.

The parameters ψ are learned by minimizing2 a combi-

nation of rate and distortion over a training set X tr sampled

from the domain of interest X

J
�

X tr,ψ;λ
�

= R
�

X tr,ψ
�

+ λD
�

X tr,ψ
�

, (1)

where λ is the (fixed) tradeoff between rate3 R (X tr,ψ) and

distortion4 D (X tr,ψ). See Appendix A for more details.

2.2. Adapting to new domains

We introduce the problem of domain adaptation in neu-

ral image compression (DANICE), where a codec trained

on a source domain X1 is leveraged to improve compres-

sion in a target domain X2.

A straightforward approach to DANICE is naive fine tun-

ing, where we minimize J (X tr
2
,ψ;λ) with a target training

set X tr
2

in order to obtain a target model ψ2. Naive fine tun-

ing can easily lead to overfitting when the number of images

is small relative the total number of parameters.

We can mitigate overfitting and improve training stabil-

ity by reducing the number of tunable parameters. Con-

cretely, we tune the GDN layers [2] and the entropy model,

while keeping the convolutional layers fixed. We introduce

a small number of channel-specific parameters to adjust

scales and biases (z̃i = αizi + βi, for the i-th channel of

a feature z). Through this selective fine tuning approach,

parameters that are tuned are reduced to only ∼ 5% of the

original amount, improving adaptation under few images.

3. Forgetting and compatibility

Now, consider the case where we are interested in adapt-

ing a source codec (optimized for X1) to X2, whilst retain-

ing good compression performance on images from domain

X1. Moreover, we may also want to decode any previously

encoded X1 images, i.e. have backward compatibility.

3.1. Characterizing forgetting

This new setting is more challenging than adaptation, be-

cause optimizing for the new domain interferes [9] with the

solution for the source domain, leading to forgetting, i.e. the

performance of the model in the source domain drops.

We can distinguish between two cases, leading to two

different types of forgetting (described below). For sim-

plicity, we use ft to refer to the encoder at time t, i.e.

f (x; θt, νt). Similarly, we use gt to refer to g (b;φt, νt).

Rate-distortion forgetting Consider that a source image

x ∈ X1 is encoded with the encoder f2 and decoder g2
optimized for the target domain X2, i.e. x̂ = g2 (f2 (x)).
In this case, encoder and decoder belong to t = 2, so they

2During training, quantization is replaced by a differentiable proxy to

allow end-to-end training via backpropagation [3].
3Approximated by the entropy during training.
4Here measured as the average mean square error (MSE).



Figure 2. Domain adaptation with 25 images of target domain

(CLIC → CelebA/Cityscapes).

Figure 3. Changes in rate-distortion curves from t = 1 to t = 2

in both domains for the different experiments (left: source, right:

target). Note: on the left figure t=2 (CAwF) corresponds to t=1.

remain compatible. However, as the codec is optimized for

a different domain, forgetting occurs, resulting in new arti-

facts and a worse rate-distortion performance compared to

using f1 and g1 (see Fig. 1a).

Catastrophic forgetting In this case, forgetting is closely

related to backward compatibility. When an image x ∈ X1

is encoded with f1 and saved, and then decoded with an

updated version of the decoder g2, i.e. x̂ = g2 (f1 (x)), the

image cannot be recovered at all (see Fig. 1a).

3.2. Preventing forgetting and incompatibility

In order to address the aforementioned problems, we

propose Codec Adaptation without Forgetting (CAwF), an

image coding architecture composed of shared and custom

parameters. The source codec, optimized for the source do-

main, is stored in the shared parameters, ψ1. The custom

parameters, ∆ψ are used together with shared ones to ob-

tain the target codec, i.e. ψ2 = ψ1

S

∆ψ. The adaptation

process also minimizes J (X tr
2
,ψ;λ), but the shared param-

eters remain fixed. In our case, the custom parameters are

distributed across the different layers of the feature autoen-

coder, and a separate entropy model is learned. This ar-

chitecture prevents both RD forgetting and interference be-

tween domains by design. The user can choose the version

of the encoder, which is always signalled in the bitstream.

4. Experiments

4.1. Settings

We evaluate DANICE with few target images (sec-

tion 4.2) and when forgetting is a concern (section 4.3). We

focus our attention on scenarios involving lightweight mod-

Table 1. Average difference in bitrate due to adaptation to

CelebA/Cityscapes with different number of images from target

domain (measured as BD-rate (%) with respect to model obtained

by fine tuning source model using all target data).
CLIC → CelebA CLIC → Cityscapes

Source model 19.24 23.93

Number of Naive Selective Naive Selective

target images fine tuning fine tuning fine tuning fine tuning

10 19.24 16.46 22.96 17.54

25 18.76 14.93 18.44 15.79

50 15.59 13.73 16.29 15.33

JPEG2K 46.96 24.55

Table 2. Average differences in bitrate of various DANICE ap-

proaches when forgetting is a concern (measured as BD-rate (%)

with respect to the model trained jointly using source and target

data). Lower the value, better the performance.
CelebA→Cityscapes Cityscapes→CelebA

Time CelebA Cityscapes Avg. Cityscapes CelebA Avg.

1 -1.14 32.77 15.82 -4.75 84.32 39.79

2 (naive) 96.25 -4.79 45.73 26.25 -2.45 11.90

2 (CAwF) -1.14 -0.40 -0.77 -4.75 4.01 -0.37

JPEG2K 38.26 16.34 27.3 16.34 38.26 27.3

CLIC→CelebA CLIC→Cityscapes

Time CLIC CelebA Avg. CLIC Cityscapes Avg.

1 5.97 15.59 10.78 -2.13 18.90 8.39

2 (naive) 10.59 -2.05 4.27 74.28 -3.18 35.55

2 (CAwF) 5.97 1.14 3.56 -2.13 0.27 -0.93

JPEG2K -23.57 40.66 8.54 -28.37 18.38 -4.99

els and narrow target domains.

Domains We consider three datasets CLIC , Cityscapes (re-

sized to 512× 256) and CelebA-HQ (resized to 256× 256)

for our experiments. CLIC is a wide domain (photos of

a variety of topics), while the domains of CelebA and

Cityscapes are narrower (faces and street scenes taken from

a car, respectively). We experimented with the follow-

ing pairs of source-target domains: CelebA-Cityscapes,

Cityscapes-CelebA, CLIC-CelebA and CLIC-Cityscapes.

Implementation Our framework is based on the factorized-

prior model from [4]5, where the encoder has four

convolutional layers separated by GDN layers, and

the decoder mirrors them. The model is trained

for 500k-750k iterations at four RD tradeoffs, Λ =
{λ1 = 0.002,λ2 = 0.008,λ3 = 0.016,λ4 = 0.032}. Our

framework has 64 shared filters and 16 custom filters per

conv. layer. We include JPEG2K6 RD curves as reference.

Metrics In addition to the usual average rate (in bits-per-

pixel, bpp) and average distortion (in average RGB PSNR)

curves, we also use the BD-rate metric for comparisons.

4.2. Adaptation with limited data

We evaluate the benefits of selective fine tuning for

DANICE, by comparing it against training from scratch

(randomly initialized parameters), using the source model

as is, and naive fine tuning. Fig. 2 shows that a source model

5https://github.com/tensorflow/compression
6https://www.openjpeg.org
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Figure 4. Examples showing that the source model (CLIC) is transferable to CelebA (a), and the benefit of selective fine tuning. Adaptation

from CelebA to Cityscapes (b) shows learning in Cityscapes and forgetting in CelebA. First and second rows in each block row show

results for low and high rate codecs, respectively. Error shows the difference image with respect to Original, while Interf. and Change

show the difference with respect to image at t = 1. Best viewed in electronic version with zoom.

trained on CLIC achieves competitive RD performance, and

performs better than training from scratch using few im-

ages. This demonstrates that NIC codecs are transferable

and improve RD performance through adaptation with few

images (especially using selective fine tuning), which is not

possible with a traditional codec such as JPEG2K. Table 1

shows this gain reporting the BD rate of various approaches

using the codec fine tuned using all target data (≥ 20000
images) as reference. Fig. 4 (a) compares reconstructed im-

ages using different models, showing that not using a source

model (i.e. from scratch) leads to poor quality and artifacts

such as noise when the training data is limited.

4.3. Forgetting and compatibility

Rate-distortion performance Fig. 3 shows the RD curves

on source and target domains. We can observe that after

naive fine tuning (i.e. t = 2), the RD performance on

the target domain improves (mostly reducing distortion, and

slightly reducing rate) while in the source domain often de-

teriorates significantly, which showcases forgetting. With

CAwF, we are able to avoid forgetting in the source domain

by design, while being able to attain good performance in

the target domain due to the addition of custom parame-

ters. The amount of improvement and decline after adap-

tation depends on the specific pair of domains, being small

for CLIC-CelebA, and large for Cityscapes-CelebA. Table 2

reports the BD-rate savings of various approaches with re-

spect to a codec with 80 (64+16) filters trained jointly with

both domains, since it often serves as a (soft) upper bound

for sequential training. With CAwF, the average of BD-

rate of source and target domains is close to zero and much

lower than naive fine tuning. However, we note that the

addition of 16 filters in CAwF can increase the number of

parameters up to 55% (see Table 3 in the appendix).

Qualitative analysis Fig. 4 (b) shows several decoded im-

ages from the CelebA-Cityscapes experiments. While in all

cases images are decodable, we observe that the CelebA bit-

streams from t = 1 turn into a collage of random patches,

and encoding at t = 2 results in a significant loss of RD

performance, with noticeable artifacts caused by the inter-

ference. In contrast, CAwF is able to prevent interference

and keep the original quality.

5. Conclusion

In this paper, we propose a framework to optimize a

NIC codec to a target domain of interest, which can be per-

formed directly by the user with a custom dataset. In order

to avoid interference that could break the compatibility or

harm the coding capabilities in the source domain, target

domain knowledge is stored as separate custom parameters.

Our work draws from insights from several machine learn-

ing areas, chiefly transfer learning, domain adaptation and

continual learning, which could provide inspiration for new

functionalities in future image and video coding standards.
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