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Abstract

Conventional neural networks are mostly high in plastic-
ity but low in stability. Hence, catastrophic forgetting tends
to occur over the sequential training of multiple tasks and
a backbone learner loses its ability in solving a previously
learnt task. Several studies have shown that catastrophic
forgetting can be partially mitigated through freezing the
feature extractor weights while only sequentially training
the classifier network. Though these are effective methods
in retaining knowledge, forgetting could still become severe
if the classifier network is over-parameterised over many
tasks. As a remedy, this paper presents a novel classifier
design with high stability. Highway-Connection Classifier
Networks (HCNs) leverage gated units to alleviate forget-
ting. When employed alone, they exhibit strong robustness
against forgetting. In addition, they synergise well with
many existing and popular continual learning archetypes.
We release our codes at https://github.com/
Nic5472K/CLVISION2021_CVPR HCN

1. Introduction

Continual learning studies the sequential acquisition of
functions for a single neural network. This remains a diffi-
cult problem because catastrophic forgetting [17] may oc-
cur when a trained network learns a new skill. Catastrophic
forgetting refers to the abrupt loss of knowledge for solving
an old task when information for solving a new task is in-
corporated; and this is due to parametric modifications for
satisfying the learning objectives of a new task.

Forgetting can be effectively mitigated by freezing fea-
ture extractor weights while only sequential learning the
classifiers[ 13, 14, 16]'. The effectiveness of this net-

I'This includes Mai et al. [16]’s approach which won the CVPR CLVi-

work compartmentalisation is similar to how offline meta-
learning achieves rapid knowledge acquisition [18]. To
elaborate, this specific setup first reuses acquired feature
representations and then provides a less significant amount
of parametric modification.

Nonetheless, catastrophic forgetting will inevitably oc-
cur due to over-parameterisation in the classifier weights.
To strengthen this simple yet practical experimental setup,
we propose a novel architectural design for classifier net-
works to increase their robustness against forgetting. Our
work is based on an analysis in the neural network back-
ward pass, and we present Highway-Connection Classifier
Networks (HCNs) with gated units to alleviate forgetting.

2. Related Work

There are three main archetypes of continual learning
methods — replay, regularisation, and dynamic architecture.
Regularisation methods append the conventional learning
objective® with a secondary loss to preserve learnt network
mappings [ 1, 30, 7]; and that dynamic architectures either
instantiate new modules to host more knowledge [22, 29],
or seek to fully utilise the backbone network capacity by re-
ducing representation overlap [4, 23]. However, [28] found
that only replay methods could successfully prevent forget-
ting in all of their identified continual learning scenarios'.

Replay methods [2 1] interleave external data while train-
ing a backbone learner on new tasks. Some replay exact
copies of past data [2] and some pseudorehearse with ran-
dom inputs to achieve function approximation [1]. Repre-
sentation learning can also be leveraged to select an exem-
plar set of observed data [19]; or alternatively, one can in-
corporate generative models to the backbone learner to cre-

sion 2020 challenge. Their best practice applied replay techniques only to
the deep layers of their backbone network.
2Such as cross entropy loss for image recognition.



Table 1: The Forward and Backward Pass of Residual Connections and Highway Connections

Refer to the notations in Section 4.
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ate data which encapsulate features of past tasks [24].

However, replay techniques incur a high computational
cost because they require the concurrent training of stored
data with those of the new task. While a practitioner
can lower the incurred computational intensity by replay-
ing with less externally stored memory, [9] found that this
could lead the backbone learner to severely overfit on past
tasks while underfit on subsequent tasks. By adopting the
network compartmentalisation of [13, 14, 16] and limit se-
quential learning only to the classifiers, computation can be
made less costly in the backward pass while updating the
weights of the backbone learner.

3. The Continual Learning Framework

As described in [15], continual learning employs a base
learner F' = F'(x;, 1) to solve a continuum of data C with n
locally independent and identically distributed (iid) tasks

(CE%’Why%)’ LR (xzﬁ>wl7yzﬁ)’ ) (w%7wn>y%) (5)

Each task maps inputs zf; to labels yj from datasets
(.%‘;;,yé) € D,, for all B data where 5 = 1,..., B. Once
learner F' have progressed to observe data from the j-th
task, it is prohibited to backtrack and learn from an earlier
dataset D, for ¢ < j. We evaluate and store the progress
of the learner accuracy in matrix &7 € R(®*1)*" The ac-
curacy of all n tasks of an initialised F is stored in @7 (1.p,);
and after observing all data from D,,,, all updated accuracy
are stored in .&7(; 1 1), (1:n)-

4. Highway-Connection Classifier Networks

Depth is important to the success of neural networks
[27]. However, deep networks are hard to optimise and
highway connections [25] took inspirations from the Long
Short-Term Memory Recurrent Neural Network (LSTM
RNN) [6] to ease the training of very deep models.

A conventional layer in feedforward neural network is
ar, = (ar,_,,WrL,) (6)

where layer v has input a L,_,»outputar_, and a non-linear
transformation .77’ parameterised with Wy _. A highway
connection modifies Equation (6) as Equation (3) shown in
Table 1 where © is the element-wise product and that gated
unit Tz has non-linear transformation T parameterised
by Q.. The gated unit uses the sigmoid transforma-
tion o, hence each element of T'(kz,_, ,Qr, ) lies within
[0, 1] and Equation (3) provides a more flexible transfor-
mation where the output extrapolates between ky__, and
e%”(kL(%U , Wr_) dependent on the input.

4.1. HCNs Reduce Parametric Modification

A T'-layer network with input ar,, = x, output ar,. =y,
and target y has the following derivative to cost C"

-t 9arc4n) ] [ Oar,
(=y “Bar, |\ OWz,
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As shown in Table 1, both residual connection and high-
way connection introduced the identity matrix towards the
[] term to facilitate deep learning. However, let us con-
sider the {} term. A conventional feedforward network

dar. 0 (ar ., 1),WL,) .
has W, = OWLVB%( ; and res1d)ua1 networks are
. . . on ng, . ,Wg ..
identical with aWLLW = a(\;le) ~asng__, is in-

dependent of W “for all n L Or; the contrary, highway
Okr, _ 0 (kr(, 1) Wr,)
oW, — LT oW,
units of gate Tp_ lie between [0, 1], the gated units also
limit the extent of update to parameters Wp,_. This is de-
sirable and makes catastrophic forgetting harder to occur.

networks have . Since all




4.2. Demonstration

N NN
(a) MLP

@ : Layer 1
@ : Softmax Layer

Figure 1: Different Classifier Network Designs
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Figure 2: Differences in the Losses and Gradients

To verify parametric reduction, we tested three classifier
designs and compared their gradients and losses. The de-
signs were the Multiple Layer Perceptrons (MLPs), MLPs
with Residual connections (Res-MLPs), and MLPs with
Highway Connections (HCNs) shown in Figure | overleaf.
All classifiers were first trained on MNIST [10] for 525 iter-
ations then sequentially on KMNIST [3] for 525 iterations.

The MNIST database has grey-scale handwritten digits
of numbers between [0-9]. There are 60K and 10K images
for training and testing respectively; and the images are pre-
sented on 28 x 28-pixel boxes. KMNIST has images of the
identical format, but of Japanese Hiragana characters. We
flattened the images as vector inputs with the length of 784
(= 28 x 28) and processed them with the classifiers. All of
our classifiers had 2 layers with 100 hidden dimensions.

We present our findings in Figure 2, and the gradients
shown were the mean absolute values of Wp_s of Equa-
tions (6), (1), and (3) for the MLPs, Res-MLPs, and HCNSs,
respectively. While we found virtually no differences in the
losses, the gradients behaved qualitatively differently. The
gradients of HCNs were much lower than those of their ri-
vals; while those of Res-MLPs and MLPs behaved simi-
larly. These findings verified that the gates of highway con-
nections scaled down gradient values in the backward pass.

5. Experiments

Table 2: An Overview of the Results

[ Method “ ACC [ BWT ]

Section 5.3 : Naive Implementation for Permuted MNIST

HCN (Ours) 7149 + 11.57 -7.71

MLP 65.54 + 19.76 -14.39

Res-MLP 65.36 + 19.85 -15.28
Section 5.3 : Naive Implementation for Incremental Cifarl00

HCN (Ours) 74.82 + 15.48 -6.10

MLP 73.08 + 17.49 -8.40

Res-MLP 70.84 + 18.78 -11.34
Section 5.4 : In-Class Comparison for Permuted MNIST

EWC + HCN (Ours) 71.74 + 7.84 -7.02

EWC + MLP 66.72 + 13.78 -12.67

GEM + HCN (Ours) 74.19 £+ 8.24 6.22

GEM + MLP 74.52 + 4.27 3.52

HAT + HCN (Ours) 70.72 £ 8.32 -3.39

HAT + MLP 62.50 +20.41 -5.70

Section 5.4 : In-Class

Comparison for Incremental Cifarl00

EWC + HCN (Ours) || 75.47 & 13.47 -5.34
EWC + MLP 73.12 £ 18.16 -8.27
GEM + HCN (Ours) 80.84 £9.18 0.70
GEM + MLP 80.96 = 9.71 0.61
HAT + HCN (Ours) 76.04 + 14.15 -2.75
HAT + MLP 73.23 +16.54 -3.69

We tested two datasets on three techniques for the three
classifier designs with our results summarised in Table 2.
All classifiers had 2 layers with 100 hidden dimensions; and
were trained with SGD [20] with learning rate 0.01.

5.1. Datasets and Sequential Tasks

Our first experiment tested image permutation [7] with
MNIST. We flattened MNIST images as a vector of 784 pix-
els and each task applied a unique permutation over all im-
ages of that task. We tested 20 tasks for permuted MNIST
on the three classifiers shown in Figure 1. Following the
setup of [15], each task observed 1000 data.

Our second experiment tested incremental classes [19]
with Cifar100 [8]. Cifarl00 contains 50K training images
and 10K test images of 100 classes of objects presented
on 32x32 colour images. Following [16]’s best practice’,
we compartmentalise our backbone network with a feature
extractor and a classifier network. Our feature extractor
was the reduced ResNetl8 used in [19] and we reserved
50 classes to thoroughly pre-train it with 200 epochs. Upon
sequential learning, we froze the weights of the ResNet18
and replaced its original classifier with the three classifiers
shown in Figure 1. Sequential learning was conducted with
the remaining 50 classes. We introduced 5 classes per task
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Figure 3: Accuracy of Task 1 with Different Continual Learning Techniques for Incremental Cifar100

(10 tasks in total) and each task observed 1 epoch of data.
5.2. Metrics

We adopted two metrics from [15] with the progressive

accuracy matrix .o/ defined in Section 3:
Average accuracy (ACCO)

7 i1 Pns1),i and
Backwards transfer (BWT)

ﬁ 2?511 (Ant1)i — Hit1),0)s
ACC computed the mean accuracy after observing all tasks
H(n+1),;» and BWT quantified the task-wise forget since
(i4+1),; immediately after training on a task’s own data.
For both metrics, the larger and more positive the better.

5.3. On Naively Sequential Learning

We first naively trained HCNs, MLPs, and Res-MLPs on
permuted MNIST and incremental Cifar100. The ACC and
BWT scores in Table 2 showed that HCNs outperformed
MLPs and Res-MLPs, and reflected 2 important remarks.
Remark 1: Plasticity and Stability
Conventional neural networks like MLPs are high in plas-
ticity while low in stability. By incurring less BWT, we em-
pirically showed that HCNs functioned as an architectural
design that possessed much higher stability. In addition,
HCNSs’ superior ACC scores also meant that the HCN de-
sign maintained a high degree of network plasticity.
Remark 2: Connection Specificity
As previously demonstrated in Section 4, residual con-
nections incur the same level of catastrophic forgetting as
MLPs. This was verified again by the BWT scores in Ta-
ble 2, and this showed that the highway connections were
specifically required for preventing forgetting.

5.4. HCNs vs MLPs with
Continual Learning Techniques Applied

We then tested HCNs against MLPs with continual learn-
ing techniques®. This included the regularisation-based
Elastic Weight Consolidation (EWC) [7], replay-based
Gradient Episodic Memory (GEM) [15], and dynamic
architecture-based Hard Attention to the Task (HAT) [23].

3Mostly following [15]’s repository of https://github.com/
facebookresearch/GradientEpisodicMemory.

Of these techniques, EWC regularised the learning ob-
jective with the Fisher matrix scaled by the relative impor-
tance* of the old tasks compared to the new ones. GEM
externally stored a few data per task’ to pre-condition the
native gradients by solving a quadratic problem to redirect
misaligned gradients. In contrast, HAT learnt a nullifica-
tion mask® per task to generate sparse activations to lower
feature overlapping among the tasks for the classifiers.

As shown in Table 2, HCNs outperformed MLPs on
both ACCs and BWTs when conjointly trained with EWC
and HAT. However, when GEM was applied, both HCNs
and MLPs showed no signs of forgetting (see their positive
BWT) and they performed comparably in ACC.

In order to further analyse the advantages in employing
HCNSs, we plotted the accuracy of Task 1 over the entire
course of sequential learning for incremental Cifar100 in
Figure 3. The results showed another 2 important remarks.
Remark 3: Compatible with All Archetypes of Approaches
HCNs were compatible with all 3 main continual learning
archetypes mentioned in Section 2. This was because that
all archetypes externally modified the sequential learning
experimental setup, while we made modifications internally
to the classifier architecture.

Remark 4: High Robustness to Forgetting

From the figure, we see that naive HCNs performed bet-
ter than MLPs with EWC and than MLPs with HAT. This
showed that though continual learning techniques can be
powerful, catastrophic forgetting was perhaps more tightly
linked to the backbone architectural design of choice.

6. Discussion, Limitations, and Future Work

This paper introduced Highway-Connection Classifier
Networks (HCNs) to prevent forgetting in sequential learn-
ing multiple tasks. The proposed design was based on
a mathematical analysis on the shortcut connection in the
backward pass. We demonstrated that HCNs exhibited
higher stability than MLPs, and that the same level of

4See [7], and we defaulted regularisation coefficient A = 3.

3See [15], and we defaulted the externally stored episodic memory as
250 data per task.

The nullification masks were only applied on the linear layers; we
prohibited the masks on the gated units of HCNs.



effectiveness in mitigating forgetting cannot be replaced
with residual connections. HCNs were also versatile and
could be employed in conjunction with the regularisation-
based EWC, the replay-based GEM, and the dynamic
architecture-based HAT. More importantly, our remarks
found that while continual learning techniques were impor-
tant, it also required a careful selection on the most appro-
priate backbone network design to minimise forgetting.

In this work, we adopted the style of network compart-
mentalisation proposed in [13, 14, 16] and limited updated
to the classifier networks. Crucially, the classifier networks
were only composed of linear layers but a recent paper
has shown that convolutional layers were significantly more
susceptible to parametric corruption than linear layers [26].
It would hence be important as a future work to verify the
validity of applying highway connections on the entirety of
the backbone network including the feature extractors.
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