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Abstract

Modern machine learning systems need to be able to

cope with constantly arriving and changing data. Two main

areas of research dealing with such scenarios are contin-

ual learning and data stream mining. Continual learning

focuses on accumulating knowledge and avoiding forget-

ting, assuming information once learned should be stored.

Data stream mining focuses on adaptation to concept drift

and discarding outdated information, assuming that only

the most recent data is relevant. While these two areas

are mainly being developed in separation, they offer com-

plementary views on the problem of learning from dynamic

data. There is a need for unifying them, by offering architec-

tures capable of both learning and storing new information,

as well as revisiting and adapting to changes in previously

seen concepts. We propose a novel continual learning ap-

proach that can handle both tasks. Our experience replay

method is fueled by a centroid-driven memory storing di-

verse instances of incrementally arriving classes. This is en-

hanced with a reactive subspace buffer that tracks concept

drift occurrences in previously seen classes and adapts clus-

ters accordingly. The proposed architecture is thus capable

of both remembering valid and forgetting outdated informa-

tion, offering a holistic framework for continual learning

under concept drift.

1. Introduction

Contemporary real-world problems generate challenging

and ever-growing data with dynamic properties. This kick-

started exciting developments of novel machine learning al-

gorithms capable of constant accumulation of new infor-

mation [1], aggregating useful data [21], and handling its

non-stationary properties [16]. Two fields are being devel-

oped in parallel – continual learning [18] and data stream

mining [13]. The former focuses on how to retain useful

knowledge within the model, while allowing its growth and

accumulation of new information. The latter focuses on

adaptation to the current state of data, detecting the phe-

nomenon known as concept drift, and swift adaptation to

any changes taking place [16]. One must notice that those

two approaches offer complementary views on the problem

of continual learning from dynamic data and thus should be

bridged together, leading us to develop robust and adaptive

learning algorithms.

Research hypothesis. Class-incremental continual learn-

ing can be effectively extended to allow at the same time:

(i) avoiding catastrophic forgetting by effectively accumu-

lating knowledge from new classes; and (ii) monitoring

changes in previously learned classes (revisiting) with au-

tomatic adaptation to concept drift.

Motivation. Existing continual learning methods assume

that the once learned knowledge should be remembered and

stored in the model. This assumes that information once

learned stays permanently valid. This is not true, as modern

dynamic data sources may be affected by concept drift, thus

changing the properties of some classes, as depicted by the

example of a binary recommendation system given in Fig. 1.

This calls for developing methods that can bridge the gap

between continual learning (knowledge retaining) and data

stream mining (concept drift adaptation).

Overview. We propose a holistic approach to class-

incremental continual learning, based on experience replay.

The novelty of our work is that our algorithm allows for

both avoiding catastrophic forgetting and automatic update

of previously learned classes if they are affected by concept

drift. We distinguish three vital aspects of the proposed

framework: (i) capability for class-instrumental continual

learning; (ii) capability for retaining useful knowledge to

mitigate catastrophic forgetting; and (iii) capability of adap-

tation to changes by forgetting outdated knowledge and up-

dating the model. Our approach combines centroid-driven
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Figure 1: Three vital aspects of a holistic approach to continual learning: learning new classes, retaining previous knowledge,

and adapting to concept drifts, illustrated by the example of a binary recommendation system (like or dislike).

memory for storing class-based prototypes with a reactive

subspace buffer that can detect and react to concept drift af-

fecting one or more classes. It traces the dominant class in

each of the clusters, allowing for switching labels among

clusters and splitting them whenever local changes are be-

ing detected. We simultaneously ensure the diversity of in-

formation stored within class buffers with their reactivity to

concept drifts.

Main contributions. Our work offers the following ad-

vancements to the field of continual learning.

• Combination of aggregation and adaptation. We

propose a unifying view on continual learning that

combines avoiding catastrophic forgetting during

class-incremental learning with adaptation to changes

affecting previously learned classes.

• Reactive subspace buffer. We develop a novel experi-

ence replay approach that combines clustering-driven

buffers for managing data diversity with cluster track-

ing, switching, and splitting for forgetting outdated

information and automatic adaption to concept drift

without a need for explicit change point detection.

• Realistic continual learning scenario under concept

drift. We discuss a realistic and illustrative learning

scenario – continual preference learning and recom-

mendation. As both users may acquire new prefer-

ences and their old preferences may change over time,

this problem touches both avoiding catastrophic for-

getting in incremental learning and the need for han-

dling concept drift.

2. Related works

Continual learning – robustness to forgetting. The field

of continual learning focuses on incremental incorporation

of new information into the model, while preserving the

knowledge learned on previous classes or tasks [18]. This

leads to two challenges: how to grow model to make space

for new knowledge and how to avoid catastrophic forget-

ting. Model growing is mainly discussed from the perspec-

tive of deep neural networks, where recent works suggest to

either elastically add new neurons to the network [15], have

a pretrained bigger structure that is incrementally populated

[24], or use hypernetworks to control the accumulation of

new data [26].

At the same time, while the model is accumulating new

classes/tasks it may become biased towards this recent dis-

tribution [27]. Continual learning models must be robust to

catastrophic forgetting, to maintain high accuracy in previ-

ous classes. Most common solutions to this problem use in-

stance buffers from previous classes for experience replay

[7], specialized parts of neural networks for solving each

task while freezing the rest with masking [17], or use regu-

larization and parametrization methods to debias the learn-

ing procedure [4, 11].

Data stream mining – robustness to changes. The field

of data stream mining focuses on continuous adaptation to

the newest incoming data, with the assumption that they are

the most representative [13]. This is dictated by the non-

stationary data characteristics and presence of concept drift

that may affect class boundaries, distributions, and features

[12, 16]. Concept drift can be handled in either an explicit

or implicit manner. The former approach uses drift detec-

tors – external monitoring tools that evaluate selected prop-

erties of incoming instances and/or learning models to sig-

nal the moment of a drift [5]. Once the drift is detected, the

learning model is replaced with a new one trained on most

recent data, thus facilitating forgetting of outdated concepts.

The letter approach uses adaptive learning techniques, as-

suming that the underlying model will smoothly follow the

changes in a data stream. Here sliding windows [8] and on-

line classifiers [3] are the most popular solutions, allowing

for learning from incoming instances, while simultaneously

forgetting the old information.
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3. Unifying continual learning with concept

drift adaptation

Need for unifying approach to continual learning. Both

discussed approaches to learning from dynamic data focus

on different aspects and are being developed in relative sep-

aration. One should notice that both raise vital issues that

are present in many dynamic real-world problems [28, 30].

This allows us to postulate the need for a unifying approach

that will bridge those two domains and offer a holistic view

on the continual learning paradigm [2]. The questions that

all continual learning models should answer are (i) how to

accumulate new information and expand the capabilities of

a learning model; (ii) how to remember important and use-

ful information over time; and (iii) how to detect and forget

outdated concepts. This proposed unified approach will al-

low continual learning models to offer leveraged robustness

to both catastrophic forgetting and concept drift, making

them a step closer to solving emerging real-world problems.

Realistic scenario for continual learning under concept

drift. Most works on concept drift use artificial data gener-

ators [21] or forcefully inject drift into every class without

considering the reason behind it (e.g., apples changing into

cars). Those examples are not very convincing and thus

there is a need for finding a way of creating concept drift

problems that are rooted in reality. We propose to focus

on user’s preferences, as they are an excellent example of

continual and streaming data, as depicted in Fig. 1.

Users are constantly processing new information given

to us from social media, the internet, or news outlets, learn-

ing about new things we have not seen before. Those new

things may become interesting to a user or not – but they

still need to be processed in a continuous manner, calling

for class-incremental mechanisms. A new topic does not

become the major or only interest for the user; thus it can-

not overshadow the previously seen ones. Therefore, catas-

trophic forgetting must be avoided to retain not only the

most current, but all topics relevant to a given user. At the

same time, our preferences and tastes are not static. We

change our interests within the span of years, months, or

even days. A concept that was interesting to the user at a

given point cannot be assumed as interesting indefinitely.

A continual learning system must thus be able of revisiting

previously learned knowledge and updating it according to

any shifts in preferences. This calls for concept drift adapta-

tion approaches, as previously seen topics may evolve over

time and the interest of users in them may either increase or

decrease over time. Creating a true continual learning sys-

tem over user preferences is a real-world and practical illus-

tration explaining the need for a holistic approach capable

of remembering new concepts and selective forgetting with

adaptation to changes in the old ones.

4. Class-incremental experience replay under

concept drift

The prevalent majority of the class-incremental methods

based on experience replay focus on storing the most rep-

resentative instances or prototypes for stationary data [19].

They rely on the assumption that classes of the observed and

selected instances cannot change, therefore there is no need

to control them. As a result, the instances picked for a given

class will remain in its buffer for a very long time and the

only criterion which may trigger their removal or replace-

ment will be representativeness or diversity of the memory

[6]. However, in many real-world applications the men-

tioned assumption does not hold true. In the presented ex-

ample of a binary recommendation system, the preferences

may change, invalidating some of the experiences stored in

the buffer. In such a case, we have to address the concept

drift problem and update our memory adequately.

In the following sections, we introduce two commonly

used basic algorithms – class buffers and centroid-driven

memory – in the context of the given problem. We also

propose an adaptive experience replay approach capable of

adapting to concept changes.

4.1. Class buffers

Standard experience replay methods tackle the catas-

trophic forgetting problem by storing a separate buffer per

class. They assume that a label of an incoming instance is

known, so they can perfectly balance the storage and rea-

sonably diversify their available memory. Due to practical

concerns, the class buffers have limited capacity, therefore,

there is the necessity of selecting which (or if) previously

captured instances should be replaced with the currently in-

coming ones.

The most simplistic approaches use basic algorithms like

FIFO (queue) effectively acting as sliding windows [22].

The problem with such methods is that they may very

quickly erase the memory of earlier examples, that may be

representative for a given problem, leading to catastrophic

forgetting [20]. Assuming that incoming instances may be

somehow correlated in time, one possible modification mit-

igating the issue is to enforce a wider spread of the stored

instances across time. To achieve that, we can sample in-

stances stored in the buffer, using a simple formula:

r ∼ U(0, 1) < τ, (1)

where r is a random variable sampled from the uniform dis-

tribution and τ is a threshold specified by a user. By in-

creasing the threshold we can enforce quicker replacements,

while, on the other hand, by decreasing it we can make the

buffer more conservative. Too low τ will lead to impaired

learning from new data, while too high τ will inevitably

lead to catastrophic forgetting. Although balanced thresh-

olds should be preferable for classic stationary scenarios,
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such approaches will fail when concept drift occurs, im-

posing unnecessary avoidance of forgetting and impeding

adaptation to changes.

4.2. Centroid­driven memory

Usually, the simple class buffer methods are too simplis-

tic, since they do not utilize any significant characteristics

of the incoming data. This is especially important, when

we have to deal with complex or high-level abstract classes

(e.g. in recommendation), since it is very likely there are

several different subspaces that should be covered by the

maintained buffers. This is where the clustering methods

can be found very useful [25]. They are usually utilized to

diversify the replay buffer by grouping instances into differ-

ing groups, which should result in a better coverage of the

decision space [14]. The centroids can be used as instances

themselves (prototypes) [9, 23], or solely as representations

of buffers to forward new examples to their similar memory

cells [29]. In this work, we focus on the latter approach.

Although the centroid-driven approaches are one step

further than the simple class buffers, they are still suscepti-

ble to concept drifts. The reason for that is the fact that they

very often do not check whether previously created clusters

are still valid for a given class. If a given subconcept clus-

ter changes its label (e.g., from liking to disliking), the new

incoming instances will start (slowly) updating class cen-

troids for another class. However, they will not affect the

old cluster for the previous class, since the new instances

will not be identified as those belonging to it, leaving it ob-

solete and impeding the learning process when one samples

from it. This will, once again, lead to the opposite of catas-

trophic forgetting, resulting in much slower or non-existent

adaptation to the current concepts.

4.3. Reactive subspace buffer

To address the presented problem, we propose a modi-

fication of the clustering-driven replay buffers, called Re-

active Subspace Buffer (RSB), capable not only of effi-

cient knowledge aggregation, but also of adequate forget-

ting when it is needed. The outline of the algorithm is given

in Algorithm 1. More details can be found in our public

repository: github.com/lkorycki/rsb.

In the given algorithm, for each new instance x with a

label y, we first ensure that there are at least cmin centroids

for the class. Then, we find the nearest cluster Cx for the

given instance x. If the given cluster belongs to the class y
of the instance, we simply update it, its buffer Bx of max-

imum size bmax and sliding window Wx of maximum size

ωmax, where the last component is responsible for tracking

the most current concepts for the given centroid. Otherwise,

there is a risk that a concept drift appeared and instances of

a different class have started appearing around the centroid.

Therefore, if the instance x is sufficiently close (we use sim-

Algorithm 1: Reactive Subspace Buffer (RSB).

Data: min centroids cmax, max centroids cmax, buffer size

bmax, window size ωmax

Result: replay buffers B at every iteration

repeat

receive incoming instance x and its label y;

if cy < cmin then
add new centroid Cnew , buffer Bnew and window

Wnew for y;

continue;

find the closest centroid Cx for x;

if yCx
== y then

update centroid Cx, buffer Bx and its window Wx

with (x, y);

else if x is within Cx then

update window Wx with (x, y);

if should switch Cx then

move Cx to centroids of y and update it using Wx;

else

find the closest centroid Cy,x for (x, y);

if x is within Cy,x or cy ≥ cmax then
update centroid Cy,x, buffer By,x and its window

Wy,x with (x, y);

else
add new centroid Cnew , buffer Bnew and window

Wnew for y;

check for splits and removals

until stream ends;

ple standard deviation rules), we update the sliding window

of the centroid Cx, but not the cluster itself. Now, if we

detect that there is a significant number of instances with

labels different from the current label of the centroid, we

switch it to the new majority class. By doing so, we allow

the buffer to quickly react to a potential drift. Otherwise, we

find the closest centroid Cy,x belonging to the same class y
as x and we either update it, if x is sufficiently close to the

cluster and the maximum number of clusters cmax has not

been reached, or create a new centroid for the given class y.

Finally, for each centroid C, after every ns-th update

of its sliding window W , we check whether it did not

switch labels but is impure enough to be split into two

separate classes. We apply a simple formula checking if

c1/c2 − 1.0 < τs, where c1 and c2 are the first and second

most numerous classes in the cluster and τs is a threshold

determined by a user. During this step we also get rid of mi-

nuscule clusters for which less than τr = αrωmax instances

were registered, where αr is set by a user.

The whole algorithm is then used as a part of the expe-

rience replay method, in which we attempt to sample one

instance for each centroid C from its buffer B, based on the

purity criterion:

γC = tanh(β
c1 − c2
c1 + c2

) > r ∼ U(0, 1), (2)

where c1 and c2 are, once again, the most numerous classes
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in the cluster, and β = 4. By doing so, we provide an

additional mechanism preventing us from enhancing out-

dated or at least uncertain concepts. Finally, since by using

probabilistic sampling we make the total number of sam-

pled instances non-deterministic, we apply oversampling to

balance the selected batch.

To summarize – by enabling: (i) tracking the current

dominant classes in a given cluster, (ii) switching labels be-

tween clusters, (iii) splitting them, and (iv) sampling from

the replay buffer based on clusters purity, we make the

centroid-driven algorithm sensitive to concept changes. At

the same time, by maintaining stable replay buffers for sub-

spaces that do not change, we can still avoid catastrophic

forgetting. As a result, we are able to obtain a method capa-

ble of both remembering what is valid and forgetting what

is outdated. In addition, since our method is based on lo-

cal buffers, it should be able to efficiently diversify more

complex concepts without explicit knowledge of its subcon-

cepts.

5. Experimental study

In the experimental study, we attempt to prove that our

algorithm is capable of class-incremental learning from sta-

tionary and non-stationary data. We aim to show that it

can both (i) avoid catastrophic forgetting by maintaining di-

versified subspace-oriented replay buffers, and (ii) adapt to

concept drifts by forgetting outdated information. All of the

presented experiments can be conducted using scripts pro-

vided in the mentioned repository.

5.1. Data

To evaluate the proposed algorithm we decided to sim-

ulate a binary recommendation system by assigning super-

classes (0/1) to the classes from original data sets. By doing

so we could simulate the situation in which a user likes or

dislikes certain types of available images (subconcepts). We

constructed two types of class-incremental data sets: sta-

tionary and drifting.

Batch 1: Cats -> 1 Batch 2: Cars -> 0 Batch 3: Dogs -> 1 Batch 4: Airplanes -> 0

Batch 5: Cats -> 0 (drift) Batch 6: Cars -> 1 (drift) Batch 7: Frogs -> 0 Batch 8: Ships-> 1

Figure 2: The general idea of the design for the drifting

benchmark sequences.

For the former, we simply used five image benchmarks:

MNIST, FASHION, SVHN, CIFAR10 and IMAGENET10,

which is a subset of the 64x64 ImageNet set. During the

evaluation we were feeding our models class after class, in-

terleaving 0/1 assignments (for example, the first class from

CIFAR10 was 1, the second one was 0, and so on). For

the latter scenario, we were changing the 0/1 labels for two

consecutive classes after three or four stationary ones. As

a result, we obtained 30 batches of classes for each data

set, representing both stationary and concept drifting peri-

ods (for more details please refer to the repository). An

example of our approach is depicted in Fig. 2.

5.2. Algorithms

We evaluated our algorithm as a part of the experience

replay framework. The module consisted of a classifier (a

neural net) and the replay buffer, which was used to sam-

ple additional instances for a given input batch. In order

to compare our method (RSB) with other mentioned ap-

proaches, we run experiments using four additional clas-

sifiers: (i) offline neural network retraining after each

batch (OFFLINE), (ii) a naively fine-tuning neural network

(NN), which learned from the batches without any addi-

tional mechanisms for handling catastrophic forgetting, (iii)

a simple class buffer (CB), which stored separate buffers for

both recommendation classes, and a centroid-based method

that utilized an on-line k-means algorithm to create repre-

sentations of the original classes treated as subconcepts (or

subspaces) of the recommendation space (SB).

While configuring our method, we used the following

values of its parameters: cmin = 0.5cmax, where cmax =
10 for all of the data sets except for FASHION for which

we set cmax = 20 based on preliminary experiments. Each

buffer of the method could store at most bmax = 100
instances and equal was the size of each sliding window

ωmax = 100. We also empirically set ns = 1000 and

τs = 0.5 for splitting, and αr = 0.4 for removals. These

settings worked very well with all of the considered data

sets. We used the same values of cmax and bmax for the

SB algorithm. When it comes to the CB method, we set

bmax = 2000 per class to provide similar memory resources

compared with RSB and SB. Furthermore, we distinguished

CB with τ = 0.0 (CB0) and τ = 1.0 (CB1) to check their

performance in stationary and non-stationary scenarios.

All of the mentioned algorithms used pretrained convo-

lutional feature extractors, from which we used representa-

tions returned by a middle layer of the classifier (we needed

a high-level representation due to the nature of our task).

For MNIST and FASHION we used a simple CNN with two

convolutional layers consisting of 32 (5x5) and 64 (3x3) fil-

ters, interleaved with ReLU, batch normalization and max

poolig (2x2). For SVHN, CIFAR10 and IMAGENET10 we

utilized ResNet18. As a trainable classifier we chose a 3-

layer fully connected net with 512, 256, 128 neurons in the

hidden layers interleaved with ReLU, batch normalization

and dropout (p = 0.5). During training we used the Adam

optimizer. After each batch, the classifier learned for either

5 epochs (IMAGENET10) or 10 (the rest). Additionally,

we initialized each algorithm with 10% of the first and the

second class.
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5.3. Evaluation

We evaluated the presented methods in a class-

incremental setting, where each original class is treated as a

subconcept of the binary recommendation space and comes

as a whole in a form of a batch (Fig. 2). In our scenario,

we assume that old subconcepts may become outdated and

batches may change their labels. We measured the accu-

racy of a given algorithm after each batch (a new or up-

dated class), utilizing holdout testing sets, and then, based

on [10], used it to calculate the normalized average accu-

racy over the whole sequence:

Ωall =
1

T

T∑

t=1

αt

αoffline,t

, (3)

where αt is the model performance after t classes and

αoffline,t is the optimal performance obtained by the offline

learner.

To make our scenario more challenging, we assumed that

we did not know the classes of the original set, only the rec-

ommendation labels. This allowed us to create a complex

decision space without explicit knowledge of its subspaces

and with a lot of potential for local concept drifts.

5.4. Results

Performance on stationary continual learning. Firstly,

we evaluated the performance of RSB against the reference

approaches in class-incremental continual learning with sta-

tionary properties. That means there was no concept drift

present in the data and the main challenge lay in aggregat-

ing learned knowledge and avoiding catastrophic forgetting.

We used this scenario first as an ablation study, to show that

RSB is capable of learning newly arriving classes, without

forgetting the previously seen ones. Tab. 1 shows the nor-

malized average accuracy results over the five used bench-

marks, while Fig. 3 depicts the changes in accuracy over

time, calculated after each class (subconcept) batch. We

omit the MNIST plot as it has identical characteristics as

the FASHION plot.

In the presented results, we can see that all of the consid-

ered experience replay approaches were able to obtain sat-

isfactory performance on the stationary sequences, slightly

below the offline upper bound. They significantly improved

upon the naive fine-tuning (NN), which severely suffered

from catastrophic forgetting. The simple class buffers per-

formed similarly on average. Holding instances of the ear-

liest classes (CB0) turned out to be a bit better approach

on simpler benchmarks, while giving a higher priority to

the newer instances (CB1) resulted in higher accuracy on

CIFAR10 and IMAGENET10. The more sophisticated

centroid-driven experience replay (SB, RSB) provided even

higher quality on all sequences by maintaining more diver-

sified memory buffers per recommendation class. Finally,

the results indicate that our method is often capable of im-

proving upon the simpler centroid-based method (SB), most

likely by correcting partially inaccurate clusters.

Table 1: The normalized average accuracy (absolute values

for the offline baseline) for stationary sequences.

Model MNIST FASH SVHN CIF10 IMGN10

OFFLINE 1.0 0.9865 1.0 1.0 1.0

NN 0.5529 0.5603 0.5529 0.5596 0.4886

ER-CB0 0.9537 0.9554 0.9414 0.9106 0.8828

ER-CB1 0.8754 0.8990 0.9235 0.9298 0.9349

ER-SB 0.9897 0.9739 0.9750 0.9675 0.9513

ER-RSB 0.9967 0.9926 0.9816 0.9740 0.9405

Table 2: The normalized average accuracy (absolute values

for the offline baseline) for drifting sequences.

Model MNIST FASH SVHN CIF10 IMGN10

OFFLINE 1.0 0.9744 1.0 1.0 1.0

NN 0.5894 0.6043 0.5872 0.5884 0.4546

ER-CB0 0.5977 0.6473 0.5494 0.5635 0.6084

ER-CB1 0.7422 0.7931 0.7743 0.7918 0.8540

ER-SB 0.7268 0.7341 0.7267 0.7004 0.6696

ER-RSB 0.9938 0.9745 0.9722 0.9545 0.9187

In Fig. 3 we can clearly see that RSB displayed sta-

ble incremental learning capabilities and was not affected

by catastrophic forgetting. This is especially visible on

FASHION, SVHN and CIFAR10 data sets, where with the

increasing number of classes reference methods displayed

drops of performance, while RSB achieved stable results

for all arriving classes. For SVHN, we can see that CB0

returned to similar performance as RSB after the 8-th class

– but the intermediate learning process between classes no.

4 and 8 was significantly impaired. SB was much more

resilient to forgetting, yet it performed slightly worse than

RSB on 3 out of 4 sequences and on average. This allows

us to conclude that RSB is robust to both catastrophic for-

getting and false concept drift detection on stationary data.

Performance on continual learning under concept drift.

After establishing that RSB displays robustness to catas-

trophic forgetting, we needed to evaluate its capability of

simultaneous incremental learning and adaptation to drift.

We used the same five benchmarks that now were injected

with concept drift as discussed in Sec. 5.1. This way we

should be able to see if RSB is able to detect changes on pre-

viously learned classes and correctly modify the underlying

classifier to update its stored knowledge. Tab. 2 shows the

normalized average accuracy results over five used bench-

marks, while Fig. 4 depicts the changes in accuracy over

time. Again, we omit MNIST plot as it has identical char-

acteristics as the FASHION plot.
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Figure 3: Average accuracy over all classes for stationary class-incremental sequences.
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Figure 4: Average accuracy over all classes for drifting class-incremental sequences. Drifts occur in batches 4, 5, 9, 10, 14,

15, 19, 20, 24 and 25.

For continual learning under concept drift we can see

significant differences among the examined algorithms.

Neither CB0, CB1 or SB were capable of keeping up with

the presence of concept drift in the data. The main rea-

son for that was the fact that CB0 and SB kept outdated

instances in their buffers, impeding the adaptation process

by forcing the model to retain obsolete concepts. On the

other hand, CB1 adapted to newer concepts much better

than CB0, but it was not able to store instances for older

classes, which inevitably led to catastrophic forgetting. For

all five data sets the proposed RSB displayed the most sta-

ble performance, which is especially striking in the case of

FASHION, SVHN and CIFAR10 sequences. By analyzing

the plots we can see how the reference methods were sig-
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nificantly impacted by the first occurrence of concept drift,

often dropping to similar or lower performance levels as the

random approach. Sometimes they were slowly recovering

their performance over time, but this was happening at an

unacceptable rate.

To gain further insights into the performance of the expe-

rience replay under concept drift let us look at Fig. 5 that de-

picts the accuracy over selected drifting classes. We can see

that both CB1 and SB were highly sensitive to any drift in

data. Even if sometimes they could spontaneously recover

their performance (which usually was rather a coincidence),

the next occurrence of concept drift could easily bring their

performance back to the level of random decision (or even

below). In the case of the MNIST class 0 we can see that the

SB method could not recover at any point of time after the

first drift. The extremely low accuracy was caused by ob-

solete centroids, which did not update their label and kept

generating invalid instances for the recommendation class.

These results clearly indicate that standard experience re-

play approaches cannot handle concept drifts, and that some

of the occurring errors may even never be corrected. On the

contrary, the proposed RSB is characterized by excellent ro-

bustness to concept drift, stable performance, and on-the-fly

adaptation to changes in previously learned classes without

any delay or loss in predictive power.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.0

0.5

1.0

Rand

MNIST-C0

2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.0

0.5

1.0

Rand

FASHION-C2

RSB

SB

CB1

Figure 5: Accuracy for the selected classes under concept

drift. C0 drifts in batches 4 and 5, and C2 drifts in 9 and 10.

Finally, we should be aware that concept drift may af-

fect not only the performance of models on previously seen

classes, but also their incremental learning capabilities. As

the underlying neural network model tries to handle the

catastrophic forgetting by using instances from the buffer

for experience replay, it utilizes instances coming from out-

dated concepts that may be contradicting the most current

ones. Therefore, this may impact its ability to incorpo-

rate and retain new knowledge, resulting in a significant

decrease in the model’s predictive power. This allows us

to conclude that continual learning under concept drift re-

quires a strong interplay between avoiding catastrophic for-

getting and adaptation to concept drift, as weaker perfor-

mance on one will negatively affect the other. The proposed

RSB offers an excellent balance between these two tasks,

leading to a well-rounded and stable continual learning so-

lution.

6. Conclusions and future works

Conclusions. In this paper, we have discussed a unified ap-

proach to continual learning that bridges the gap between

avoiding catastrophic forgetting and data stream mining un-

der concept drift. By pointing to the fact that these fields

are two faces of the same coin, we showed that there is

a need for developing holistic systems that are capable of

incremental incorporation of new information, while offer-

ing adaptation capabilities by selective forgetting. This was

illustrated by a practical example of continual learning of

user’s preferences that expand and evolve over time.

To address this challenging scenario, we have proposed

an experience replay approach based on a reactive subspace

buffer. It combines clustering-driven memory, storing di-

verse instances per class, with adaptation components that

allow for dynamic monitoring, relabeling, and splitting of

existing clusters. As a result, our method provides both

the capability of accommodating new classes without catas-

trophic forgetting and the ability to react to concept drift

affecting the previously learned classes. In our experimen-

tal study, we exhibited the effectiveness of our algorithm

and proved that it is an effective and complete approach to

continual learning that is not limited by either inability to

accommodate new information, or by inability to adapt to

changes.

Future works. We have shown that while existing standard

experience replay approaches are able to handle the prob-

lem of avoiding catastrophic forgetting, they do not possess

mechanisms allowing for adaptation on previously learned

classes affected by concept drift. We suppose that simi-

lar issues can be identified in other continual learning al-

gorithms. Therefore, our future works will focus on im-

proving different approaches. This may involve, for exam-

ple, introducing adaptive masking, reactive regularization

and dynamic neural network structures capable of reacting

to drifts. These will be important steps towards creating a

holistic view of continual learning systems that can handle

diverse challenges present in various real-life problems.
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