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Abstract

With the fast proliferation of multimedia applications,

the reliable prediction of image/video quality is urgently

needed. Many quality assessment metrics have been pro-

posed in the past decades with various complexity and con-

sistency with human ratings. The metrics are designed from

different aspects, e.g., pixel level fidelity, structural simi-

larity, information theory and data-driven. In this paper,

we design a Multi-Metric Fusion Network (MMFN) for ag-

gregating the quality scores predicted by diverse metrics to

generate more accurate results. To be specific, we utilize

the image features extracted from the pretrained network to

adaptively rescale the predicted quality from different met-

rics, and leverage the fully-connected layers to regress a

single scalar as the final score. Pairwise images can be

further integrated into the training procedure by adding

a Score2Prob layer. Experimental results on the valida-

tion and test sets demonstrate that our proposed MMFN

achieves better prediction accuracy compared with other

metrics.

1. Introduction

Nowadays, multimedia data has been applied in various

applications, e.g., entertainment, education, medical exami-

nation and electronic retailing, which are significant sources

for acquiring information in everyday life [10]. High qual-

ity images/videos can promise the integrity and accuracy of

the perceived visual information. However, more or less

distortions are inevitably introduced during the processing

chain [12], e.g., acquisition, compression, transmission and

reconstruction as shown in Figure 1. Thus, to guarantee the

quality of experience for end users, image/video quality as-

sessment (IQA/VQA) plays a crucial role to guide the cur-

rent image processing and video coding systems. The qual-

ity assessment can be roughly divided into two categories

according to human engagement, namely subjective quality

assessment and objective quality assessment [8]. Subjective

quality assessment can provide the most accurate quality

Figure 1. Distortions introduced during the processing chain, and

typical usages of quality assessment metrics.

labels since human being is the final receiver. But the sub-

jective experiment is labor-intensive and time-consuming,

which is unsuitable for real-time scenarios. Therefore, ob-

jective quality assessment models are deeply researched to

achieve automation.

To precisely evaluate the perceptual quality of images,

the full-reference (FR) IQA methods can be broadly classi-

fied into five categories [1], namely error visibility, struc-

ture similarity, information-theoretic, learning-based and

fusion-based methods. Error visibility methods measure the

pixel level error and the representative is mean squared er-

ror (MSE). Structure similarity (SSIM) [12] methods con-

sider the human vision system (HVS) and utilize the local

structure similarity to evaluate image quality. SSIM and its

variants (e.g. MS-SSIM [14], IW-SSIM[13], FSIM [17])

show better correlation with human perception than sim-

ple error visibility methods. Information-theoretic methods

measure the mutual information between the reference and

distorted images. The prototypical example is the VIF mea-



Figure 2. Pipeline of Muiti-Metric Fusion Network (MMFN), D1, D2 and D3 are databases with different quality labels.

sure [9]. Learning-based methods benefit from leveraging

images with human ratings to train deep neural networks

(DNN) [18]. DNNs can automatically extract distortion-

aware features for quality regression with supervised learn-

ing [2]. Fusion-based methods aim to combine existing IQA

metrics to form a better model by considering the diver-

sity and complementarity of different metrics. The famous

VMAF [5] is one example of fusion-based metrics.

Although numerous metrics have been proposed in the

last decades, there is no single quality measure that signif-

icantly outperforms others [7, 5]. Different metrics have

their own characteristics, thus the metrics may have excel-

lent performance on one distortion type but perform poorly

on another. When the image content is diverse and the dis-

tortion is complex, relying on a single metric to give accu-

rate quality predictions is a challenging task. As a result,

the fusion-based methods can complement existing works

to build a better general-purpose evaluator. Moreover, we

can further boost the performance by incorporating newly

proposed powerful models.

Existing fusion-based methods determine the weights for

each metric either empirically or learned from data [1].

They neglect that the weights may change under different

image contents and distortions. Therefore, we propose the

Multi-Metric Fusion Network (MMFN) that adopts the im-

age content and distortion related features extracted from

distorted images to adaptively rescale the quality scores

given by typical quality metrics. Then, the weights are ad-

justed according to the content and distortion related fea-

tures. Besides, we can incorporate training data in the for-

mat of pairwise preference via adding a Score2Prob layer.

Experimental results on the validation and test sets demon-

strate that our proposed MMFN can outperform other qual-

ity metrics in terms of accuracy.

2. Proposed Model

2.1. Adaptive Rescaling

As different image contents and distortions may influ-

ence the performances of IQA metrics, we resort to use im-

age content and distortion related features to guide the fu-

sion process of different metrics. Considering the powerful

feature extraction capabilities of convolutional neural net-

works, we utilize a ResNet-18 [3] backbone (pretrained on

2D IQA database KonIQ [6]) to extract the content-related

and distortion-aware features from the input distorted im-

age. Note that the features adopted in MMFN are extracted

from different spatial scales, e.g., global average pooling for

features of various basic blocks. Then, these features are

sent through a fully-connected layer to generate the weights

and biases for rescaling. The predicted scores of FR metrics

will be adaptively rescaled as follows:

FR′

scorei = wi × FRscorei + bi, (1)

where FRscorei and FR′

scorei
denote the i-th metric before

and after adaptive rescaling. wi and bi are the weight and

bias for the i-th metric rescaling. With this process, the

model obtains the ability to adjust the weights of metrics

according to the image content and distortion, which will

further exploit the strengths of different metrics in the scene

that they are good at.

2.2. Regression and classification

In MMFN, we adopt ten representative metrics due to

their different mechanisms, high quality prediction accu-

racy and differentiability, including PSNR, SSIM [12], MS-

SSIM [14], GMSD [15], FSIM [17], VSI [16], NLPD [11],

VIF [9], LPIPS [18], DISTS [2]. All five categories ex-

cept fusion-based metrics are contained to improve the ex-

pression ability of the regression input. After the rescaling



process, the ten rescaled metrics scores are sent to the final

regression network to get a single scalar as our perceptual

quality score.

To cater with the training on databases with preference

labels, we use a Socre2Prob layer to predict perceptual

judgement from the pair of two distorted images. The

Score2Prob layer is composed of three fully connected lay-

ers, which accepts five inputs (qA, qB , qA−qB , qA/(qB+ǫ),
qB/(qA + ǫ)), and gives a probability of preferring image

B. qA and qB refer to the predicted scores of image A and

image B, ǫ is a smooth constant.

The classification task is also introduced to increase the

generalization performance of MMFN. Therefore, we add

the side way of a fully-connected layer for our model to

predict the bit per pixel (BPP) class of the distorted image.

2.3. Loss function

While different databases have different data formats, we

need to design suitable loss functions to train our model.

Figure 2 shows the pipeline of our MMFN. Three kinds of

labels are considered in our work, namely the MOS value,

the preference label, and the BPP classification type. For

the MOS value, we adopt MSE loss formulated as Eq. 2 to

optimize our model:

lossMSE =
1

N

N∑

i=1

(qi − q̂i)
2, (2)

where qi and q̂i refer to the ground-truth label and the pre-

dicted score of the i-th image in a mini-batch, N denotes the

batch size. For the preference label, we regard it as a clas-

sification task and use binary cross entropy loss formulated

as Eq. 3 to guide the optimization process:

lossBCE = −

1

N

N∑

i=1

[pi log p̂i+(1−pi) log(1− p̂i)], (3)

where pi and p̂i represent the ground-truth and predicted

probability for preferring image B over image A of the i-th
pair in the mini-batch. For the BPP classification label, we

use cross entropy loss to optimize our model:

lossCLS = −

1

N

N∑

i=1

∑

c

yic log p̂ic, (4)

where yic and p̂ic denote the class label and the predicted

probability of i-th sample being class c (0.075BPP, 0.15BPP

and 0.3BPP).

When training our MMFN on different databases, we

can apply different loss functions or combine them with the

trade-off coefficients λ1 and λ2:

loss = lossMSE + λ1lossBCE + λ2lossCLS . (5)

We can adjust the coefficients λ1 and λ2 according to the

importance or effectiveness of different databases to our

task.

3. Experiment

3.1. Databases

Four different databases are used in our experiment,

named PIPAL [4], BAPPS [18], CLIC-V, and Sub-T.

PIPAL [4]: It contains 200 reference, 40 distortion

types and 23,000 distortion images. Especially, it includes

the outputs of GAN-based algorithms as typical distortion

types, which are beneficial to our task. The MOS value is

provided for each distorted image.

BAPPS [18]: It contains 6 coarse distortion classes,

namely traditional distortions, CNN-based distortions, su-

per resolution artifacts, frame interpolation artifacts, video

deblurring artifacts, and colorization artifacts. It provides

preference labels of 161,000 patch pairs, and each pair in-

cludes two distorted images and one reference image.

CLIC-V: It is the validation set provided by the

CLIC2021 competition. There are totally 5,220 images

pairs with preference labels in this database.

Sub-T: It is a database built by ourselves. 626 refer-

ence images provided by CLIC compression track are com-

pressed using seven methods under three different bit rates.

Therefore, there are totally 13,146 distorted images with

BPP labels (Sub-T-BPP). Meanwhile, we select 408 typical

pairs for the subjective experiment, and each pair originates

from the same reference image and bite rate (Sub-T-Prefer).

For the 408 pairs, 10 subjects are asked to judge which is

more similar to the reference image.

Among all these databases, PIPAL, BAPPS and Sub-T-

BPP are used for training MMFN, CLIC-V is used for vali-

dation and Sub-T-Prefer is used for testing.

3.2. Implementation details

The MMFN is implemented based on Pytorch frame-

work with a NVIDIA 1080Ti GPU. In the training process,

we set the mini-batch size as 64, and choose the Adam op-

timizer with an initial learning rate as 0.01 to optimize our

model, The learning rate will decay by a factor valued 0.5

every 100 epochs. Firstly, the model is trained on PIPAL

to match the predicted score into the range [0,1]. Secondly,

the BAPPS and Sub-T-BPP database is further introduced

to train the Score2Prob layer and finetune the entire model.

Here we set the trade-off coefficient λ as 0.01 when we

jointly train MMFN on these two databases. Finally, the

model is validated on CLIC-V and tested on Sub-T-Prefer.

3.3. Results

We compare the performance of MMFN and other FR

metrics in Table 1. Except for MMFN, we also train an-



Table 1. Accuracy of different metrics on CLIC-V and Sub-T-

Prefer databases.

Metric CLIC-V Sub-T-Prefer

PSNR 0.573 0.409

SSIM [12] 0.571 0.449

MS-SSIM [14] 0.614 0.341

GMSD [15] 0.647 0.623

FSIM [17] 0.640 0.466

VSI [16] 0.627 0.449

NLPD [11] 0.591 0.380

VIF [9] 0.605 0.404

LPIPS [18] 0.744 0.799

DISTS [2] 0.756 0.689

MMFN-FC 0.771 0.781

MMFN 0.795 0.787

other model which simply fuses ten metrics with the fully-

connected layer (MMFN-FC) to study the importance of

adaptive rescaling. As we can see in Table 1, MMFN out-

performs other metrics which proves the superiority of our

method. Besides, the performance of MMFN is higher

than MMFN-FC, which verifies the effectiveness of adap-

tive rescaling.

4. Conclusion

In this paper, we propose the Multi-Metric Fusion Net-

work as a full reference image quality assessment model

which can give the absolute perceptual quality and prefer-

ence judgement between two images. We fuse ten metrics

to build a more accurate and robust model. To guide the

fusion process, we introduce the adaptive rescaling opera-

tion by utilizing a ResNet-18 backbone for extracting the

content-related and distortion-aware features from the input

distorted image. Moreover, we deal with multi-databases

training problem by designing different loss functions and

introducing a Score2Prob layer. Experimental results on the

CLIC-V and Sub-T databases demonstrate the superiority

of our method. Feature level fusion and distortion specific

analysis will be done to continue improving the power and

interpretability of the model in our future work.

References

[1] Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli.

Comparison of image quality models for optimization of im-

age processing systems. arXiv, 2020. 1, 2

[2] Keyan Ding, Kede Ma, Shiqi Wang, and Eero P. Simoncelli.

Image quality assessment: Unifying structure and texture

similarity. CoRR, abs/2004.07728, 2020. 2, 4

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 2

[4] Haoyu Chen Xiaoxing Ye Jimmy Ren Chao Dong Jinjin Gu,

Haoming Cai. Pipal: a large-scale image quality assessment

dataset for perceptual image restoration. In European Con-

ference on Computer Vision (ECCV) 2020, pages 633–651,

Cham, 2020. Springer International Publishing. 3

[5] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy,

and Megha Manohara. Toward a practical perceptual video

quality metric. The Netflix Tech Blog, 6(2), 2016. 2

[6] Hanhe Lin, Vlad Hosu, and Dietmar Saupe. Koniq-10k:

Towards an ecologically valid and large-scale iqa database.

arXiv preprint arXiv:1803.08489, 2018. 2

[7] Tsung Jung Liu, Weisi Lin, and C. C. Jay Kuo. Image quality

assessment using multi-method fusion. IEEE Transactions

on Image Processing, 22(5):1793–1807, 2012. 2

[8] Kalpana Seshadrinathan, Rajiv Soundararajan, Alan Conrad

Bovik, and Lawrence K Cormack. Study of subjective and

objective quality assessment of video. IEEE Transactions on

Image Processing, 19(6):1427–1441, 2010. 1

[9] Hamid R Sheikh and Alan C Bovik. Image information

and visual quality. IEEE Transactions on image processing,

15(2):430–444, 2006. 2, 4

[10] Hamid R Sheikh, Muhammad F Sabir, and Alan C Bovik.

A statistical evaluation of recent full reference image quality

assessment algorithms. IEEE Transactions on image pro-

cessing, 15(11):3440–3451, 2006. 1

[11] L. Valero, B. Johannes, B. Alexander, and E. P. Simon-

celli. Perceptual image quality assessment using a normal-

ized laplacian pyramid. Electronic Imaging, 2016(16):1–6,

2016. 2, 4

[12] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simon-

celli, et al. Image quality assessment: from error visibility to

structural similarity. IEEE Transactions on image process-

ing, 13(4):600–612, 2004. 1, 2, 4

[13] Zhou Wang and Qiang Li. Information content weighting for

perceptual image quality assessment. IEEE Transactions on

Image Processing, 20(5):1185–1198, 2010. 1

[14] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Mul-

tiscale structural similarity for image quality assessment. In

The Thrity-Seventh Asilomar Conference on Signals, Systems

& Computers, 2003, volume 2, pages 1398–1402. IEEE,

2003. 1, 2, 4

[15] W. Xue, L. Zhang, X. Mou, and A. C. Bovik. Gradient mag-

nitude similarity deviation: A highly efficient perceptual im-

age quality index. IEEE Transactions on Image Processing,

23(2):684–695, 2014. 2, 4

[16] L. Zhang, Y. Shen, and H. Li. Vsi: A visual saliency-induced

index for perceptual image quality assessment. IEEE Trans-

actions on Image Processing, 23(10):4270–4281, Oct 2014.

2, 4

[17] Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang.

Fsim: A feature similarity index for image quality assess-

ment. IEEE Transactions on Image Processing, 20(8):2378–

2386, 2011. 1, 2, 4

[18] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In CVPR, 2018. 2, 3, 4


