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Abstract

Conventional neural networks are mostly high in plastic-

ity but low in stability. Hence, catastrophic forgetting tends

to occur over the sequential training of multiple tasks and

a backbone learner loses its ability in solving a previously

learnt task. Several studies have shown that catastrophic

forgetting can be partially mitigated through freezing the

feature extractor weights while only sequentially training

the classifier network. Though these are effective methods

in retaining knowledge, forgetting could still become severe

if the classifier network is over-parameterised over many

tasks. As a remedy, this paper presents a novel classifier

design with high stability. Highway-Connection Classifier

Networks (HCNs) leverage gated units to alleviate forget-

ting. When employed alone, they exhibit strong robustness

against forgetting. In addition, they synergise well with

many existing and popular continual learning archetypes.

We release our codes at https://github.com/

Nic5472K/CLVISION2021_CVPR_HCN

1. Introduction

Continual learning studies the sequential acquisition of

functions for a single neural network. This remains a diffi-

cult problem because catastrophic forgetting [17] may oc-

cur when a trained network learns a new skill. Catastrophic

forgetting refers to the abrupt loss of knowledge for solving

an old task when information for solving a new task is in-

corporated; and this is due to parametric modifications for

satisfying the learning objectives of a new task.

Forgetting can be effectively mitigated by freezing fea-

ture extractor weights while only sequential learning the

classifiers[13, 14, 16]1. The effectiveness of this net-

1This includes Mai et al. [16]’s approach which won the CVPR CLVi-

work compartmentalisation is similar to how offline meta-

learning achieves rapid knowledge acquisition [18]. To

elaborate, this specific setup first reuses acquired feature

representations and then provides a less significant amount

of parametric modification.

Nonetheless, catastrophic forgetting will inevitably oc-

cur due to over-parameterisation in the classifier weights.

To strengthen this simple yet practical experimental setup,

we propose a novel architectural design for classifier net-

works to increase their robustness against forgetting. Our

work is based on an analysis in the neural network back-

ward pass, and we present Highway-Connection Classifier

Networks (HCNs) with gated units to alleviate forgetting.

2. Related Work

There are three main archetypes of continual learning

methods – replay, regularisation, and dynamic architecture.

Regularisation methods append the conventional learning

objective2 with a secondary loss to preserve learnt network

mappings [11, 30, 7]; and that dynamic architectures either

instantiate new modules to host more knowledge [22, 29],

or seek to fully utilise the backbone network capacity by re-

ducing representation overlap [4, 23]. However, [28] found

that only replay methods could successfully prevent forget-

ting in all of their identified continual learning scenarios1.

Replay methods [21] interleave external data while train-

ing a backbone learner on new tasks. Some replay exact

copies of past data [2] and some pseudorehearse with ran-

dom inputs to achieve function approximation [1]. Repre-

sentation learning can also be leveraged to select an exem-

plar set of observed data [19]; or alternatively, one can in-

corporate generative models to the backbone learner to cre-

sion 2020 challenge. Their best practice applied replay techniques only to

the deep layers of their backbone network.
2Such as cross entropy loss for image recognition.
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Table 1: The Forward and Backward Pass of Residual Connections and Highway Connections

Refer to the notations in Section 4.

Residual Connection

Forward pass [5] nLγ
= nLγ−1

+ H (nL(γ−1)
,WLγ

) (1)

Backward pass [12]
J =

∂nLγ

∂nL(γ−1)

= (I+DγWLγ
) (2)

with diagonal Dγ such that D
γ

(r,r)
= H ′(nL(γ−1)

,WLγ
)(r)

Highway Connection

Forward pass [25]
kLγ

= (1−TLγ
)⊙ kLγ−1

+TLγ
⊙ H (kL(γ−1)

,WLγ
) (3)

with gated unit: TLγ
= T(kL(γ−1)

,QLγ
)

Backward pass [25] J =
∂kLγ

∂kL(γ−1)

=

{

I, if T(kL(γ−1)
,QLγ

) = 0

H ′(kL(γ−1)
,WLγ

), if T(kL(γ−1)
,QLγ

) = 1
(4)

ate data which encapsulate features of past tasks [24].

However, replay techniques incur a high computational

cost because they require the concurrent training of stored

data with those of the new task. While a practitioner

can lower the incurred computational intensity by replay-

ing with less externally stored memory, [9] found that this

could lead the backbone learner to severely overfit on past

tasks while underfit on subsequent tasks. By adopting the

network compartmentalisation of [13, 14, 16] and limit se-

quential learning only to the classifiers, computation can be

made less costly in the backward pass while updating the

weights of the backbone learner.

3. The Continual Learning Framework

As described in [15], continual learning employs a base

learner F = F (xi, i) to solve a continuum of data C with n

locally independent and identically distributed (iid) tasks

(x1
1, ω1, y

1
1), . . . , (x

i
β , ωi, y

i
β), . . . , (x

n
B , ωn, y

n
B). (5)

Each task maps inputs xi
β to labels yiβ from datasets

(xi
β , y

i
β) ∈ Dωi

for all B data where β = 1, . . . , B. Once

learner F have progressed to observe data from the j-th

task, it is prohibited to backtrack and learn from an earlier

dataset Dωi
for i < j. We evaluate and store the progress

of the learner accuracy in matrix A ∈ R
(n+1)×n. The ac-

curacy of all n tasks of an initialised F is stored in A1,(1:n);

and after observing all data from Dωi
, all updated accuracy

are stored in A(i+1),(1:n).

4. Highway-Connection Classifier Networks

Depth is important to the success of neural networks

[27]. However, deep networks are hard to optimise and

highway connections [25] took inspirations from the Long

Short-Term Memory Recurrent Neural Network (LSTM

RNN) [6] to ease the training of very deep models.

A conventional layer in feedforward neural network is

aLγ
= H (aL(γ−1)

,WLγ
) (6)

where layer γ has input aLγ−1 , output aLγ
, and a non-linear

transformation H parameterised with WLγ
. A highway

connection modifies Equation (6) as Equation (3) shown in

Table 1 where ⊙ is the element-wise product and that gated

unit TLγ
has non-linear transformation T parameterised

by QLγ
. The gated unit uses the sigmoid transforma-

tion σ, hence each element of T(kL(γ−1)
,QLγ

) lies within

[0, 1] and Equation (3) provides a more flexible transfor-

mation where the output extrapolates between kLγ−1
and

H (kL(γ−1)
,WLγ

) dependent on the input.

4.1. HCNs Reduce Parametric Modification

A Γ-layer network with input aL0
= x, output aLΓ

= ŷ,

and target y has the following derivative to cost C:

∂C

∂WLγ

=
∂C

∂ŷ

[

∏Γ−1
ζ=γ

∂aL(ζ+1)

∂aLζ

]{

∂aLγ

∂WLγ

}

=
∂C

∂ŷ

[

∏Γ−1
ζ=γ H ′(aLζ

,WL(ζ+1)
)
]{

∂H (aL(γ−1)
,WLγ )

∂WLγ

}

.

As shown in Table 1, both residual connection and high-

way connection introduced the identity matrix towards the
[

.
]

term to facilitate deep learning. However, let us con-

sider the
{

.
}

term. A conventional feedforward network

has
∂aLγ

∂WLγ
=

∂H (aL(γ−1)
,WLγ )

∂WLγ
; and residual networks are

identical with
∂nLγ

∂WLγ
=

∂H (nL(γ−1)
,WLγ )

∂WLγ
as nLγ−1 is in-

dependent of WLγ
for all nLγ

. On the contrary, highway

networks have
∂kLγ

∂WLγ
= TLγ

∂H (kL(γ−1)
,WLγ )

∂WLγ
. Since all

units of gate TLγ
lie between [0, 1], the gated units also

limit the extent of update to parameters WLγ
. This is de-

sirable and makes catastrophic forgetting harder to occur.
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4.2. Demonstration

Figure 1: Different Classifier Network Designs

(a) Loss against Iteration

(b) Gradient against Iteration

Figure 2: Differences in the Losses and Gradients

To verify parametric reduction, we tested three classifier

designs and compared their gradients and losses. The de-

signs were the Multiple Layer Perceptrons (MLPs), MLPs

with Residual connections (Res-MLPs), and MLPs with

Highway Connections (HCNs) shown in Figure 1 overleaf.

All classifiers were first trained on MNIST [10] for 525 iter-

ations then sequentially on KMNIST [3] for 525 iterations.

The MNIST database has grey-scale handwritten digits

of numbers between [0-9]. There are 60K and 10K images

for training and testing respectively; and the images are pre-

sented on 28× 28-pixel boxes. KMNIST has images of the

identical format, but of Japanese Hiragana characters. We

flattened the images as vector inputs with the length of 784
(= 28× 28) and processed them with the classifiers. All of

our classifiers had 2 layers with 100 hidden dimensions.

We present our findings in Figure 2, and the gradients

shown were the mean absolute values of WLγ
s of Equa-

tions (6), (1), and (3) for the MLPs, Res-MLPs, and HCNs,

respectively. While we found virtually no differences in the

losses, the gradients behaved qualitatively differently. The

gradients of HCNs were much lower than those of their ri-

vals; while those of Res-MLPs and MLPs behaved simi-

larly. These findings verified that the gates of highway con-

nections scaled down gradient values in the backward pass.

5. Experiments

Table 2: An Overview of the Results

Method ACC BWT

Section 5.3 : Naı̈ve Implementation for Permuted MNIST

HCN (Ours) 71.49 ± 11.57 -7.71

MLP 65.54 ± 19.76 -14.39

Res-MLP 65.36 ± 19.85 -15.28

Section 5.3 : Naı̈ve Implementation for Incremental Cifar100

HCN (Ours) 74.82 ± 15.48 -6.10

MLP 73.08 ± 17.49 -8.40

Res-MLP 70.84 ± 18.78 -11.34

Section 5.4 : In-Class Comparison for Permuted MNIST

EWC + HCN (Ours) 71.74 ± 7.84 -7.02

EWC + MLP 66.72 ± 13.78 -12.67

GEM + HCN (Ours) 74.19 ± 8.24 6.22

GEM + MLP 74.52 ± 4.27 3.52

HAT + HCN (Ours) 70.72 ± 8.32 -3.39

HAT + MLP 62.50 ± 20.41 -5.70

Section 5.4 : In-Class Comparison for Incremental Cifar100

EWC + HCN (Ours) 75.47 ± 13.47 -5.34

EWC + MLP 73.12 ± 18.16 -8.27

GEM + HCN (Ours) 80.84 ± 9.18 0.70

GEM + MLP 80.96 ± 9.71 0.61

HAT + HCN (Ours) 76.04 ± 14.15 -2.75

HAT + MLP 73.23 ± 16.54 -3.69

We tested two datasets on three techniques for the three

classifier designs with our results summarised in Table 2.

All classifiers had 2 layers with 100 hidden dimensions; and

were trained with SGD [20] with learning rate 0.01.

5.1. Datasets and Sequential Tasks

Our first experiment tested image permutation [7] with

MNIST. We flattened MNIST images as a vector of 784 pix-

els and each task applied a unique permutation over all im-

ages of that task. We tested 20 tasks for permuted MNIST

on the three classifiers shown in Figure 1. Following the

setup of [15], each task observed 1000 data.

Our second experiment tested incremental classes [19]

with Cifar100 [8]. Cifar100 contains 50K training images

and 10K test images of 100 classes of objects presented

on 32×32 colour images. Following [16]’s best practice1,

we compartmentalise our backbone network with a feature

extractor and a classifier network. Our feature extractor

was the reduced ResNet18 used in [19] and we reserved

50 classes to thoroughly pre-train it with 200 epochs. Upon

sequential learning, we froze the weights of the ResNet18

and replaced its original classifier with the three classifiers

shown in Figure 1. Sequential learning was conducted with

the remaining 50 classes. We introduced 5 classes per task
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Figure 3: Accuracy of Task 1 with Different Continual Learning Techniques for Incremental Cifar100

(10 tasks in total) and each task observed 1 epoch of data.

5.2. Metrics

We adopted two metrics from [15] with the progressive

accuracy matrix A defined in Section 3:

Average accuracy (ACC)
1
n

∑n
i=1 A(n+1),i and

Backwards transfer (BWT)
1

n−1

∑n−1
i=1 (A(n+1),i − A(i+1),i),

ACC computed the mean accuracy after observing all tasks

A(n+1),i. and BWT quantified the task-wise forget since

A(i+1),i immediately after training on a task’s own data.

For both metrics, the larger and more positive the better.

5.3. On Naı̈vely Sequential Learning

We first naı̈vely trained HCNs, MLPs, and Res-MLPs on

permuted MNIST and incremental Cifar100. The ACC and

BWT scores in Table 2 showed that HCNs outperformed

MLPs and Res-MLPs, and reflected 2 important remarks.

Remark 1: Plasticity and Stability

Conventional neural networks like MLPs are high in plas-

ticity while low in stability. By incurring less BWT, we em-

pirically showed that HCNs functioned as an architectural

design that possessed much higher stability. In addition,

HCNs’ superior ACC scores also meant that the HCN de-

sign maintained a high degree of network plasticity.

Remark 2: Connection Specificity

As previously demonstrated in Section 4, residual con-

nections incur the same level of catastrophic forgetting as

MLPs. This was verified again by the BWT scores in Ta-

ble 2, and this showed that the highway connections were

specifically required for preventing forgetting.

5.4. HCNs vs MLPs with
Continual Learning Techniques Applied

We then tested HCNs against MLPs with continual learn-

ing techniques3. This included the regularisation-based

Elastic Weight Consolidation (EWC) [7], replay-based

Gradient Episodic Memory (GEM) [15], and dynamic

architecture-based Hard Attention to the Task (HAT) [23].

3Mostly following [15]’s repository of https://github.com/

facebookresearch/GradientEpisodicMemory.

Of these techniques, EWC regularised the learning ob-

jective with the Fisher matrix scaled by the relative impor-

tance4 of the old tasks compared to the new ones. GEM

externally stored a few data per task5 to pre-condition the

native gradients by solving a quadratic problem to redirect

misaligned gradients. In contrast, HAT learnt a nullifica-

tion mask6 per task to generate sparse activations to lower

feature overlapping among the tasks for the classifiers.

As shown in Table 2, HCNs outperformed MLPs on

both ACCs and BWTs when conjointly trained with EWC

and HAT. However, when GEM was applied, both HCNs

and MLPs showed no signs of forgetting (see their positive

BWT) and they performed comparably in ACC.

In order to further analyse the advantages in employing

HCNs, we plotted the accuracy of Task 1 over the entire

course of sequential learning for incremental Cifar100 in

Figure 3. The results showed another 2 important remarks.

Remark 3: Compatible with All Archetypes of Approaches

HCNs were compatible with all 3 main continual learning

archetypes mentioned in Section 2. This was because that

all archetypes externally modified the sequential learning

experimental setup, while we made modifications internally

to the classifier architecture.

Remark 4: High Robustness to Forgetting

From the figure, we see that naı̈ve HCNs performed bet-

ter than MLPs with EWC and than MLPs with HAT. This

showed that though continual learning techniques can be

powerful, catastrophic forgetting was perhaps more tightly

linked to the backbone architectural design of choice.

6. Discussion, Limitations, and Future Work

This paper introduced Highway-Connection Classifier

Networks (HCNs) to prevent forgetting in sequential learn-

ing multiple tasks. The proposed design was based on

a mathematical analysis on the shortcut connection in the

backward pass. We demonstrated that HCNs exhibited

higher stability than MLPs, and that the same level of

4See [7], and we defaulted regularisation coefficient λ = 3.
5See [15], and we defaulted the externally stored episodic memory as

250 data per task.
6The nullification masks were only applied on the linear layers; we

prohibited the masks on the gated units of HCNs.
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effectiveness in mitigating forgetting cannot be replaced

with residual connections. HCNs were also versatile and

could be employed in conjunction with the regularisation-

based EWC, the replay-based GEM, and the dynamic

architecture-based HAT. More importantly, our remarks

found that while continual learning techniques were impor-

tant, it also required a careful selection on the most appro-

priate backbone network design to minimise forgetting.

In this work, we adopted the style of network compart-

mentalisation proposed in [13, 14, 16] and limited updated

to the classifier networks. Crucially, the classifier networks

were only composed of linear layers but a recent paper

has shown that convolutional layers were significantly more

susceptible to parametric corruption than linear layers [26].

It would hence be important as a future work to verify the

validity of applying highway connections on the entirety of

the backbone network including the feature extractors.

Acknowledgement

This work was done while the first author was at the

Australian National University. The research was supported

by the Australian Government Research Training Program

(AGRTP) Scholarship.

References

[1] Craig Atkinson, Brendan McCane, Lech Szymanski, and

Anthony Robins. Pseudo-Rehearsal: Achieving Deep Re-

inforcement Learning without Catastrophic Forgetting.

Neurocomputing, 428:291–307. 1

[2] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,

Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS

Torr, and Marc’Aurelio Ranzato. On Tiny Episodic Mem-

ories in Continual Learning. International Conference on

Machine Learning Workshop on Multi-Task and Lifelong Re-

inforcement Learning, 2019. 1

[3] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto,

Alex Lamb, Kazuaki Yamamoto, and David Ha. Deep

Learning for Classical Japanese Literature. Conference

on Neural Information Processing Systems Workshop on Ma-

chine Learning for Creativity and Design, 2018. 3

[4] Robert M French. Using Semi-Distributed Representa-

tions to Overcome Catastrophic Forgetting in Connec-

tionist Networks. In Proceedings of the 13th Annual Cogni-

tive Science Society Conference, volume 1, pages 173–178,

1991. 1

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep Residual Learning for Image Recognition. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 770–778, 2016. 2

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-

Term Memory. Neural Computation, 9(8):1735–1780,

1997. 2

[7] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-

maran, and Raia Hadsell. Overcoming catastrophic for-

getting in neural networks. Proceedings of the National

Academy of Sciences, 114(13):3521–3526, 2017. 1, 3, 4

[8] Alex Krizhevsky. Learning Multiple Layers of Features

from Tiny Images. In Tech Report of the University of

Toronto, 2009. 3

[9] Nicholas I Kuo, Mehrtash Harandi, Nicolas Fourrier, Chris-

tian Walder, Gabriela Ferraro, Hanna Suominen, et al.

Learning to Continually Learn Rapidly from Few and

Noisy Data. Meta-Learning and Co-Hosted Competition

of the AAAI Conference on Artificial Intelligence; arXiv

preprint arXiv:2103.04066, 2021. 2
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