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Abstract

Learning-based image compression has drawn increas-

ing attention in recent years. Despite impressive progress

has been made, it still lacks a universal encoder optimiza-

tion method to seek efficient representation for different im-

ages. In this paper, we develop a universal rate distortion

optimization framework for learning-based compression,

which adaptively optimizes latents and side information to-

gether for each image. The proposed framework is indepen-

dent of network architecture and can be flexibly applied to

existing and potential future compression networks. Exper-

imental results demonstrate that we can achieve 6.6% bit

rate saving against the latest traditional codec, i.e., VVC,

yielding the state-of-the -art compression ratio. Moreover,

with the proposed optimization framework, we win the first

place in CLIC validation phase for all the three different bit

rates in terms of PSNR.

1. Introduction

With the rapid development of deep learning, learning-

based image compression has shown great potential and

drawn increasing interests. Early works [5, 6, 7] utilize

auto-encoders to compress images into latent representa-

tion, and estimate the rate as discrete entropy to make the

network end-to-end trainable. After that, many powerful

context-adaptive entropy models [20, 15, 11, 14, 13, 21]

are developed to remove the redundancy in latent codes. In

addition, some researchers explore efficient network struc-

tures, and introduce many modules, such as non-local resid-

ual block [16], attention block [19] and multi-scale fusion

[11]. With these efforts, learning-based image compression

exhibits a fast development in recent years. The state-of-

the-art work [11] is even approaching the latest traditional

compression standard, namely, VVC [22].
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Although these networks have achieved impressive

progress in image compression, they use a fixed trained en-

coder to compress all images, which cannot adapt to dif-

ferent image content. To address this issue, there are some

works exploring image-specific rate-distortion optimization

(RDO) to further improve learning-based compression. The

work [18] proposes to adaptively update the encoder for dif-

ferent content. Furthermore, some works [17, 10] directly

optimize the latent codes for each image and achieve more

competitive performance. However, they simply exploit the

existing optimizer designed for network training without

considering the characteristics of latent codes.

To achieve higher compression ratio, we take the char-

acteristics of compression process, especially the rounding

effect, into consideration, and propose a new latent opti-

mization strategy. In addition, inspired by the great poten-

tial of side information for traditional codecs [12, 24], we

introduce side information at different levels, i.e., quanti-

zation step and post processing modulation scalar, into the

learning-based compression, so as to further enhance the

compression ratio. By integrating side information opti-

mization with latent optimization, we develop a universal

RDO framework for learning-based compression. The pro-

posed optimization framework is independent of network

architectures, and can be flexibly applied to the existing and

future potential compression networks.

2. Approach

In this paper, we develop a universal encoder optimiza-

tion framework for learning-based compression to adap-

tively boost the compression ratio for each image. The opti-

mization framework consists of two main components, i.e.,

latent optimization and side information optimization.

2.1. Latent optimization

For the compression network, as soon as the training is

completed, the encoder is determined, which would be ap-

plied to all the images to be compressed. However, due to



Figure 1. Illustration of latent optimization for learning-based compression. The network trained on a large dataset first encode the image

x into a latent representation y and use hyperpriors z to model its dependency. Then a latent optimization is applied to further optimize y

and z to adapt to its image content for higher compression ratio.

Algorithm 1 L-OPT

Input: Initial y and z from the network encoders

Output: Optimized yopt and zopt

1: Initialize Lopt = 1e10
2: for t← 1 to T do

3: Estimate the loss Lt via Eq. (1)

4: if Lt < Lopt then

5: yopt = y, zopt = z and Lopt = Lt

6: Update y and z via Eq. (2)

the diversity of image content, a fixed encoder cannot trans-

form every image into its optimal latent representation, re-

sulting in redundancy in latent codes.

To address this issue, we propose to further optimize the

latent codes for each image. Fig. 1 provides a high-level

overview of the proposed framework, which consists of two

main components, i.e., a general compression network and

latent optimization. Suppose x is the image to compress.

It will be first encoded to a latent representation y with an

encoder. Then, a hyper encoder is applied to capture the

spatial dependency of y, producing hyper latent codes z.

Sequentially, for higher compression ratio, the y and z are

further optimized to adapt to its image content by minimiz-

ing the following loss function:

L = R(ŷ) +R(ẑ) + λ · D(x, x̂), (1)

where ŷ and ẑ denote the quantized codes decompressed

from bit stream. R(ŷ) and R(ẑ) represent the latent rate

and hyper latent rate. x̂ is the image reconstructed from

ŷ with the decoder. D(x, x̂) denotes the distortion, which

can be measured with any differentiable evaluation metrics,

such as PSNR and MS-SSIM.

In particular, different from the previous work [10] that

simply use the Adam optimizer designed for training net-

works, we carefully analyze the characteristics of compres-

sion process, and derive an efficient latent optimization. In-

stead of adding uniform noise to approximate the quanti-

zation as the training, we use rounding to keep consistent

with the practical encoding process and replace its deriva-

tive with a smooth approximation. To be specific, in the

forward pass, we quantize the latent codes with rounding.

In the backward pass, we use the gradient of identity func-

tion to replace the gradient of rounding to implement back

propagation as introduced in [23]. Considering the effect of

rounding, we should note the following issues. First, a small

change of latent may not impact the behavior after round-

ing. For instance, 1.11 and 1.12 will be both rounded to 1.

To guarantee the latents with large gradient can be properly

updated, we adopt a fixed step to update the latent with the

maximum gradient and update other latents proportionately.

Second, for the latents with small gradients, a small change

passing the rounding boundary may unexpectedly impact

the behavior significantly. For example, 1.49 and 1.50 will

be rounded to 1 and 2 respectively. To address this issue,

in each iteration, we only update the latents with big gradi-

ents. To achieve high compression ratio, we jointly consider

the two points and develop a content adaptive optimization

mechanism, which is formulated as:

y :=

{

y − α · y
′

|y′|max
, |y′| > β · |y′|max

y, otherwise
(2)

Here y′ denotes the gradient of y. α denotes the update

step and β denotes the scalar determining update threshold,

which are initialized to 0.8 and 0.25, respectively. They will

be adjusted during the optimization. With the latent opti-

mization, α decreases and β increases. We can also employ

the same optimization mechanism to z, so as to optimize y

and z together. The steps of the proposed latent optimiza-

tion (L-OPT) is summarized in Algorithm 1.



Algorithm 2 QL-OPT

Input: Initial Qmin and Qmax

Output: Optimized qopt

1: Initialize Lopt = 1e10
2: for q ← Qmin to Qmax by 0.05 do

3: Optimize y and z with Algorithm 1.

4: Calculate the loss Lt

5: if Lt < Lopt then

6: Update qopt and Lopt

7: Qmin = qopt − 0.04, Qmax = qopt + 0.04
8: for q ← Qmin to Qmax by 0.01 do

9: Optimize y and z with Algorithm 1

10: Calculate the loss Lt

11: if L < Lopt then

12: Update qopt and Lopt

2.2. Side information optimization

Considering traditional codecs use various side informa-

tion to facilitate the decoding, we further introduce two dif-

ferent level side information, i.e., quantization step and post

processing modulation scalar to our framework, and inte-

grate side information optimization with latent optimization

to enhance the compression ratio.

1) Signal level side information. The compression net-

work usually sets the quantization step size to 1, and quan-

tizes the latent codes by directly rounding them. However, 1

may not be the optimal quantization step for all the images.

To address this issue, we introduce the quantization step q

as the signal level side information to make the latent repre-

sentation more efficient. Then, the quantized latents yq and

reconstructed latents ŷ can be formulated as

yq = r(
y − µ

q
)

ŷ = yq ∗ q + µ,

(3)

where µ denotes the means predicted by entropy model

and r(·) represents rounding function. Correspondingly, we

should useR(yq) to replace theR(ŷ) in Eq. (1). To get the

optimal q, we hierarchically search the candidate set. The

joint quantization step and latent optimization (QL-OPT)

algorithm is summarized in Algorithm 2.

2) Post processing level side information. Post process-

ing networks are usually applied to further improve the re-

construction quality. However, considering the significant

differences among the decoded images x̂, it is not appro-

priate to use a fixed processing strength for all the images.

To address this issue, we additionally introduce a post pro-

cessing level side information, i.e., modulation scalar m to

direct the post processing. Then the improved reconstruc-

tion x̃ can be formulated as

x̃ = P(x̂,m), (4)

where P(·) denotes the post processing network. Here we

use the pretrained DRUNet [26] as the post-processing net-

work. We employ a hierarchical search, which is similar to

Algorithm 2, to get the optimal modulation scalar m.

3. Experimental results

3.1. Implementation details

To facilitate the implementation of the proposed opti-

mization, we develop a new compression network. The pro-

posed network is modified from Cheng-Anchor[11] 1 and

implemented based on CompressAI [8]. Different from the

previous works that get both means and scales from the con-

catenated hyperpriors and context information, the entropy

model of the proposed network infers means only based on

hyperpriors and infers scales according to both hyperpri-

ors and context information. Since the means are free from

auto-regressive model, the proposed network can achieve

parallel encoding, which is much faster than the sequential

encoding in [11] and beneficial to the proposed rate distor-

tion optimization. To train the proposed compression net-

work, we use the Vimeo-90K dataset [25] and randomly

cropped the images into 256× 256 patches. The model was

optimized using Adam optimizer with a batch size of 12.

The learning rate is initialized to 1e− 4 and decreases dur-

ing the training. The parameter λ of loss function belongs to

the set {0.0018, 0.0035, 0.0067, 0.0130, 0.0250, 0.0483}.

3.2. Comparison with the state-of-the-art methods

To evaluate the compression methods, we compare our

proposed compression framework with both traditional

codecs, including JPEG2000 [3], HEVC [1] and VVC [4],

and competitive learning-based compression methods, in-

cluding Mean and Scale Hyperprior [20] and Cheng-Anchor

[11]. For the learning-based compression methods, we use

the released models from CompressAI [8] unless otherwise

noted. We calculate the bit rate saving over the commonly

used Kodak image set [2] to measure the compression ratio.

In this paper, The bit rate saving is calculated by BD-rate as

introduced in the work [9]. The rate is measured by bits per

pixel (bpp), and the quality is measured by Peak Signal-to-

Noise Ratio (PSNR).

Fig. 2 shows the RD curves of different compression

methods. The released Cheng-Anchor is approaching the

latest traditional codec, namely VVC. Our proposed net-

work without optimization can achieve comparable results

with the retrained Cheng-Anchor, which is slightly worse

than the released Cheng-Anchor model due to lack of train-

ing details. It demonstrates that the modification of the en-

tropy model do not degrade the compression ratio. How-

ever, as the means is free from the auto regressive model,

1Cheng-Anchor achieves the highest compression ratio among the pre-

trained models provided by CompressAI [8]



Figure 2. Comparison with the state-of-the-art methods on Kodak

dataset. The proposed method achieves the best performance.

it is easier to speed up encoding and implement the pro-

posed encoder optimization. The overall proposed frame-

work, combining optimization with our learned compres-

sion network, outperforms all the state-of-the-art methods.

Our framework achieves 6.6% bit rate saving against com-

petitive VVC on Kodak dataset.

3.3. Applied to various compression networks

It is worth noting that proposed optimization algorithm

is independent of network architectures. As long as the

decoder is differentiable, it can be flexibly applied to ex-

isting and potential future compression networks as plu-

gin. To demonstrate its flexibility and efficiency, we apply

the proposed optimization to three different networks, i.e,

Mean-Scale [20], Cheng-Anchor [11] and the proposed net-

work (modified from Cheng-Anchor). As shown in Fig. 3,

the proposed encoder optimization can significantly boost

the compression ratio, which achieves 13.9%, 12.0% and

15.3% additional bit rate savings on the three different mod-

els, respectively.

3.4. Results on CLIC validation phase

We totally train 16 different compression models using

the λ from 0.0008 to 0.0568 with a step ratio of about 4/3.

The channel number is set to 128 and the size of each model

is about 20M . Given a 250M decoder, we can save 11

compression models and a post posting model. In fact, for

each targeting bit rate, we only use 3-5 compression mod-

els. The top results on the leaderboards are listed in Table

1. We group the results submitted from the teams with sim-

ilar names (after removing the postfix such as PSNR and

SSIM), and only list the results with the highest PSNR. With

the proposed encoder RDO, We (DeepMC) can achieve the

best PSNR performance for all the three targeting bit rates

Figure 3. Applying the proposed optimization to various compres-

sion networks.

Table 1. The top PSNR results on CLIC leaderboards.

Team 0.075 0.150 0.300 Average

DeepMC 30.23 32.67 35.41 32.77

ANTxNN 30.14 32.47 35.31 32.64

VTM VVC 29.26 31.58 34.70 31.85

IVPG 28.70 30.96 33.32 30.99

anf 28.63 30.80 33.32 30.92

HM HEVC 28.31 30.50 33.90 30.90

SRCX DLIC 27.84 30.83 34.01 30.89

wp2 28.26 30.37 33.17 30.60

IMCL IMG 28.25 30.39 32.37 30.34

HHC 27.80 31.41 31.43 30.21

on CLIC validation dataset.

4. Conclusion

In this paper, we develop a universal encoder rate distor-

tion optimization framework as plugin for learning-based

image compression. Considering the diversity of image

content, the proposed framework adaptively optimizes the

side information and latents for each image to boost the

learning-based compression ratio. Experimental results

demonstrate that our proposed framework can remarkably

boost the learning-based compression ratio, achieving more

than 10% additional bit rate saving on three different net-

work structures. The overall framework can achieve 6.6%
bit rate saving against the latest VVC on Kodak dataset,

yielding the state-of-the-art compression ratio. With the

proposed optimization framework, we win the first place in

CLIC validation phase for all the three targeting bit rates in

terms of PSNR.
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autoregressive and hierarchical priors for learned image

compression. In NeurIPS, 2018. 1, 3, 4

[21] David Minnen and Saurabh Singh. Channel-wise autoregres-

sive entropy models for learned image compression. In 2020

IEEE International Conference on Image Processing (ICIP),

pages 3339–3343. IEEE, 2020. 1

[22] Jens-Rainer Ohm and Gary J Sullivan. Versatile video

coding–towards the next generation of video compression.

In Picture Coding Symposium, volume 2018, 2018. 1

[23] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc

Huszár. Lossy image compression with compressive autoen-

coders. arXiv preprint arXiv:1703.00395, 2017. 2

[24] Chia-Yang Tsai, Ching-Yeh Chen, Tomoo Yamakage, In Suk

Chong, Yu-Wen Huang, Chih-Ming Fu, Takayuki Itoh,

Takashi Watanabe, Takeshi Chujoh, Marta Karczewicz, et al.

Adaptive loop filtering for video coding. IEEE Journal of

Selected Topics in Signal Processing, 7(6):934–945, 2013. 1

[25] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and

William T Freeman. Video enhancement with task-

oriented flow. International Journal of Computer Vision,

127(8):1106–1125, 2019. 3

[26] Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc

Van Gool, and Radu Timofte. Plug-and-play image

restoration with deep denoiser prior. arXiv preprint

arXiv:2008.13751, 2020. 3


