
Insights from the Future for Continual Learning

Arthur Douillard1,2, Eduardo Valle3, Charles Ollion2,4, Thomas Robert2, Matthieu Cord1,5
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Abstract

Continual learning aims to learn tasks sequentially, with

(often severe) constraints on the storage of old learning

samples, without suffering from catastrophic forgetting. In

this work, we propose prescient continual learning, a novel

experimental setting, to incorporate existing information

about the classes, prior to any training data. Usually, each

task in a traditional continual learning setting evaluates the

model on present and past classes, the latter with a lim-

ited number of training samples. Our setting adds future

classes, with no training samples at all. We introduce Ghost

Model, a representation-learning-based model for contin-

ual learning using ideas from zero-shot learning. A gener-

ative model of the representation space in concert with a

careful adjustment of the losses allows us to exploit insights

from future classes to constraint the spatial arrangement of

the past and current classes. Quantitative results on the

AwA2 and aP&Y datasets and detailed visualizations show-

case the interest of this new setting and the method we pro-

pose to address it.1

1. Introduction

Continual learning models contrast with traditional mod-

els by approaching a sequence of tasks incrementally. With

limitations (often severe) on the training data they can re-

tain, those models must avoid catastrophic forgetting of

past tasks [39, 14], while remaining receptive to new tasks.

Many approaches exist to counteract forgetting: keeping a

limited amount of training data from previous tasks [38, 6];

learning to generate the training data [24, 41]; extending

the architecture for new tasks [49, 29]; using a sub-network

for each task [13, 16, 22]; and constraining the model di-

vergence as it evolves [25, 32, 3, 31, 38, 6, 11]. Those ap-

proaches are often complementary.

New Setting: We propose a challenging new setting, pre-

scient continual learning, in which the model must perform

well not only for present and past tasks, but also for future

ones, both avoiding catastrophic forgetting (using a limited

1Code is available at:

github.com/arthurdouillard/incremental learning.pytorch

number of training samples for past classes), and giving

the best possible estimates for the future classes (using no

training samples at all). To make the setting possible, the

model must know the classes and have some prior informa-

tion about them. Indeed, Aljundi et al. [4] remark that the

ability to make room for future classes is a key limitation of

current continual learning models, and propose a regulariza-

tion loss to make the model more “selfless”, explicitly leav-

ing capacity for future classes in the representation. Han et

al. [19] proposed a setting where the training samples from

all classes are present from the beginning, but the labels be-

come available incrementally. In a way, our setting is the

inverse: we know which labels we are going to encounter,

but the training data for those labels arrive incrementally.

Real-World Applications: This setting has several actual

applications, where the classes to be predicted (and some

information about them) are known from start, but train-

ing data about those classes only arrives incrementally. The

starting definition of the classes will vary according to the

application and opportunity: e.g., a zoological expedition

to catalog animals could employ encoded attributes (e.g.,

‘brown-fur’, ‘can swim’), position in a phylogenetic tree

(e.g., iNaturalist [1]), or even free-form textual descrip-

tion (e.g., Wikipedia article about the animal, encoded with

Word2vec [34]). That latter option extends the setting to

many applications where explicit attributes are missing.

The example of animal classification may be adapted to

cover many other topics such as fashion classification with

meta-attributes of clothing, movies classification with ac-

tors, genre, and synopsis, etc. Such setting allows training

the model in different phases without having to wait for the

completion of the data collection to have an usable model.

Furthermore it enables exploiting privileged metadata [44],

which are generaly available in industrial projects.

Zero-Shot Learning: To address the proposed setting, we

take inspiration from zero-shot learning [27, 46], which al-

lows classifying examples from unseen classes by combin-

ing a vision model with an embedding possessing knowl-

edge about the classes (e.g. a word embedding [34, 36] or

an attributes matrix). Although several approaches exist for

zero-shot learning, we will focus on generating a represen-

tation for the future classes [5, 26, 47]. The framework of
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Figure 1: The enriched continual learning setting proposed

in this work. At each training task, we learn a new set of

classes, but the model is evaluated on all classes — past,

present, and future. The model has to avoid catastrophic for-

getting of past classes (using a limited number of rehearsal

training samples), as well as make a good guess for future

classes (using no training samples at all).

representation learning will allow us to combine continual

and zero-shot learning seamlessly, as we advance through

the tasks, and future classes become present classes, and

then past classes. Moreover, we will be able to use ghost

features, predicted features for the future classes, to make

room in the representation space for future classes. All

those goals are integrated into a simple, streamlined model

due to a careful construction of the losses. While Chaudhry

et al. [8] proposed a basic addition of zeroshot to con-

tinual learning that only improves performance on future

classes, our model aims to improve the representation of all

classes with insights from the future, resulting in a gener-

alization of continual learning. Furthermore, Chaudhry et

al. evaluate each task separately, using a task descriptor,

while our evaluation set comprises the entire set of classes,

a more realist and challenging setting. The work of Wang

et al. [45], released simultaneous to ours, proposed an in-

tegration of zeroshot into continual learning limited to two

tasks, severely curtailing the opportunity to exploit insights

from the future. Furthermore it has been shown that contin-

ual training longer than a few tasks follows a more complex

evolution [10]. Skorokhodov et al. [42], a concurrent work,

combine zeroshot with continual learning but don’t consider

the regularization effect of selflessness that we investigate.

Pernici et al. [37], another concurrent work, investigate the

notion of future/unseen classes but use negative samples to

train the classifier nodes of those classes while we use pos-

itive samples through ghost features.

Contributions: The contributions of this work are two-

fold: (1) we propose a new challenging setting, prescient

continual learning, where the model must perform well on

past, present, and future classes; (2) we propose our ghost

model to address that setting, integrating continual and zero-

shot learning into a coherent whole. We evaluate those con-

tributions in comprehensive experiments, showcasing both

the intuitive appeal of our model, and its performance.

2. Setting: prescient continual learning

In continual learning, a classifier is trained in multiple

steps called tasks. Each task t ∈ 1 : T comprises a set of

new classes Ct. The model is evaluated after each task t,

traditionally, on all classes seen so far C1:t. Our rehearsal

memory severely limits the training samples we are allowed

to keep from the past classes: following [21, 11], we allow a

small constant number of samples s per past class. We must

take the maximum advantage from those limited rehearsal

data to avoid catastrophic forgetting.

We propose an enriched experimental setting, prescient

continual learning, in which each task is evaluated on

all classes C1:T : past (C1:t−1), present (Ct), and future

(Ct+1:T ). In that challenging new setting, we must not only

avoid the catastrophic forgetting of past classes (using the

limited rehearsal training samples), but also give our best

estimates for future classes (using no training samples at

all). That will only be possible if we have some prior infor-

mation about the classes, e.g., their hierarchy in a seman-

tic network (like WordNet), an associated word embedding

(like Word2vec), or an attribute matrix. Such setting is il-

lustrated in Fig.1. We will sometimes shorthand the set of

past and present classes C1:t as the seen classes, and the set

of future classes Ct+1:T as the unseen classes. We denote

individual samples by a superscript x(i), and the class label

by a subscript xc. We denote on which parameters a loss is

applied by a subscript LΘ.

3. Ghost model

To address the setting described in the previous section,

we propose our ghost model, comprising three components:

a convolutional feature extractor f , a feature generator g,

and a classifier clf. The feature extractor is the backbone

of the model: it learns to extract a feature vector from ac-

tual samples that can be fed to the classifier. The gener-

ator learns the distribution of the features for all classes,

aiming to generate plausible samples of features for the fu-

ture classes. The classifier makes the final decision for all

classes: past, present, and future. The classifier is trained

on future classes with features sampled from the generator,

which we call ghost features (since they must be “hallu-

cinated” from the seen classes and some prior knowledge

about the classes).

All three components are learned continuously through-

out the T tasks; we denote the component learned at task t

with a superscript: f t, gt, and clft. To avoid catastrophic

forgetting of past classes, we constrain the model’s evolu-

tion, placing a cost on the divergence between f t−1 and f t.

To make the best guess for future classes, we take inspira-

tion from zero-shot learning, training the classifier with the



ghost features. Finally, we adjust the classifier so that the

ghost features “make room” in the representation space for

future classes.

The next subsections detail the model, explaining the dif-

ferent terms in the loss that act in concert to obtain the de-

sired balance.

3.1. Base model for continual learning

The base model is a representation-based architecture

with a convolutional feature extractor h = f(x) (where x

is the input image and h is the feature vector) and a cosine

classifier clf [33, 21], a fully-connected layer with the dot-

product replaced by a cosine similarity:

clf(h,θ)c = ŷc =
〈h,θc〉

‖h‖2‖θi‖2
. (1)

Remark that θc, the parameter vector for the c-th class in

clf (c ∈ C1:t), may be interpreted as a representative or

proxy for that class. The classification loss could be either

a cross-entropy loss preceded by softmax activations, or an

NCA loss [15, 35, 11]:

Lnca

Θf ,Θclf
=

[

− log
exp (ŷy − δ)
∑

c 6=y exp ŷc

]

+

. (2)

To counteract catastrophic forgetting, we must limit the evo-

lution of the model. We impose — as usual for continual

learning — a distillation loss between the previous model

iteration (t− 1) and the current one (t). We evaluate several

distillation losses applied to intermediate and final outputs

of the feature extractor [11, 21]. The final loss of the base

model is:

L = Lnca

Θf ,Θclf
+ λ1L

distil

Θf
. (3)

3.2. Capacitating ghost model for future classes

The base model can deal with both present classes (with

training samples constrained only by their availability in the

training set) and past classes (with training samples severely

constrained by the rehearsal memory). As discussed, the

introduction of a distillation loss prevents catastrophic for-

getting of the latter. We will now address future classes,

with no training samples available. First, taking inspira-

tion from zero-shot learning, we will use prior information

about the classes to generate ghost features, plausible stand-

ins for the unseen future classes’ features. Next, we will

adapt the classifier to incorporate those ghost features into

the learning objective seamlessly. The representation learn-

ing framework will allow us to integrate the entire learning

apparatus into one coherent loss.

Generator. The generative model estimates the distri-

bution of the unseen classes directly in terms of their fea-

tures (instead of the input images). For the feature gener-

ation to work, we must have exploitable prior information

about the classes, more precisely, we must be able to map

the class labels c into a class attribute space that makes se-

mantic sense. The exact way to perform that mapping will

be data-dependent, but most often, either we will have an

explicit set of attributes linked to each class (color, size,

material, provenance, etc.), or we will be able to extract

a latent semantic vector, using a technique like Word2vec

[34, 36]. The generator learns to link the attributes of the

seen classes to the actual feature vectors extracted from the

training samples of those classes. Thus the first generator

training must happen after the features extractor (its ground-

truth) is learned. The generator is fine-tuned after each task

to handle distribution shift. Next, we ask the generator to

draw random samples, using the attributes of the unseen

classes, creating counterfeit features that we call ghost fea-

tures. The strategy is agnostic to the generator model as

long as it can be conditioned by class attributes. At present,

as detailed in implementation details, we choose a Genera-

tive Moment Matching Network [30]: a shallow multi-layer

perceptron conditioned by class attributes and a noise vec-

tor trained to minimize the Maximum Mean Discrepancy

[17, 18]. The computational overhead of training a genera-

tor amounts to only 30 minutes over a 5-hour experiment on

a Titan Xp GPU with 12 Go of VRAM because this model

is trained on the low-dimensional features and not on the

images. More details about the generator can be found in

section 4.2.

Complete classifier. Remind that the parameters

{θc , ∀c ∈ C1:t} on the representation-based classifier

(Eq.1) may be interpreted as proxies for the classes C1:t.

The base model for task t will, thus, learn |C1:t| such prox-

ies, one for each of the seen classes. To extend the model for

the unseen future classes, the complete classifier will learn

|C1:t|+ |Ct+1:T | proxies, which changes Eq.2 to:

Lnca-ghost

Θf ,Θclf
=






− log

exp (ŷy − δ)
∑

c 6=y

c∈C1:t

exp ŷc +
∑

c 6=y

c∈Ct+1:T

exp ŷc







+

.

(4)

This classification loss maximizes the similarity ŷy (or,

conversely, minimizes the distance) between sample feature

hy and correct class proxy θy in the numerator. In the de-

nominator, the loss pushes away all wrong class proxies,

from both seen and unseen (future) classes, by minimizing

the similarities with yc, ∀c 6= y.

The participation of future classes in the classification

loss has two effects. Most obviously, it allows the model

to perform zero-shot-like guesses for those classes during

test time. The representation-learning paradigm allows per-

forming both continual and zero-shot learning seamlessly,

as we advance through the tasks and future classes become

present classes, and then past classes. Less evidently, but vi-

tally important, the learning of proxies for the future classes
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Figure 3: Latent-space regularization establishes margin-

based one-unseen-class vs. all-seen-classes linear separa-

tions. Those separations are employed to directly condition

the feature space, creating space for future unseen classes.

In the following task, some unseen class will become seen,

and may occupy the feature space with less interference.

makes room in the representation space for those classes,

creating effective empty spaces that push away the actual

features of the seen classes (due to the repulsive term in

the denominator). As we advance through training, future

classes become present, their ghost placeholders disappear,

and they can neatly fit in the newly vacant region. Such

a strategy reduces interference between classes throughout

continual learning, and, as we will see in both visual and

quantitative experiments, has long-range positive effects.

Naturally, the complete classifier has to be trained with

samples from all classes. For seen classes, actual data is

available from the training and rehearsal data. For unseen

future classes data is not available, so we employ ghost fea-

tures sampled from the generator. Note that ghost features

are produced once per task by the generator and are kept

fixed for the task duration.

Latent-space regularization. As explained above, our

Ghost classification loss minimizes the intra-class distances

and maximizes the inter-class distances. The loss enforces

those constraints to all proxies regardless of whether they

represent seen classes or not. We further promote an inter-

class separation by optimizing the latent representation of

seen classes to avoid overlapping with the representation of

Ghosts. That loss constrains the features space directly and

does not affect the proxies and the intra-class distances.

We based this regularization loss on SVM [9] for sim-

plicity, but other methods could have similar behavior. To

compute that loss, we learn binary one-unseen-class-Vs-all-

seen-classes SVM classifiers, one for each unseen class. We

employ a linear kernel, since the feature extractor and fea-

ture vector dimensionality (512) allows good linear separa-

tion, but more complex kernels could be used. Those SVMs

define hyperplanes wc and biases bc, ∀c ∈ Ct+1:T , separat-

ing each unseen region from the mass of seen features h(i)

(Fig.3):

Lsvm-reg

Θf
=

1

N × |Ct+1:T |

N
∑

i=1

∑

c∈Ct+1:T

[wc · h
(i) + bc + τ ]+ ,

(5)

where h(i) are seen features (classes in C1:t), [ · ]+ the hinge

loss, and τ an additional margin (higher values of τ push

seen features further away from the ghost regions, in prac-

tice, we set τ = 1 to repel beyond the support vectors).

The margin-based regularization of Eq.5 refines the

ghost classification loss of Eq.4. While the latter acts over

the classifier conditioning the feature space indirectly via

the action of the class proxies, the former acts directly over

the latent/feature space and the feature extractor backbone

that creates it. The computational overhead of training sev-

eral SVMs (5 minutes), is negligible compared to the total

training time (5 hours).

Complete optimization strategy. All modules and

losses fit neatly into the goal of learning continuously over

seen and unseen classes. We train feature extractor (plus

classifier) and generator in alternation. We train the latter
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to mimic the features of seen classes, and then ask it to ex-

trapolate to unseen classes (ghost features). Ghost features

allow us both to unify seen and unseen classes into a com-

plete classifier (Lnca-ghost), and to enforce early allocation in

the feature space for unseen classes (Lsvm-reg). The complete

loss, in addition to a distillation loss to counter-act catas-

trophic forgetting (Ldistill), is:

L = Lnca-ghost

Θf ,Θclf
+ λ1L

distill

Θf
+ λ2L

svm-reg

Θf
. (6)

The Figure 2 showcases the complete optimization strategy.

4. Experiments

4.1. Pictorial experiments

Before running our full-scale experiments, we will per-

form a set of experiments with a model that keeps the main

components from the proposed model in a simplified form

that will allow us to link quantitative performances to intu-

itive visual plots of the feature spaces. For the experiments

in this section we employ the MNIST [28] dataset, with an

initial task of 6 classes (digits 0 to 5), then two more tasks of

two classes each; the feature extractor comprises two con-

volutional layers followed by a fully connected layer out-

putting a feature vector of only two dimensions — a pur-

poseful choice to allow easy visualization of the feature

space. Because MNIST classes have no attributes, we can-

not apply zero-shot learning directly. Instead, we employ

the features of actual images from the future classes in-

stead of samples from the generator — which corresponds,

in some ways, to having a perfectly calibrated generator.

Those features are extracted once per task, and the feature

extractor is never trained on unseen classes images. As we

will see in Table 4, integrating the generator in our full-

scale model outperforms using actual extracted features, so

that necessary substitution does not exaggerate the abilities

of this small-scale model. The losses used to train the small

and the full-scale models are the same, but the SVM-based

regularization was not employed since it made little sense

for a 2D latent space.

The 2D feature space allows us to directly visualize the

evolution of the feature space as the tasks progress, with-

out the need for dimensionality reduction techniques that

complicate the analysis (e.g. t-SNE [43]). Fig.4 may

be interpreted upfront: as the three tasks progress left-to-

right, we see the evolution of the feature space on the base

model (PODNet, on the top branch) and on the proposed

model with ghost features (bottom branch). The base model

presents strong overlap between the initial classes, and the

later added 8 (orange) and 9 (dark purple). That comes par-

tially from shape similarities (‘8’ is similar to ‘0’ and ‘5’),

partially from continual learning, and results in severe for-

getting of old classes in favor of new ones. The proposed

model organizes better the feature space, which is particu-

larly visible between the second and third steps, where the

early allocation of ghost zones for the future classes (dis-

played as empty black circles) is prominent. That better ar-

rangement of the feature space increases the final accuracy

from 44 to 66%, a 22 p.p. improvement. The small latent

space of 2 dimensions with a continual learning paradigm

explains the low performance for both models; a model

that learns on all classes in one step (i.e. not in a contin-

ual setting) reaches only 69% of final accuracy. That said,

our model shows a clear improvement both qualitatively in

Fig.4 and quantitatively (+50%).

4.2. Main experiments

Datasets & Protocols. We perform our experiments on

two datasets: AwA2 [46], with 50 animals categories, each



AwA2

25 classes + 5 × 5 classes

PODNet UCIR

Base Continual Learner 62.92 ± 0.12 62.66 ± 0.17

+ Lnca-ghost 68.31 ± 0.36 64.96 ± 0.12

+ Lnca-ghost + Lsvm-reg 68.46 ± 0.47 65.37 ± 0.35

aP&Y

16 classes + 8 × 2 classes

PODNet UCIR

Base Continual Learner 58.64 ± 0.66 45.96 ± 0.22

+ Lnca-ghost 62.08 ± 0.25 59.67 ± 0.84

+ Lnca-ghost + Lsvm-reg 62.73 ± 0.60 60.12 ± 0.74

Table 1: Continual Accuracy on AwA2 and aP&Y for POD-

Net and UCIR. We ran each experiment thrice.

AwA2

25 classes + 5 × 5 classes

PODNet UCIR

Base Continual Learner 77.63 ± 0.06 76.36 ± 0.28

+ Lnca-ghost 78.70 ± 0.46 77.32 ± 0.40

+ Lnca-ghost + Lsvm-reg 79.08 ± 0.53 77.27 ± 0.35

aP&Y

16 classes + 8 × 2 classes

PODNet UCIR

Base Continual Learner 57.80 ± 0.97 45.40 ± 0.17

+ Lnca-ghost 62.47 ± 0.40 54.13 ± 0.90

+ Lnca-ghost + Lsvm-reg 63.30 ± 0.98 56.07 ± 1.29

Table 2: Final Accuracy on AwA2 and aP&Y for PODNet

and UCIR. We ran each experiment thrice.

with 85 attributes; and AP&Y [12], with 32 everyday ob-

ject classes, each with 64 attributes. We employ two exper-

imental protocols: one typical for continual learning, fol-

lowing [21, 11], starting the first task with half the classes

(i.e., 25 for AwA2, and 16 for aP&Y), then adding the re-

maining classes in evenly-sized tasks (5 tasks of 5 classes

for AwA2, and 8 tasks of 2 classes for aP&Y); another in-

spired from zero-shot learning, following [46], starting with

a standard selection of classes for each of the datasets (40

for AwA2, and 20 for aP&Y), and adding the remaining

classes in small increments (5 tasks of 2 classes for AwA2,

and 6 tasks of 2 classes for aP&Y). For both settings, the

seen classes are trained with supervision, while the remain-

ing unseen classes are tackled with zeroshot-inspired meth-

ods. Our evaluation protocol is akin to the challenging and

realist Generalized Zero-shot Learning [40, 7] protocol —

with no information on whether a sample is from a seen or

unseen class — but harsher, since classes are seen gradu-

ally, and training samples for past classes data are limited

by rehearsal memory.

Base Continual Learner. We evaluate our contributions

on top of two different representation-learning based Con-

tinual Leaners, both based on ResNet18 [20] feature extrac-

tor backbones (with feature vector size of 512) and cosine

classifiers. They differ on the distillation loss Ldistil em-

ployed, the first model (PODNet) using Douillard et al.’s

distillation [11] constraining the statistics of the interme-

diate features after each residual block, and the second

(UCIR) using Hou et al.’s distillation [21] enforcing a co-

sine constraint on the final flat latent space. The former

performs better than the latter, but both are improved by

the innovations proposed in this work. The cosine classifier

has a single proxy/representative per class but could eas-

ily be generalized to multiple proxies. Both base Continual

Learners are competitive, with PODNet being the most re-

cent State-of-the-Art from ECCV 2020. We show in this

paper how incorporating predictions of the future further

improve them.

Generator. Following the work of Bucher et al. [5] for

zero-shot learning, our generator is a Generative Moment

Matching Network (GMMN) [30] gt(ξ,Ec), which takes as

inputs a Gaussian noise vector ξ and a class attributes vec-

tor Ec, and outputs a sample from the estimated distribution

of features for a class with the given attributes. In our ex-

periments on AwA2 and AP&Y, the class attributes vectors

are the average of the attributes for the training samples in

the class. For each task t, the feature extractor f t and the

generator gt are trained to minimize the Maximum Mean

Discrepancy (MMD) [17, 18] between the actual features

of seen classes hc = f t(xc) , ∀c ∈ C1:t and their distribu-

tion on the generator h̃c = gt(ξ,Ec) , ∀c ∈ C1:t.

Implementation Details For all datasets and settings, we

set the classification margin δ = 0.6, and the SVM latent-

space regularization additional margin τ = 1. We train

the feature-extractor-and-classifier pipeline for 90 epochs

with an SGD optimizer, learning rate of 0.1, cosine schedul-

ing, and weight decay of 10−4. We train the generator for

1200 epochs, with an Adam optimizer and a learning rate

of 10−5. Finally, following [21, 11], we fine-tune the clas-

sifier for 60 epochs (with the feature extractor frozen and a

small learning rate of 10−4) at the end of every task (except

the last one). We found useful to balance the bias towards

the seen classes against the unseen classes. With the POD

distillation [11], we set λ1 = 3 for AwA2, and λ1 = 15 for

aP&Y; with the Less-Forget distillation [21], we set λ1 = 4
for both datasets. We always set λ2 = 10−3, moreover

we apply it on L2-normalized features. Finally, we do not

reinitialize the models between tasks: f t results from train-

ing f t−1 on task t, etc. On the rehearsal memory limitation,

we follow the strict setting of Hou et al. [21], keeping only



AwA2 aP&Y

40 classes + 5 × 2 classes 20 classes + 6 × 2 classes

Continual Final Continual Final

PODNet 82.84 ± 0.10 84.70 ± 0.10 67.57 ± 0.41 65.23 ± 0.50

+ Lnca-ghost 84.99 ± 0.17 86.57 ± 0.49 68.80 ± 0.98 67.93 ± 1.24

+ Lnca-ghost + Lsvm-reg 84.47 ± 0.15 85.73 ± 0.40 69.02 ± 0.46 67.97 ± 0.60

Table 3: Further experiments where the initial task size correspond to standard zero-shot seen classes [46]. We report

Continual and Final Accuracies for PODNet on AwA2 and aP&Y. We ran each experiment thrice.

AwA2 aP&Y

25 classes + 5 × 5 classes 16 classes + 8 × 2 classes

Continual Final Continual Final

Our model 68.46 ± 0.47 79.08 ± 0.53 62.73 ± 0.60 63.30 ± 0.98

with real features of the future classes 67.65 ± 0.50 78.83 ± 0.31 61.88 ± 0.52 61.70 ± 0.26

Partial oracle 72.94 ± 0.25 84.60 ± 0.28 63.81 ± 0.29 68.03 ± 1.42

Full oracle — 95.40 ± 0.02 — 97.40 ± 0.30

Table 4: Comparison of generated ghost features vs. actual features extracted from future classes’ samples with PODNet on

AwA2 and aP&Y.

s = 20 training images per past class. The code will be

released publicly upon paper acceptance.

Continual Accuracy. For continual learning, it is usual

to take into account the model’s performance as it evolves.

We adapt the traditional average incremental accuracy [38]

to take into account all classes, including the future ones,

and call that metric continual accuracy: the average of ac-

curacy over all seen classes after each task. The results ap-

pear in Table 1, which shows, for the datasets and proto-

cols explained in the top of this section, the performance

for our two base models [21, 11], and the improvements on

those base models as we implement our proposed model,

with and without the SVM latent-space regularization re-

finement. The ability to guess on future class brings large

improvements on both datasets, for both competittive base

models. The SVM-based regularization refinement also im-

proves the results, by up to 0.65 p.p.

Final Accuracy. Once we reach the final task, the pro-

posed model ability to guess future classes provides no ad-

vantage due to all classes being now seen. Still, as shown

in Table 2 — where the metric is simply the accuracy at

the final task of each run — the proposed method outper-

forms the baselines, due to a better organization of the fea-

ture space. Although the numerical advantages in this table

are smaller than in the previous one, these results are conse-

quential, showing that the ability of the proposed model of

incorporating knowledge about the classes is useful beyond

the zero-shot scenario. Again, the SVM-regularization re-

finement helps by up to 1.94 p.p. Note that the oracle model,

which is trained on the whole dataset in a single task, has an

accuracy of 95.40% on AwA2. Thus, state-of-the-arts meth-

ods are still far from this upper bound which highlights the

difficulty of the considered datasets.

Model Evolution. To showcase how the models evolve,

plots contrasting the proposed methods with each base

model (PODNet and UCIR) task by task appear in Fig.5.

The plots show how, on early tasks, the main advantage

of the proposed model is its ability to guess on the future

classes, while on the final task no future classes remain, but

the proposed model still keeps an advantage.

Zero-shot-like Initial Task Setting. This set of experi-

ments (Table 3) is intended for comparison with zero-shot

learning benchmarks [46], which always use the same split

of seen/unseen classes for a given dataset. Our first task in

the continual learning contains the classes defined in zero-

shot benchmark as seen, and we learn next, in small incre-

ment, the remaining classes, i.e., those defined in the zero-

shot benchmark as unseen. Because the initial task is larger

than previously, fewer future classes remain, and the base

models have better performance. Still, the proposed method

improves both base methods in both datasets significantly.

The setting proposed is different than the — markedly less

challenging — setting appearing in Kankuekul et al.[23]

and Xue et al.[48], where the set of unseen classes is fixed,

and only more seen classes are added incrementally, with-

out any sample limitations given by rehearsal memory.

Generator Validation. The generator approximates the

feature extractor for the unseen future classes. To validate

its effectiveness, we replace the generated features by the

actual features from the future images. This form of “cheat-



(a) Ghost vs PODNet [11]. (b) Ghost vs UCIR [21]

Figure 5: Ghost model vs base models on AwA2, difference of accuracy over all classes, only seen classes, and only unseen

classes.

ing”, of course, is not possible in actual real-world scenar-

ios, but serves as a metric. Table 4 shows the comparison,

with the surprising result that generated features performed

better than the actual features from samples (respectively

first and second row). Note that the latter are extracted once

per task. The lower performance of using real features is

explained because the features extrator was never adapted

for the unseen classes distribution which acts as an Out-of-

Distribution [2]. The “oracle” experiments in the third and

fourth row in Table 4 establish an upper bound for what we

could achieve by ”cheating” around the experimental pro-

tocol restrictions. The partial oracle from third row is the

same model as the second row, fine-tuning the feature ex-

tractor with samples coming from the future. The full ora-

cle of the fourth line uses all images from all classes unre-

strictedly in a single task. Despite the partial oracle had full

access to real future data, we stress that our model’s per-

formance with generated future data is close to this upper

bound.

5. Conclusion

In this work, we introduced prescient continual learn-

ing, a generalization of the continual learning setting, where

the model trains on a sequence of tasks, each introducing

new classes, but has access to prior information about the

classes. Although we give the model awareness of future

classes, we also test it on all classes: past, present, and fu-

ture, resulting in a more challenging setting. While this

setting enables Zeroshot capabilities, it differs from it by

opening new challenges on how to integrate weak infor-

mation from the future into a continuously growing set of

classes.We proposed ghost model, first of its kind, which

uses the paradigm of representation learning to incorporate

capabilities of zero-shot learning into the continual learn-

ing model in a seamless way. We refined that model with

a novel SVM-based regularization loss acting over the fea-

ture space to reinforce exclusion zones, reserved for future

classes. Finally, we established, in extensive quantitative

and qualitative experiments, the advantage of the proposed

model over two base models.
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