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Abstract

Neural network-based image compressors have the abil-

ity to optimize various perceptual image quality metrics.

We propose improved methods that is based on selective-

detail decoding, which uses two decoders (a main decoder

and selective-detail decoder) optimized for different image-

quality metrics and applies the output result of a suit-

able decoder for each part of an image. The following

three improvements are obtained with the proposed method.

(1) Inspired by the super-resolution task, we add a super-

resolution residual module to the main decoder, which is

trained to up-sample an image to a resolution beyond the

source image, aiming to output a visually clearer image.

(2) To improve the perceptual image quality of the main de-

coder, we use an image quality metric based on Deep Im-

age Structure and Texture Similarity (DISTS), the similarity

of which is close to that of human senses with respect to

texture. (3) To improve the mask accuracy for decoder se-

lection, cross entropy loss is used for comparing predicted

masks and ground truth masks. We also use the weighted

mean squared error to improve the visual quality of the text

part of an image.

1. Introduction

Research on learned image compressors using end-to-

end neural networks has recently been conducted [9], [10],

[12]. A neural network-based learned image compressor

generally consists of an encoder that converts an image into

a feature map, quantizer that quantizes the feature map, and

decoder that generates an image from the quantized feature

map. It also consists of an entropy estimator that predicts

the probability of each value in the quantized feature map,

and an adaptive arithmetic coder that uses the prediction of

the probability to reduce the amount of data in the quantized

feature map.

Among the components of the image compressor, the
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encoder, decoder, and entropy estimator are composed of

neural network to acquire compression capability through

learning. The advantage of such a learning image com-

pressor over traditional compressors is that any differen-

tiable image quality metric can be used as the loss function

in learning, and various functions of neural networks (e.g.,

super-resolution, Generative Adversarial Networks (GANs)

[13], identification), which have recently been studied, can

be added as components to the image compressor. For ex-

ample, by using a neural network that estimates the score of

human perceptual image quality [17], [5], [14] as the loss

function of an image compressor [11], it is possible to gen-

erate images that do not make people feel uncomfortable,

even at low bit rates. In addition, research on the applica-

tion of GANs to image compression [1] has shown that it is

possible to generate images that are close to the distribution

of the training data set at low bit rates.

We propose a method that is based on selective-detail

decoding [2], which uses two decoders and automatically

selects a suitable decoder for each part of an image to im-

prove human perception of image quality at low bit rates.

The following three improvements are obtained with the

proposed method. (1) Inspired by the super-resolution [6]

[15] task, we add a super-resolution residual module (S) to

the main decoder (Gm), which is trained to scale the image

to a resolution beyond the source image to output a visually

clearer image. (2) The image compressor is optimized us-

ing a polynomial equation that combines the results of the

discriminator (D) and Deep Image Structure and Texture

Similarity (DISTS) [5], the similarity of which is close to

human senses with respect to texture, to improve the per-

ceptual quality of the Gm. (3) Cross entropy loss is used to

improve the mask accuracy for decoder selection. We also

use the weighted Mean Squared Error (MSE) to improve the

visual quality of the text part.
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Figure 1. Network architecture overview of the proposed method. AE and AD are arithmetic encoder and decoder.

2. Proposed Method

2.1. Architectural Overview of the Proposed
Method

The encoder E, main decoder Gm, selective-detail de-

coder Gs, entropy estimator H , discriminator D, super-

resolution residual module S are configured in convolu-

tional neural networks and have learnable parameters. We

use round based quantizer [3] as a quantizer Q. We obtain

quantized feature maps ẑ of an image x by ẑ = Q(E(x)).
H outputs the parameters of the probability density distri-

bution function of ẑ required for arithmetic coding and de-

coding.

2.2. Main Decoder and SelectiveDetail Decoder

The proposed method consists of two types of decoders

based on those developed by Akutsu et al. [2]. The Gm is

responsible for the output of the entire image and empha-

sizes expressions such as textures. The Gs is responsible

for a specific part such as texts and faces and outputs high-

quality images. The Gs outputs the mask m and x̂s of the

image. Mask m represents the region output by the Gs.

The Gs learns to generate a mask properly for the ground

truth label (the weighted MSE loss and cross entoropy loss

of the Gs are described later).

2.3. SuperResolution Residual Module

Figure 2 is an overview of Super-Resolution Residual

Module (SRRM). The SRRM receive the output image

(x̂m) of the Gm as input, and outputs a high-resolution

output (x̂m2), obtained by adding a residual image (x̂sr)

and a simply twice up sampled image of x̂m by bilinear.

After pre-training E, Gm, Gs, H , and D, the SRRM S is

added and all the networks are fine-tuned. In this fine-tune

training, 1/2 downsampled image (x) of ground truth high-

resolution image (xhr) is used for input to the E. Note

that additional dataset for training super resolution residual

module is not required because the original and the down-

sampled images of training dataset are used as xhr and x

respectively during training. We train the networks with

perceptual loss and discriminator loss using x̂m2 and xhr .
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Figure 2. Super-resolution residual module.

Finally we obtain output images for reconstruction (x̂m3)

by simply 1/2 downsampling of x̂m2.

2.4. Entropy Estimator

The entropy estimator uses the context estimator with

the addition of a casual convolution module and hyperprior

predictions as [2]. This estimator predicts the probability

of symbols of each element of feature maps used for arith-

metic coding by Gaussian distribution. The entorpy estima-

tor outputs two parameters of the Gaussian distribution for

each element of the feature map.

2.5. Loss Functions

2.5.1 Distortion Loss

With our proposed method, we use loss function Ldm us-

ing DISTS [5] with Multi-Scale Structural SIMilarity (MS-

SSIM) [16] to estimate the score of human perceptual image

quality in the training of the Gm.

Ldm = λmpE [DISTS(xhr, x̂m2)]

+λmsE [1−MSSSIM(xhr, x̂m2)] .
(1)

We also use the weighted MSE for the training of the Gs.

The weighted MSE calculates the MSE between x and x̂ in

the region specified in the given annotation information ta.

Lds = E [wMSE(x, x̂, ta)] . (2)

2.5.2 Mask Loss

To improve the accuracy of the mask output of the Gs, the

proposed method uses a new mask loss that calculates the
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Figure 4. Entropy estimator.

cross entropy of the mask output m against the the ground

truth annotation information ta. To avoid missing the mask

area, we weight the cross entropy by multiplying the anno-

tation area by a factor of 2.

Lmask = −E [2ta log(m) + (1− ta) log(1−m)] . (3)

2.5.3 Entropy Loss

The entropy loss of the feature map of the proposed method

is

Le = −E [I(ẑ,µf ,σf )] . (4)

If (ẑ) = −
∑

log(
1

2
erf(

ẑ− µf + 0.5√
2σf

)−

1

2
erf(

ẑ− µf − 0.5√
2σf

)).

(5)

This is the same for hyper prior entropy loss Lh.

2.5.4 Adversarial Loss

In addition to Ldm and Lpm, discriminator loss is also used

to learn the Gm. The discriminator loss is defined by

Lg = E

[

log(1 + eD(xhr,ts))
]

+E

[

log(1 + erD(x̂m2,ts))
]

.

(6)

where r is defined as r = −1 at discriminator phase and as

r = 1 at generator phase. The D uses semantic segmenta-

tion labels ts with images as inputs, similar to conditional

GANs. With our method, the labels are not input to the

generator side for practical use as introduced in [2].

2.5.5 Total Loss

The final loss function is the following:

min
θGm,s,E,H,S

min
θD

V (θGm,s,E,H,S , θD)

= Ldm + λsLds + λgLg + λmaskLmask + λeLe.

(7)

3. Experimental Results

3.1. Experimental Conditions

The E was composed of four encoder bodies, and a 3x3

conv layer was added at the end. The numbers of channels

between these components were 3, 32, 64, 128, 192, and

64. The Gm was composed of four encoder bodies, and a

3x3 conv layer was inserted first. The numbers of channels

among these components were 32, 192, 128, 64, 32, and

3. The Gs was similarly configured, but the numbers of

channels among the components were 32, 192, 96, 64, 32,

and 4. Hyper encoder (He) was composed of two encoder

bodies, and a 3x3 conv layer was inserted first. The num-

bers of channels among these components were 64, 32, 32,

and 32. Hyper decoder (Hd) was composed of two decoder

bodies, and a 3x3 conv layer was inserted last. The num-

bers of channels among these components were 32, 32, 32,

and 128. The configuration of the other components of the

entropy estimator is as illustrated in Figure 3.

The D was composed of four encoder bodies, and a 3x3

conv layer was added at the end. The numbers of channels

among these components were 8, 32, 64, 128, 192, and 1.

The input of the images was three channels, and the remain-

ing five channels were used for the input of label ts in D.

The input labels were one-hot expressions, and additional

1x1 convolution networks with a final output of five chan-

nels were added to reduce the label dimension.

We used images from the Open Images Challenge 2018

dataset [7] for training. For those images, semantic seg-

mentation for ts was machine generated, and annotations

of faces and text parts for ta were also machine generated,

and used for training. We ran 800,000 training iterations us-

ing ADAM Optimizer [8] as pre-training before adding the

SRRM. We then added the SRRM and ran 400,000 training

iterations with a learning rate of 4e-5 and batch size of 4.

The hyperparameters in each target bit-per-pixel (bpp) are

listed in Table 2. The values in Table 2 were determined

based on bpp and human observation of images from mul-



(a) Ground truth (b) Main decoder output (ෝ𝒙𝒎) (c) SRRM output (ෝ𝒙𝒎𝟑) (d) Residual image (ෝ𝒙𝒔𝒓)

Figure 5. Experimental results using CLIC2021 validation dataset (configuration: Target bpp 0.075)

Target bpp

0.075 0.15 0.30

Ours JPEG BPG [4] Ours JPEG BPG Ours JPEG BPG

Peak Signal-to-Noise Ratio

(PSNR)
26.1 22.5 28.4 27.3 26.5 30.7 29.0 30.0 33.1

MS-SSIM 0.938 0.744 0.915 0.957 0.860 0.947 0.972 0.939 0.967

DISTS 0.185 0.409 0.231 0.138 0.306 0.186 0.120 0.196 0.145

bpp 0.0686 0.0727 0.0652 0.134 0.141 0.141 0.299 0.299 0.282

Table 1. Evaluation results using CLIC2021 validation dataset. The chroma format of JPEG and BPG were set to 4:2:0.

Target bpp

0.075 0.15 0.30

λmp 250 250 250

λms 5000 5000 5000

λg 50 50 50

λs 5.00 5.00 5.00

λe 4000 1500 250

λmask 2667 1000 167

Table 2. Hyperparameters for each target bpp

tiple compressors with different hyperparameters.

3.2. Results

Figure 5 shows the evaluation results using the valida-

tion dataset of CLIC2021. Figure 5 (b) is the image output

from the Gm when the ground-truth image (a) is input to

the compressor. Figure 5 (d) is the residual image using (b)

as input of the SRRM, normalized, and reduced to the same

size as (a). Figure 5 (d) shows that the residual image draws

the edges of the glass in the image. The output image of

the SRRM is shown in (c), which is a clearer image than

(b) with reduced artifacts in areas where intensity changes

are steeper. The evaluation results for each target bpp of the

CLIC2021 validation dataset are listed in Table 1. Table 1

shows that the proposed method provides higher perceptual

image quality (DISTS) compared to conventional methods

in each bitrate conditions.

4. Conclusion

We proposed a method that is based on selective detail

decoding [2], which involves using two decoders and auto-

matically selects the suitable decoder for each part of an im-

age to improve human perception of image quality at low bit

rates. We proposed the SRRM module for image compres-

sion that trains to output high resolution image and down-

sample it to the original size. We also proposed a image

compression method optimized with the image quality in-

dex based on DISTS and the adversarial loss, so that the

similarity of the texture is close to the human sense. For

the selective-detail decoder responsible for specific parts of

an image and outputs high-quality images, we used a mask

loss function to improve the results of automatically gener-

ating masks. We believe the proposed method will improve

perceptual image quality at ultra-low bitrates.
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