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Abstract

Incremental learning aims to enable machine learning

models to continuously acquire new knowledge given new

classes, while maintaining the knowledge already learned

for old classes. Saving a subset of training samples of previ-

ously seen classes in the memory and replaying them during

new training phases is proven to be an efficient and effec-

tive way to fulfil this aim. It is evident that the larger num-

ber of exemplars the model inherits the better performance

it can achieve. However, finding a trade-off between the

model performance and the number of samples to save for

each class is still an open problem for replay-based incre-

mental learning and is increasingly desirable for real-life

applications. In this paper, we approach this open prob-

lem by tapping into a two-step compression approach. The

first step is a lossy compression, we propose to encode in-

put images and save their discrete latent representations

in the form of ‘codes’ that are learned using a hierarchi-

cal Vector Quantised Variational Autoencoder (VQ-VAE).

In the second step, we further compress ‘codes’ losslessly

by learning a hierarchical latent variable model with bits-

back asymmetric numeral systems (BB-ANS). To compen-

sate for the information lost in the first step compression,

we introduce an Information Back (IB) mechanism that uti-

lizes raw exemplars for a contrastive learning loss to reg-

ularise the training of a classifier. By maintaining all seen

exemplars’ representations in the format of ‘codes’, Dis-

crete Representation Replay (DRR) outperforms the state-

of-art method on CIFAR-100 by a margin of 4% average

accuracy with a much less memory cost required for saving

samples. Incorporated with IB and saving a small set of old

raw exemplars as well, the average accuracy of DRR can

be further improved by 2%.

1. Introduction

Deep neural networks leveraging large-scale annotated

datasets have been shown to be powerful in many real-world
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Figure 1. Information Back (IB) mechanism inside our classifier.

IB maximizes the similarity between the latent representations of

the raw image and its reconstructed view. With the help of IB,

raw images are indirectly used for regularizing the optimisation of

classification loss, i.e., the cross-entropy loss in our case.

tasks such as image classification. One downside is that

these data-driven methods work under the assumption that

all training samples (exemplars) are simultaneously avail-

able during the training phase [10, 19, 17]. However, due

to the growing need for systems that can adapt to dynamic

environments and can continually learn new tasks, current

deep neural networks are not adequate as they suffer from

catastrophic forgetting - when a model is continuously up-

dated using novel incoming data, the updates can override

knowledge acquired from previous classes. Incremental

learning, also known as continual learning, never-ending

learning or life-long learning, aims to design systems that

can keep learning new knowledge while maintaining the

performance for the previously learned tasks.

An effective and commonly used strategy in the cur-

rent incremental learning methods is replay or rehearsal,

which is mixing the new data with the old data when learn-

ing new information to maintain old knowledge. This can

be achieved by saving a small subset of old data [24, 39,

26, 14, 36, 13, 31]. However, the success of this strat-

egy highly depends on how many and which exemplars to



save [24, 36, 14]. Alternatively, a line of research has fo-

cused on learning a generator to produce pseudo old sam-

ples [23, 41, 32]. However, the generator needs to be up-

dated using fake old data that may lead to a vicious cy-

cle if some pseudo data of bad quality is produced. Re-

cent work [23, 41, 32] has shown that image generator is

unstable and unreliable in incremental learning for com-

plex dataset such as CIFAR-100 [18] and only works on

small and relatively simple datasets such as MNIST [20].

Although carefully selected exemplars or generated repre-

sentative exemplars can help improve the performance up

to some degree [36, 14], the larger number of exemplars a

model inherits the better performance it can achieve. How-

ever, saving all available data is memory-expensive. The

trade-off between model performance and the number of

exemplars per class is hard to be optimised due to differ-

ent applications requirement and varies among different dis-

tinctive tasks.

In this paper, we approach this open problem by intro-

ducing Discrete Representation Replay (DRR). The DRR

module allows saving the maximum number of exemplars

possible at a small memory cost with two-step compres-

sion. As shown in Figure 2, DRR benefits from a Vector-

Quantised Variational Autoencoder (VQ-VAE) [29, 35] as

well as a Bits-Back Asymmetric Numeral Systems (BB-

ANS) that paired with hierarchical latent variables. The

VQ-VAE reduces the memory required for 50, 000 uncom-

pressed training exemplars on the CIFAR-100 [18] dataset

from 146.48 MB to 7.26 MB and BB-ANS further reduces

it to 4.24 MB, resulting in an overall memory gain of 97%.

To learn new classes, DRR combines latent representations

(in the format of codes) of new training samples with those

of old samples and reconstruct them back to the RGB image

domain at run time. Our experiments on CIFAR-100 [18]

showed that Discrete Representation Replay (DRR) outper-

formed the state-of-the-art replay-based method [24] in the

multi-class incremental learning setting by a margin of 4%

while reducing the memory size required for saving exem-

plars. To alleviate the loss of information caused by VQ-

VAE, we design a negative-pairs-free contrastive learning

component called Information Back (IB) inside our classi-

fier that saves and uses raw images to regularize the train-

ing of the classifier, see Fig. 1. We assume the reconstruc-

tion processes of different images share similar transforma-

tion patterns as the same VQ-VAE is applied. Note that

IB requires to save an additional subset of raw previously

seen samples but they are not directly used for minimiz-

ing the classification loss. They serve as regularizers to

force the classifier to get back some general information lost

during image reconstruction. Incorporated with IB compo-

nent, called IB-DRR, the testing accuracy of DRR increases

by 2% on CIFAR-100. Additionally, our empirical results

show that even without maintaining previously seen raw

data IB-DRR can still boost performance in some settings,

especially, the settings where the number of new classes to

learn is large. In summary, our main contributions are as

follows:

• We formalize incremental learning as a representation

compression problem and introduce Discrete Represen-

tation Replay (DRR) strategy for this task. More explic-

itly, we propose a two-step compression which allows us

to save training exemplars at a competitively small mem-

ory cost. This is enabled by a VQ-VAE that is used to

save and reconstruct images during new training phases

and hierarchical latent variable models with BB-ANS that

further reduces the memory cost.

• We introduce an Information Back (IB) mechanism that

utilizes a subset of raw images for old classes and all raw

images from new classes via a contrastive learning loss to

alleviate the information loss and regularise the training.

• Finally, we show that on the CIFAR-100 dataset [18] our

DRR surpasses the state-of-the-art method [24] by a mar-

gin of 4% without saving any raw examples. And by sav-

ing a small number of raw samples, IB-DRR yields the

best performance with a margin of 6% as compared to

the state-of-the-art method [24]. Our preliminary results

on the ImageNet [7] also indicate the viability of this ap-

proach across different datasets.

2. Related Work

There is a significant body of work on incremental learn-

ing, which can be divided into three broad categories,

namely, regularization-based (e.g., [17, 45]), parameter-

isolation-based (e.g., [33, 30]) and replay-based (e.g., [39,

14, 27, 4, 24, 23]). Our proposed approach falls into the

category of replay-based methods. Replay, also known

as rehearsal, is the most competitive and popular strategy

in incremental learning and achieves state-of-the-art per-

formance on many benchmark datasets including CIFAR-

100 [18], MNIST [20] and ImageNet [40]. We summarise

these replay-based methods in three categories, namely,

image-level replay, feature-level replay, and compression

for replay.

Image-level Replay. Storing and replaying exemplars in the

memory to solve catastrophic forgetting was first introduced

in 1990s [38]. Recently, Isele et al. [14] reintroduced re-

play strategy in incremental learning and proposed a rank-

ing function to select and store exemplars for each class in a

long-term memory called episodic memory. To control the

memory required for replay, Rebuffi et al. [36] proposed

a method name iCaRL that used a fixed size memory for

all classes. To maintain the most important exemplars, they

used a buffer-reconstruction procedure called Herding to se-

lect a number of exemplars from a new class to save and dis-



card the least preferred exemplars from previous classes to

prevent memory from growing. To address the imbalance

between a small number of exemplars for old classes and

substantially more samples of new classes, Hou et al. [13]

proposed a method named (LUCIR) that treated both old

and new classes uniformly by introducing cosine normaliza-

tion on latent representations of samples of new classes and

old classes. They also selected samples to save by leverag-

ing an online mining method. Most recently, Liu et al. [24]

developed a method called Mnem, where exemplars to save

were considered as learnable parameters. The parameter-

ized exemplars of old classes were optimised in an end-

to-end manner during the training, and by utilizing strate-

gies used in [13] their model achieved state-of-the-art per-

formance as compared to existing replay-based methods on

both CIFAR-100 and ImageNet. On the other hand, using

exemplars directly for training classifiers may be prone to

over-fitting [27, 4]. Therefore, Gradient Episodic Memory

(GEM) [27] was proposed to indirectly utilize saved exem-

plars. Their model computed gradients given new data as

well as a set of task-specific gradients using episodic mem-

ory, and it projected the gradients in the feasible region de-

fined by task gradients. Like GEM, our Information-Back

Discrete Representation Replay (IB-DRR) also used saved

raw exemplars indirectly for classification. To avoid saving

original inputs, a number of works [41, 32, 46] utilised a

generative model such as Generative Adversarial Network

(GAN) [8] or Variational Autoencoder (VAE) [15] to pro-

duce fake data that is similar to data from old classes. In this

way, they aimed to transfer incremental learning problem

into image generating problem. However, the generative

model itself needs to maintain the ability to generate fake

data for old tasks, and this approach still has to deal with

catastrophic forgetting that occurs in the generative model

rather than the classifier. This has been demonstrated by a

recent work [22] pointing out that a GAN itself has a catas-

trophic forgetting problem and the training of GAN can be

regarded as an incremental learning problem. In addition,

fake data may not reflect the real data distribution, which

can potentially lead to a vicious cycle. Therefore, train-

ing a generative model in incremental learning settings is

unstable and unreliable and recent generative-replay-based

methods [41, 32, 46] work on comparatively simple datasets

such as MNIST [20] and SVHN [28] datasets.

Feature-level Replay. Another line of work has focused on

saving the latent representations instead of saving original

image data or generating fake data. Indeed, in some in-

cremental learning scenarios [23, 1, 41, 21], training data

from a certain task is no longer available after a model is

trained for the task. Because saving data firstly leads to

privacy and security issues and secondly results in a signif-

icant increase in the memory as the model gradually learns

new classes. Pellegrini et al. [31] pretrained a classifier on

ImageNet [40]. Then its low-level layers were kept and

frozen to serve as a feature extractor for other datasets like

Core50 [25]. They extracted and saved a small subset of

latent representations (namely, the output of the feature ex-

tractor) of inputs and replayed them during new training

phases. They trained and updated a classifier using both the

features of new data and replayed features. Recently, Xi-

alei et al. [23] combined a generative model with a feature-

level replay strategy and used a GAN to produce fake la-

tent representations and achieved competitive performance

on the CIFAR-100. Their model called generative feature

replay (GFR) consisted of a modified classifier that took la-

tent representation as inputs, a feature extractor and a gen-

erator. The modified classifier was jointly trained using

cross-entropy loss with the feature extractor which encodes

original images to corresponding latent representations. Af-

ter trained on new data, they were frozen and the gener-

ator was updated using latent representations produced by

them given corresponding data. Besides, they applied the

knowledge distillation technique to the feature extractor to

avoid forgetting. Feature-level replay methods generally

require less memory cost compared to image-level coun-

terparts when used to save the same amount of samples.

Our approach can also be regarded as a feature-level replay

method. Because we save features rather than images and

the saved features are replayed and reconstructed to the im-

age domain by the decoder in our model for training a clas-

sifier.

Compression for Replay. There are three most related con-

tinual learning works [2, 3, 37] similar to our DRR. Ayub et

al. [2] used a pretrained autoencoder structure that saved

compressed latent representations of previous samples and

reconstructed them back to image-domain for replaying.

Caccia et al. [3] used stacked VQ-VAEs and updated the

codebooks to control drifting representations during the in-

cremental learning whereas our DRR used a hierarchical

VQ-VAE and our codebooks were frozen after the VQ-VAE

was pretrained. Caccia et al. reported that saving more sam-

ples might degrade the image quality due to the drift that

occurred in their VQ-VAE. Thus, in their approach stor-

ing more samples did not necessarily improve classifica-

tion performance. Our results showed that our VQ-VAE

with frozen codebooks did not suffer from data shift prob-

lem much. Matthew et al. [37] used a discrete VAE model

with a ‘codes’ buffer. However, unlike our DRR whose la-

tent space was able to represent infinite latent representa-

tions of samples, their latent space had a restricted size that

was proportional to the VAE capacity (VAE capacity was

a major hyperparameter in their work). As shown in their

work, the smaller capacity their VAE had, the higher com-

pression it could achieve but the fewer maximum samples

they could save. Besides, to make their discrete VAE fit new

data, the VAE was updated using reconstructed images via



codes in the buffer as well as real images from new tasks.

It potentially transferred the problem of catastrophic for-

getting from classifiers into generators like other generative

models we discussed before. In contrast, our trained DRR

has a stable high compression rate with generally good re-

constructed image quality and can be generalized to other

datasets (see Appendix for reconstructed images via DRR).

3. Background

3.1. Vector Quantised Variational AutoEncoder

Vector Quantised Variational AutoEncoder (VQ-

VAE) [29] was originally designed for reducing the

computation workload in PixelCNN [44] for the task of

image generation. PixelCNN-based methods [44, 6] can

generate high-quality fake images, however, due to the

nature of auto-regressive models, they need to be trained

over each pixel leading to a considerably high computation

cost. The VQ-VAE encodes an RGB image into a ‘codes’

matrix with a smaller size. Instead of original images, the

codes are then used as an input to auto-regression models,

resulting in a significant computation reduction. The VQ-

VAE relies on vector quantisation that encodes inputs into

discrete representations rather than continuous ones and as

a compressor it has been shown to be effective in image

generation and image compression [29, 35]. Similarly,

in this paper, we benefit from the VQ-VAE not only as a

good feature extractor but also as a powerful compressor.

Considering that a PixelCNN is also a generative model that

has to deal with incremental learning as we discussed in

Section 2, instead of generating fake images using an auto-

regressive generator, our model reconstructs the images via

saved codes using the VQ-VAE only. The VQ-VAE defines

a discrete embedding space called ‘codebook’ c ∈ R
K×d,

where K is the size of codebook and d is the dimension

of each embedding vector ck ∈ R
d, k ∈ 1, 2, 3, ...K. The

encoder E(x) learns a non-linear mapping that encodes

the input x ∈ R
M to the latent representation ze ∈ R

d,

where d ≪ M . Then vector quantisation V Q(.) is applied

over ze and, given the codebook (the prototype set), ze is

replaced with a set of embedding vectors in the codebook

using nearest neighbor search as formalised by

zq = V Q (ze) = ck, where k = argmin
k

‖ze − ck‖2
(1)

The quantised output zq is then fed into the decoder to

obtain the reconstructed data. The objective of VQ-VAE

can be defined as

L(x, D(ck)) =‖x−D(ck)‖
2
2 (2)

+ ‖sg[E(x)]− ck‖
2
2 (3)

+ β‖sg[ck]− E(x)‖22 (4)

where the term in Eq. 2 is the reconstruction error of a typi-

cal autoencoder (e.g., mean squared error). And D(.) refers

to the decoder of the VQ-VAE. The term in Eq. 3 is called

codebook loss, which brings the selected embedding vectors

ck close to ze. Besides, the gradients produced by Eq. 3 are

applied to the codebook only. The last term in Eq. 4, called

commitment loss, enables encoder to produce similar values

to the chosen embedding vectors and it is only applied to

the encoder weights. A hyperparatmer β is used to balance

the learning rates of different terms and sg[.], namely stop-

gradient, is an operation that prevents gradients to propagate

to its argument. For example, in Eq. 3 sg[E(x)] blocks the

gradients calculated by this loss term from flowing into the

weights of the encoder E(.). The visualized vector quanti-

sation operation can be found in Fig. 2.

3.2. Bits­Back Asymmetric Numeral Systems

Asymmetric Numeral Systems (ANS) is used to com-

press sequences of discretely distributed symbols (a ‘sym-

bol’ is a one dimension data point) into a sequence of bits

and can recover those bits back to symbols. Bits-back with

ANS (BB-ANS) [42, 43, 16] tries to approximate true data

distribution pdata(x) by pθ(x) and encode datapoint into a

number of bits equal to its negative log probability assigned

by a latent variable model. BB-ANS models use latent

variable models with a marginal distribution pθ(x) defined

by pθ(x) =
∫

pθ(x, z)dz =
∫

pθ(x|z)p(z)dz, and they

utilize an inference model qθ(z|x) of variational autoen-

coders (VAE) [15] to approximate the posterior pθ(z|x).
The marginal likelihood pθ(x) is rewritten as:

log pθ(x) = Eqθ(z|x) log
pθ(x, z)

qθ(z | x)
+Eqθ(z|x) log

qθ(x, z)

pθ(z | x)
(5)

where the first term in Eq. 5 is the Evidence Lower BOund

(ELBO) that is jointly optimized using the reparameteriza-

tion trick with the inference model and generative model of

VAE. However, for latent variable models, to encode x, it

is necessary to encode z as well, inducing an extra message

length for the prior p(z) equals to − log p(z). To get those

extra bits back, BB-ANS firstly initializes ANS with a bit-

stream of N random bits. Then it performs three steps (de-

noted as S1,S2,S3) as follows: S1 Decode z from bit-stream

using the inference model qθ(z|x); S2 Encode x using gen-

erative model pθ(x|z); S3 Encode z to bit-stream using

the prior p(z). The S2 and S3 add − log pθ(x|z) bits and

− log p(z) respectively, but BB-ANS gets − log qθ(z|x)
bits back from the S1. The net message length then be-

comes log qθ(z|x) − log pθ(x|z) − log p(z), which is on

average equal to the negative ELBO. The cost of initial N

random bits is negligible for encoding long sequences. A

visualized BB-ANS in shown in Fig. 2.
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Figure 2. DRR uses a two-step compression. In the first step, a pretrained VQ-VAE encodes RGB images into codes that are saved in a

buffer. During each new phase, BB-ANS is fine-tuned with codes from new images and those previous saved. Updated BB-ANS is used to

perform the second step compression, i.e., compress codes and save them into bit-streams in the memory. Discrete latent representations

are replayed by first decompressing bit-streams to codes and then decompressing the codes back to the image domain. This data flow only

shows the core idea of DRR. In practice, a hierarchical VQ-VAE and a BB-ANS with hierarchical latent variables are used.

4. Discrete Representation Replay (DRR)

In this section, we formalize the incremental learning

as a representation compression problem, and propose Dis-

crete Representation Replay (DRR) by a two-step compres-

sion as shown in Fig. 2.

Lossy Compression by VQ-VAE. In the first step of com-

pression, we utilise a VQ-VAE to process the inputs and

save their discrete latent representations in a format called

‘codes’ that can be later used to reconstruct the original in-

puts. The VQ-VAE provides a lossy compression where

‘reconstructed’ images in our approach are a blurrier ver-

sion of the original ones - naturally caused by an undercom-

plete autoencoder that gradually reduces the dimensionality

of its intermediate layers and results in a smaller size of

latent representation compared to the original input. This

lossy compression contributes to the majority of the total

compression rate of DRR. In our proposed model, we use

a hierarchical VQ-VAE introduced in [35] (see Appendix

for the network structure). Because our preliminary results

have shown that the original VQ-VAE [29] cannot recon-

struct the images adequately for our task. In our hierarchical

VQ-VAE, vector quantisation is applied 2 times after differ-

ent intermediate layers. It aims to learn hierarchical discrete

latent representations such that a top-level representation

models global information while a bottom-level represen-

tation captures local details. Two levels are trained jointly

inside the hierarchical VQ-VAE and two independent code-

books are used respectively. Additionally, we adopt a fully

convolutional design for our VQ-VAE, i.e., all of the layers

are either convolutional or element-wise functions. In this

way, the VQ-VAE is able to process images with arbitrary

sizes. Our experiments show that our VQ-VAE trained on

CIFAR-100 can reconstruct images with a higher resolution

well for classification like images from ImageNet. After we

pretrain the VQ-VAE, we freeze and use it as a feature ex-

tractor and save the resulting latent representations in the

form of codes, which significantly decreases the memory

cost.

Lossless Compression by BB-ANS. In the second step, we

utilize a BB-ANS with hierarchical latent variables called

Bit-Swap introduced in [16] that is more expressive than

original BB-ANS [42], i.e., can more closely model real

data distribution. Instead of using a fixed prior for z, Bit-

Swap assumes that z is generated by a latent variable z1,

and z1 is generated by another latent variable z2 and so

on. In this way, the sampling process of both the genera-

tive model and the inference model obeys a Markov chain

dependency between the stochastic variables [16]. In a loss-

less manner, we use Bit-Swap to compress ‘codes’ pro-

duced by the VQ-VAE. We train from scratch a Bit-Swap

model at first and keep fine-tuning it for future new data

distribution of codes.

In DRR, a new classifier is trained with reconstructed

images both from new classes and old classes. Our prelim-

inary results show that training from scratch the classifier

every time it is required to learn new classes always per-

forms better than fine-tuning the previously learned classi-

fier. Though it is widely accepted that the learned model

weights contain information of old data and the learned

weights are an unwritten definition for the concept ‘past

knowledge’ in the increment learning domain, intuitively,

if given access to old distribution, training the model from

scratch is more flexible, leading a better fit to the new data

distribution (a mixture of old and new data). In fact, He et

al. [11] show that in some cases training from scratch is

more robust and usually converges a solution on par with

or even better than the fine-tuning counterpart.



5. Information-Back DRR (IB-DRR)

The pseudo data distribution produced by either gener-

ative models or reconstruction models has a drift towards

original real data distribution. In our DRR, we lose the

information of real data because of the nature of under-

complete autoencoders as well as vector quantisation oper-

ations. This causes a considerably large decrease in classifi-

cation score as compared to using original data, e.g., around

an overall 12% decrease for our DRR on the CIFAR-100

dataset. We can regard the reconstructed images as aug-

mented data that is transformed by some blurring transfor-

mation, though this kind of augmentation may not neces-

sarily be a good augmentation for classification. To remedy

this problem, we propose to utilize contrastive learning by

treating an image and its reconstructed version as a posi-

tive pair. Inspired by a recent negative-pairs-free contrastive

learning contrastive learning method called SimSiam [5],

we propose an Information Back (IB) mechanism for DRR,

see Fig. 1. Specifically, our IB-DRR maximizes the co-

sine similarity of the latent representations (produced by

the classifier) of real images and their reconstructed views

produced by VQ-VAE. We denote the convolution layers

of a classifier before its dense layers (fully connected lay-

ers) as f , and the output of f , i.e., latent representations of

raw input x and its reconstructed view x̂ as r1 , f(x) and

r2 , f(x̂), respectively. The objective of IB is to minimize

the negative cosine similarity between r1 and r2:

Lsim = −sg

[

r1

‖r1‖2

]

·
r2

‖r2‖2

where sg[.] prevents gradients to propagate to its argu-

ment. Then IB-DRR jointly optimises the Lsim and a cross-

entropy loss Lce, i.e., L = λLsim +Lce where λ is a scalar

used to balance the two loss terms. Note that IB-DRR re-

quires maintaining two memory set, one is codes of all old

training samples, the other is a small subset of raw train-

ing exemplars of old classes. Like GEM [27, 4], the saved

raw old exemplars are not directly used for minimizing the

classification loss. They serve as regularizers to force the

classifier to get back some lost information that is impor-

tant for classification. More explicitly, it forces the clas-

sifier to treat reconstructed images and the real ones in a

similar way. The general training process of IB-DRR is

similar to DRR except that IB-DRR jointly optimises the

two losses as follows: (1) the contrastive learning loss be-

tween raw exemplars and their reconstructed views; and (2)

the cross-entropy loss computed using reconstructed images

from new exemplars and old codes.

6. Experiments

Our experiments are designed for class-incremental clas-

sification and we consider the single-headed classifier

scheme where there is only a single unified output layer.

In other words, a unified classifier learns novel classes and

classifies all the classes that it has seen so far. We compare

our approach with baseline methods and the state-of-the-art

methods that use the replay strategy.

6.1. Experimental Setup

Following [13, 24, 23, 36], we evaluate our proposed

strategies on the CIFAR-100 dataset [18], and we train three

variants for ablation study: 1) DRR: discrete representation

replay with saving latent representations (in the format of

codes) of all seen exemplars; 2) IB-DRR: information back

discrete representation replay with an extra requirement of

saving a small set of raw original exemplars of previously

seen classes; and 3) IB-DRR∗: a variant of IB-DRR with-

out saving raw data, so it can only utilize raw (original)

exemplars of new coming classes for IB. More explicitly,

IB-DRR∗ is IB-DRR without saving raw samples for old

classes; and DRR is obtained by ablating Information Back

mechanism from IB-DRR∗.

Dataset. The CIFAR-100 dataset contains 100 classes and

each class has 500 training samples and 100 test samples

with the image size of 32× 32× 3.

Architecture. For our hierarchical VQ-VAE, we use two

codebooks (two level of codes) each with a size of 512
(number of codes) and set the embedding dimension to 64.

We use a Bit-Swap with 8 hierarchical latent variables with

a Markov chain structure for each level of codes. In our pre-

liminary experiments, we find the Resnet-32 used in previ-

ous replay-based methods [24, 34, 36] causes underfitting

of our DRR in some cases. We use a ResNet-18 [12] used

in [23] as a classifier (see Appendix for further discussion).

Hyperparameters and Configuration. Following the class

incremental settings introduced in [13, 24, 23], our VQ-

VAE and Bit-Swap are pretrained given the half of the

classes from CIFAR-100 at the initial training phase 0 and

the rest of the classes are added gradually in the future

phases. That is, the training has 1 initial phase for the clas-

sification of the first 50 classes and N incremental phases

for the remaining 50 classes. We freeze the VQ-VAE but

keep fine-tuning the Bits-Swap for future phases. Note that

our classifier is trained with reconstructed images but tested

with raw images. Our preliminary results show that train-

ing the classifier with the mixture of raw images of new

classes and reconstructed images of old classes degrades

the classification results. We evaluate the performance of

our incremental learning method by setting N to 25, 10 and

5, meaning that 2, 5, and 10 classes are gradually added

at each incremental phase, respectively. The VQ-VAE is

trained by an Adam optimizer with a constant learning rate

0.0003 for 1400 epochs. We train or fine-tune the Bit-Swap

by an Adam optimizer with a constant learning rate 0.002
until its loss no longer decreases. For DRR, IB-DRR and



Method 25 phases 10 phases 5 phases

UB 78.60 78.92 78.86

GFR [23] 54.01 60.14 60.18

Mnem [24] 60.96 60.78 60.76

DRR 64.37 64.04 64.00

IB-DRR∗ 62.90 64.85 65.36

IB-DRR 65.65 66.40 66.71
Table 1. Comparison in terms of the average overall accuracy (%)

for varying N incremental phases on CIFAR-100.

IB-DRR∗, we train the classifier with the image replay strat-

egy as explained in Section 4. We use a stochastic gradient

descent (SGD) optimizer with 0.9 momentum and 0.0005
weight decay parameters for the classifier. The initial learn-

ing rate is set to 0.1 and divided by 5 after 60, 120, and 160
epochs. A warmup scheduler [9] is applied for the first 5
epochs. The classifier is trained from scratch during a new

training phase for 200 epochs. If IB is used, we set the hy-

perparameter λ = 0.005 for the contrastive learning loss

Lsim.

Memory Budget. For DRR and IB-DRR∗ we only save

codes for seen classes. For IB-DRR, we follow [24, 34, 36]

and save additionally 20 raw exemplars per class for seen

classes.

Baselines. We compare our methods with the following 5

baseline methods: LWF [21], GFR [23], iCaRL [36], LU-

CIR [13], Mnem [24] and a Upper Bound (UB). The first

two baselines do not require to save exemplars while others

(including ours) need to save old exemplars. iCaRL, LU-

CIR and Mnem save 20 samples per class while UB saves

all (50,000) samples. We follow their original implementa-

tion settings (see Appendix for further information).

6.2. Evaluation Metrics

For each new training phase i, we evaluate the perfor-

mance of the model on the test set from the new classes

and old classes (henceforth, phase-wise accuracy). We use

two evaluation metrics. Following the previous work [13,

23, 36], the first metric is the average overall accuracy that

computes the mean of phase-wise accuracy over all train-

ing phases, namely from the initial phase to phase i. How-

ever, in the initial phase N0, there is no catastrophic for-

getting; therefore, we exclude the test accuracy of the ini-

tial phase from the average overall accuracy. Let Ai be

the performance of the model on the held-out test set of

phase i, the average overall accuracy is then defined as:

A = 1
N

∑N

i=1 Ai where N is the total number of phases

(in our experiments N = 5, 10, and 25). The second metric

is the last phase accuracy that reports the phase-wise accu-

racy of the last training phase only. Please note that, in the

last phase, all classes in the dataset are encountered, thus

the accuracy is given for all 100 classes.

Method 25 phases 10 phases 5 phases

UB 77.91 77.91 77.91

GFR [23] 40.39 51.29 53.34

Mnem [24] 50.78 51.53 54.32

DRR 60.87 60.87 60.87

IB-DRR∗ 60.50 62.29 62.83

IB-DRR 62.86 63.65 63.97

Table 2. Comparison in terms of last phase accuracy (%) (after

models trained for 100 classes) on CIFAR-100 for varying N in-

cremental phases.

6.3. Results and Analyses

In Figure 3, we compare our methods with the state-

of-the-art replay-based methods that use image-level re-

play [24] and feature-level replay [23] as well as other base-

line methods [36, 21, 13] in terms of phase-wise accuracy.

It is obvious that methods using replay have better perfor-

mance than LwF [21] which is one of the most competi-

tive methods without replay, demonstrating the superiority

of replay-based methods. IB-DRR outperforms others ex-

cept for the upper bound (UB) in all experimental settings.

Looking at the most challenging 25-phase setting, our mod-

els start with a lower phase-wise accuracy at the initial train-

ing phase (with 50 classes) due to the fact that reconstructed

images are of low quality as compared to original images.

However, despite the fact it is trained with reconstructed,

low-quality images, our models can maintain the knowledge

over old classes when learning new classes with improve-

ment in the average accuracy by a margin of 6% and 4% by

IB-DRR and DRR respectively (see Table 1). In addition,

IB-DRR and DRR surpass other baselines by a margin of

at least 9% and 3% according to the last phase accuracy

(see Table 2). In 5-phase and 10-phase settings, IB-DRR∗

performs better than DRR while in 25-phase setting we see

the opposite situation. Recall that, both of them only save

codes for previously seen classes. Intuitively, the Informa-

tion Back (IB) mechanism benefits more diverse raw sam-

ples from more new classes to regularize the classifier to

get back some information that is useful for classification.

From this point of view, in 5-phase or 10-phase IB-DRR∗

has a large enough number of new classes to utilize. As

IB-DRR also saves old raw samples, it can perform well in

all the settings we tested. Moreover, our methods behave

similarly to the upper bound with a relatively ‘constant’ de-

crease in accuracy.

6.3.1 Comparison of Memory Cost

Table 3 provides the memory required for saving extra ex-

emplars as well as assistant model weights on the CIFAR-

100. Saving discrete latent representations in codes costs
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Figure 3. Phase-wise accuracy (%) on Cifar100 based on 5-phase (10 class per phase), 10-phase (5 class per phase), and 25-phase (2 class

per phase) settings, respectively.

Method Exemplar cost (MB) Assistant model cost (MB)

UB 148 (50,000 exemplars) NA

GFR [23] NA 4.5 (GAN)

Mnem [24] or LUCIR [13] 6.2 (2,000 exemplars) NA

DRR or IB-DRR∗ 4.24 (50,000 exemplars) 5.81 (VQ-VAE) + 13.4 (Bit-Swap)

IB-DRR 6.2 + 4.24 5.81 (VQ-VAE) + 13.4 (Bit-Swap)

Table 3. Comparison of memory required for saving exemplars and assistant models, e.g., generators and autoencoders on CIFAR-100.

less memory while saving 25 times more exemplars as com-

pared to other replay-based methods [24, 13]. Please note

that we are not able to compare the cost of assistant mod-

els. Because many incremental learning methods (espe-

cially those that use knowledge distillation techniques) save

a copy of old models. For example, Mnem [24] saves the

model weights Θ0 after the 1st phase and uses knowledge

distillation loss to encourage Θi−1 and Θi to maintain the

same prediction ability on old classes. GFR [23], LU-

CIR [13] and Mnem [24] all need to save a copy for the

latest model and train a new model with the help of the old

model copy, therefore, each of them should be part of the

total memory cost of assistant models.

6.4. Can DRR generalise to other datasets?

To validate that our VQ-VAE trained on CIFAR-100 has

a good generalization ability when applied to a different

dataset even with a higher resolution, we presented prelimi-

nary quantitative results on Subset-ImageNet that contained

random 100 classes from ImageNet-1K. For our method,

we used the pretrained VQ-VAE on CIFAR-100 as described

previously in Section 6.1 to process images from ImageNet.

We compared our DRR with Mnem [24] which is the SOTA

method. Both approaches used images with the size of

224 × 224 × 3 as inputs and Resnet-18 as the classifier.

Mnem saved 20 raw samples per class (330 MB in total)

while DRR saved codes of all samples. Results of the 5-

phase setting showed DRR and Mnem achieved an average

overall accuracy of 78.05% and 72.58% respectively. In ad-

dition, DRR resulted in a memory cost of 474 MB for sav-

ing 128, 856 raw exemplars which originally cost 18, 494
MB.

7. Conclusion

In this paper, we formalised incremental learning as a
representation compression problem and proposed a novel
approach to this problem. Our proposed approach, Discrete
Representation Replay (DRR), performs a two-step com-
pression using a Vector-Quantised Variational Autoencoder
(VQ-VAE) and a Bits-back Asymmetric Numeral Systems
with hierarchical latent variables (Bit-Swap). Our experi-
mental results showed that DRR outperforms the state-of-
the-art approaches on the CIFAR-100 dataset in terms of
accuracy and memory size required for saving exemplars.
In addition, we introduced an Information Back (IB) mech-
anism that utilized raw exemplars to regularize the training
of the classifier and IB further boosted the performance of
the DRR by saving a small set of raw exemplars of pre-
viously seen classes. Our preliminary results showed im-
plications that our approach could be generalised to other
datasets such as ImageNet. As future work, we will extend
IB-DRR by introducing extra network components for con-
trastive learning to alleviate information loss caused by the
VQ-VAE.
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