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Abstract

Continual learning (CL) has become one of the most ac-

tive research venues within the artificial intelligence com-

munity in recent years. Given the significant amount of at-

tention paid to continual learning, the need for a library

that facilitates both research and development in this field

is more visible than ever. However, CL algorithms’ codes

are currently scattered over isolated repositories written

with different frameworks, making it difficult for researchers

and practitioners to work with various CL algorithms and

benchmarks using the same interface. In this paper, we in-

troduce CL-Gym , a full-featured continual learning library

that overcomes this challenge and accelerates the research

and development. In addition to the necessary infrastruc-

ture for running end-to-end continual learning experiments,

CL-Gym includes benchmarks for various CL scenarios

and several state-of-the-art CL algorithms. In this paper,

we present the architecture, design philosophies, and tech-

nical details behind CL-Gym 1.

1. Overview

We first provide a high-level overview of the CL-Gym

architecture and an illustrative example of how users can

work with the library. CL-Gym includes three main compo-

nents: Benchmarks, Algorithms, and Trainer. In

addition, CL-Gym contains other minor components such as

Backbones or Callbacks. We briefly introduce these

components here and postpone the detailed discussion of

each component to Section 3.

Benchmarks are responsible for implementing con-

tinual learning scenarios such as New Instance (NI), New

Class (NC), or both. Each benchmark implements the nec-

essary code for loading task-specific training data. Given

our experience in CL research, we have also delegated

the task of loading the episodic memory and loading

joint/multitask training data to the benchmarks. Note that

the Algorithm still has access to Benchmark and can

create a separate episodic memory.

1https://github.com/imirzadeh/CL-Gym

Figure 1. Main Components of CL-Gym

The Algorithm component is responsible for the ma-

jority of the research code. Each algorithm implements nec-

essary codes for different functions of a continual learning

method: training on each task, possibly updating episodic

memory (e.g., ER-Ring [3]), regularization (e.g., EWC [7]),

and gradient manipulation (e.g., A-GEM [2], OGD [5]). We

note that the algorithm component in CL-Gym is not respon-

sible for implementing the neural network model, and this

responsibility is delegated to the Backbone component.

Finally, the Trainer component handles non-essential re-

search codes and engineering codes such as experiment

management, collecting metrics, logging, training on dif-

ferent devices, and etc.

We illustrate how different components of CL-Gym in-

teract with each other using the following code:

import cl_gym as cl

# Rotated MNIST benchmark with 5 tasks

benchmark = cl.benchmarks.RotatedMNIST(

num_tasks=5,

per_task_rotation_degrees=10,

per_task_memory_examples=10)

# backbone of the algorithm: a 2-Layer MLP model

backbone = cl.backbones.MLP2Layers()

# algorithm: handles research code

#e.g., EWC, AGEM, OGD, MCSGD, ER

algorithm = cl.algorithms.EWC(backbone, benchmark)

# trainer: handles engineering code

trainer = cl.trainer.ContinualTrainer(algorithm)

trainer.fit()



2. Design Philosophy

CL-Gym is inspired by many popular libraries such as

PyTorch Lightning [4] and PyTorch Geometric [6]. More

specifically, the architecture of CL-Gym is designed with

the following principles in mind:

1. Research code should be completely separated from

the engineering code: For instance, distributed training

or experiment management should not happen in the

same place as the algorithmic logic.

2. Components should be open for extension but closed

for modification: For example, it should be easy to

build upon many algorithms or benchmarks, but the

internal abstractions of each component should remain

the same.

3. Many scenario-specific components are better than one

general-purpose component: For instance, instead of

having a general interface for all regularization algo-

rithms, each algorithm should have its own interface.

We believe these principles help with both the develop-

ment and usability of the CL-Gym library.

3. CL-Gym Components

In this section, we discuss each of the CL-Gym compo-

nents in detail. In Section 4, we will present our roadmap

for each component in future releases.

3.1. Benchmarks

The Benchmark component includes several standard

continual learning benchmarks from various domains. Each

benchmark can have a specific number of tasks, where for

each task, a dataset is required. This abstraction allows

for creating benchmarks in New Instance (NI) scenarios

where for each task, a new dataset is required (e.g., ro-

tated MNIST), New Class (NC) scenarios where the dataset

for each task can be a subset of a larger dataset (e.g., split

MNIST). We note that the same abstraction works for task-

agnostic scenarios, and the task-specific details (e.g., task-

identifiers, heads) can be hidden from the algorithm.

Moreover, each benchmark should implement the fol-

lowing methods:

• prepare datasets: Where the customized logic

for loading the datasets for each task is implemented.

• load(task): for providing training and validation

loaders to the algorithm.

• load memory(task): For providing episodic

memory loaders. This method is optional if the bench-

mark is not supposed to support episodic memory (i.e.,

by setting memory size to 0).

• load joint(task): For providing data loaders

for multitask/joint training, where for task t, the all

datasets for tasks 1 to t will be loaded together. This

method is optional if the benchmark is not initialized to

support joint training (i.e., by setting the joint training

budget to 0).

• load memory joint(task): This method allows

loading the episodic memory for all previous tasks and

not for a single task. This method will be useful for

rehearsal methods in NI scenarios. This method is also

optional if the benchmark is initialized without a mem-

ory size.

The current implemented benchmarks are described in

Table 1.

Benchmark Type Scenario Details

Rotated MNIST Vision NI Rotation of MNIST digits

Permuted MNIST Vision NI Shuffled pixels of MNIST

Split MNIST Vision NC
Includes 5 task,

each introduces 2 new digits.

Split CIFAR-10 Vision NC
Includes 5 task,

each introduces 2 new classes.

Split CIFAR-100 Vision NC
Includes 20 tasks,

each introduces 5 new classes.

Toy Classification Toy - 2D NI
Includes 2 or 4 tasks,

each a binary classification.

Toy Regression Toy - 1D NC
Includes between 2 to 5 tasks,

each a 1D regression problem

PAMAP2 Time Series NI/NC

Includes 9 tasks, each a

human activity recognition

using wearable sensors.

Table 1. Supported benchmarks in CL-Gym

In addition to classical vision benchmarks, CL-Gym sup-

ports two toy datasets for classification and regression,

which facilities the research on CL by allowing working in

a low-dimensional regime. We have found empirically that

even over-parameterized neural networks suffer from catas-

trophic forgetting in low-data regimes. Moreover, to bring

more diverse benchmarks to the CL research, we include

the PAMAP2 dataset [14], a time series dataset for human

activity classification using wearable sensors.

Finally, we note that finding valuable benchmarks in

continual learning is as challenging as overcome algorith-

mic challenges such as catastrophic forgetting. We are cur-

rently working on providing helpful benchmarks for CL re-

search that are also computationally cheap. In Section 4,

we will discuss our future plans for providing more diverse

benchmarks.

3.2. Backbones

The Backbone component in CL-Gym refers to neu-

ral network models that include additional features required

in CL settings. Backbone inherits from the PyTorch nn

module and supports all the features this module provides.



Algorithm 1: Behavior of an algorithm on a benchmark.

Input: backbone, benchmark, params

initialize;

/* train on all tasks */

for task ∈ [1, benchmark.num tasks] do
/* load training data and optimizers */

optimizer = prepare optimizer(task);

batches = prepare train data(task);

for epoch ∈ params.num epochs do

for batch ∈ batches do
/* training step */

train step(backbone, batch, optimizer);

/* task-end hook (optional) : additional update */

/* e.g.: EWC regularization, or A-GEM gradient manipulation */

train step end();

end

/* epoch-end hook (optional): additional works after batch */

/* e.g., updating episodic memory */

train epoch end();

end

/* task-end hook (optional): additional work after each task */

/* e.g., updating A-GEM episodic memory, EWC consolidation, or OGD orthogonal basis update */

task end();

end

The most notable feature of Backbone would be support-

ing multiple classification heads in required scenarios (e.g.,

NC). The algorithm module will have complete access to

the backbone model and can manipulate gradients, or freeze

layers.

Currently, CL-Gym supports the MLP architecture with

two hidden layers, ResNet18 with three times fewer fea-

ture maps used in several research papers [2, 3, 11, 10],

and a simple one-dimensional CNN network for time-series

benchmarks. The choice of backbones is due to the number

of times they have used in recent research papers.

3.3. Algorithms

The Algorithm component is responsible for most of

the research code of in CL-Gym . We start this section by

providing the abstraction of an algorithm in CL-Gym , fol-

lowed by the description of methods each algorithm should

implement.

Algorithm 1 represents an abstract behavior of every al-

gorithm implemented in CL-Gym . This abstraction allows

for implementing a variety of algorithms we introduce in

the next section. The main methods each algorithm can im-

plement are:

• prepare optimizer: Creating an optimizer for

each task. This allows delegating the choice of opti-

mizer and its parameters, which are part of the research

code, to the algorithm component.

• prepare train data: Loading training data us-

ing the benchmark interface. This allows an algo-

rithm to control the training data with possible modifi-

cations.

• train step(backbone, batch,

optimizer): The most important method

an algorithm should implement. It will include

algorithm-specific logic for the main optimization

step for each batch. For instance, EWC applies an

additional loss in this step, while A-GEM, OGD, and

MC-SGD manipulate gradients.

In addition, algorithms have the option of using cus-

tomized hooks at different stages of training, including:

• train step end: For adding specific behavior after

training on each batch.

• train epoch end: For adding specific behavior at

the end of each epoch.

• train task end: Allows adding custom behavior

at the of each task. Methods that use episodic memory

can update their memory in this stage, or methods such

as EWC can consolidate parameters in this step. Also,

methods such as OGD can update their orthogonal ba-

sis in this step.



Algorithm Details

Elastic Weight Consolidation (EWC) [7] Regularization

Averaged Gradient Episodic Memory (AGEM) [2] Episodic Memory

Experience Replay RingBuffer (ER-Ring) [3] Episodic Memory

Orthogonal Gradient Descent (OGD) [5] Gradient Memory

Stable SGD (SSGD) [11] Optimal training regime

Mode Connectivity SGD (MCSGD) [10] Regularization & Memory

Table 2. Supported algorithms in CL-Gym , in addition to baselines

such as naive finetuning or joint training (i.e., multitask)

3.3.1 Supported Algorithms

Table 2 shows the supported continual learning algorithms

in CL-Gym that includes a diverse family of methods (e.g.,

regularization, rehearsal). The criteria for implementing

these algorithms are their performance and their usage,

among other continual learning papers. We aim to extend

this component in future releases.

3.4. Trainer

The Trainer component is responsible for most of the

non-essential research code and engineering code. These

responsibilities include managing a continual learning ex-

periment and working with the Algorithm component by

executing Algorithm 1.

Moreover, to accomplish its responsibility, the

Trainer will implement a timeline for the continual

learning experience, as illustrated in Figure 2. This

includes breaking the learning experience into smaller

intervals such as training step, training epoch,

and training task. At the start/end of each in-

terval, the trainer will emit events that allow adding

customized behavior to the trainer on the fly. For instance,

at the end of training task, the trainer will call the

on after training task() method which can be

used for metric collection.

We note that Trainer component in CL-Gym is heavily

influenced by the Trainer component in PyTorch Light-

ning [4] for three reasons. First, it allows separating the re-

search code from the engineering code as explained in Sec-

tion 2. Secondly, this logic is known to both researchers and

engineers in the machine learning field because of the pop-

ularity of PyTorch Lightning and makes the usage. Finally,

this implementation makes executing our future plans for

integrating CL-Gym with PyTorch Lightning easier, which

leads to many extra features such as distributed training, ef-

ficient deployment, and experiment management.

3.5. Utility Components

In addition to the three previous main components we

discussed, CL-Gym includes two minor components that

are helpful in continual learning experiments. These com-

ponents include Callback for customized behavior to

the Trainer, and Metric for calculation metrics (e.g.,

Figure 2. Trainer Timeline

forward-transfer, backward-transfer).

3.5.1 Callbacks

A Callback can optionally support any of

the events in Figure 2. For instance, a sim-

ple callback for collecting metrics, can implement

on after training task(trainer) and log the

validation metrics to an experiment manager. Moreover,

since callbacks have access to the Trainer object, they

can add customized logic to the Trainer. For example, in

task-agnostic scenarios, a custom Callback can evaluate

the Algorithm at any given point.

3.5.2 Metrics

To evaluate the performance a continual learning algorithm,

several metrics can be used. The most notable examples are

forward-transfer and backward-transfer that work with the

validation accuracy of an algorithm.

The Metric component in CL-Gym is responsible

for collecting metrics of an Algorithm. The current

Metric component, can calculate two common metrics

used repeatedly in CL research [2, 3, 11, 10]:

• Average Accuracy: defined as

1

T

T∑

j=1

aT,j (1)

Where T represents number of tasks, and ai,j denotes

the test accuracy on task j after the algorithm has fin-

ished learning task i.

• Average Maximum Forgetting: defined as

1

T − 1

T−1∑

j=1

max
l∈{1,...,T−1}

(al,j − aT,j) (2)

Where T represents the number of tasks, and ai,j de-

notes the test accuracy on task j after the algorithm has

finished learning task i. The average forgetting shows

the decrease in performance for each of the tasks be-

tween their peak accuracy and their accuracy after the

learning experience is finished.



4. Release Roadmap

In this section, we introduce the future release roadmap

for CL-Gym. However, we note that these plans are subject

to change depending on the feedback we receive from the

community.

4.1. Integration with PyTorch Lightning

PyTorch Lightning (PL), is a popular library in the deep

learning community which shares a similar philosophy

with CL-Gym in separating research code from other non-

research codes. In our current implementation of CL-Gym

, the Algorithm component corresponds to Lightning

Module of PL, and the Trainer module corresponds to

the Trainer module of PL.

The integration with PyTorch Lightning adds additional

features to CL-Gym , including:

• Distributed training and execution of on different de-

vices such as CPUs, GPUs, and TPUs. The distributed

training of algorithms will be delegated to PL.

• Experiment management by providing loggers to vari-

ous experiment management services.

• Performance and bottleneck profiling.

• Access to the rich callback ecosystems for a variety of

tasks such as automatic model check-pointing, gradi-

ent clipping, and layer freezing.

4.2. Additional Benchmarks

One crucial aspect of continual learning research is de-

veloping diverse and meaningful benchmarks that can help

with our understanding of challenges in continual learning.

While the computationally expensive benchmarks are

welcome, the core maintainers of CL-Gym will primarily

focus on developing toy benchmarks that are easy to use for

researchers. We note that even on the relatively simple Ro-

tated MNSIT benchmark, the performance gap between the

state-of-the-art CL algorithm to the joint (i.e., multitask) is

quite significant and adding more difficult benchmarks may

not be helpful until this gap is diminished on simpler bench-

marks. Moreover, we empirically have found that even on a

toy 2D classification task where the classes are linearly sep-

arable, the catastrophic forgetting happens, and the methods

that perform better on MNIST and CIFAR benchmarks also

perform better on this toy benchmark.

To this end, we aim to continue improving our toy bench-

mark submodule of the Benchmark component in future

releases.

4.3. Additional Utility Components

4.3.1 Callbacks

After the integration with PyTorch Lightning, the CL-Gym

callbacks will be modified to have the same interface as PL

callback. This allows using PL callbacks in CL-Gym and

vice versa.

4.4. Hyper­parameter Optimization

Recent research on continual learning has shown that the

important role of the training regime on continual learn-

ing performance [9, 11]. Mirzadeh et al. [11] showed that

a naive finetuning SGD method could outperform several

state-of-the-art algorithms such as A-GEM with the stable

training regime.

Because of the significance of the training regime, pa-

rameter optimization can play a crucial role in a CL algo-

rithm’s performance. To this end, we are planning to in-

clude a new component for hyper-parameter tuning with ab-

stract implementations that allows integration with AutoML

libraries such as Optuna [1].

4.5. CL­Gym Leaderboard

Finally, we are planning on providing a leaderboard for

classical CL benchmarks using the CL-Gym algorithms.

The leader board will include tuned algorithms in various

scenarios (e.g., different number of tasks, different mem-

ory size). In addition, the experiments will be stored online

with the links for the community to reproduce the results.

We believe adding the leaderboard to CL-Gym project will

help with reproducibility in continual learning research.

5. Comparison with Other Libraries

Recently, several other libraries have been released that

facilitate the research on continual learning, which shows

the growth of the continual learning research and the need

for continual learning libraries. In this section, we compare

CL-Gym with these libraries.

Generally, each library approaches the continual learn-

ing research differently. While Sequoia [12] aims to cap-

ture supervised, reinforcement, and self-supervised contin-

ual learning using the same abstraction (i.e., a hierarchy

tree), Avalanche [8] and CL-Gym mostly focus on the su-

pervised continual learning. As a result, the code base of

Sequoia is more complex.

Sequoia

The current implementation of Sequoia focuses on rein-

forcement learning methods for continual learning, and

while it can support supervised learning methods (e.g.,

A-GEM, MC-SGD), those methods have not been imple-

mented yet. Moreover, Sequoia does mix engineering and



research code in a single place, while as explained in Sec-

tion 2, we believe this increases the complexity of the li-

brary.

Finally, to the best of our knowledge, the current ver-

sion of Sequoia does not support hooks and callbacks ex-

cept when each task ends. We believe this makes imple-

mentations of several supervised-learning algorithms (e.g.,

OGD, MC-SGD) very difficult.

However, we note that these are architectural decisions

and comes to the preferences of different users.

Avalanche

Avalanche and CL-Gym are very similar to each other. They

both share the benchmark, backbone, and training compo-

nents. Moreover, both have very similar callback and hook

mechanisms.

However, evaluation and logging in Avalanche are

implemented as main components. In contrast, in CL-Gym

, evaluation/logging is done by updating metrics/calling

the experiment manager at different stages of training,

using the Trainer callbacks. Moreover, Avalanche

supports more computer vision benchmarks while CL-Gym

supports toy datasets and time-series benchmarks. In

addition, Avalanche implements more classical continual

learning algorithms while CL-Gym implements more recent

algorithms (e.g., OGD, MC-SGD, and Stable SGD).

Finally, we emphasize that different design philosophies

and implementations by Avalanche, Sequoia, and CL-Gym

yield to different use-case scenarios that might be suitable

for different groups of users.

6. Conclusion

In this paper, we presented Cl-Gym, a full-featured

PyTorch [13] library for continual learning research and

development. We explored the architecture, features of

several components in Cl-Gym such as Algorithms,

Benchmarks, and Trainer that are helpful for using

designing new CL methods, or using several established

methods. Moreover, we discussed the future roadmap of

CL-Gym for future releases.

Continual learning is one of the most active research

areas within the AI community. We believe CL-Gym is

an important contribution to continual learning research

by preparing the necessary technical infrastructure for re-

searchers and engineers.

CL-Gym will always remain an open-source library, and

we will welcome the community feedback and contribu-

tions to CL-Gym project.
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