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Abstract

Continual learning (CL) has become one of the most ac-
tive research venues within the artificial intelligence com-
munity in recent years. Given the significant amount of at-
tention paid to continual learning, the need for a library
that facilitates both research and development in this field
is more visible than ever. However, CL algorithms’ codes
are currently scattered over isolated repositories written
with different frameworks, making it difficult for researchers
and practitioners to work with various CL algorithms and
benchmarks using the same interface. In this paper, we in-
troduce CL-Gym, a full-featured continual learning library
that overcomes this challenge and accelerates the research
and development. In addition to the necessary infrastruc-
ture for running end-to-end continual learning experiments,
CL-Gym includes benchmarks for various CL scenarios
and several state-of-the-art CL algorithms. In this paper,
we present the architecture, design philosophies, and tech-
nical details behind CL-Gym .

1. Overview

We first provide a high-level overview of the CL-Gym
architecture and an illustrative example of how users can
work with the library. CL-Gym includes three main compo-
nents: Benchmarks, Algorithms, and Trainer. In
addition, CL-Gym contains other minor components such as
Backbones or Callbacks. We briefly introduce these
components here and postpone the detailed discussion of
each component to Section 3.

Benchmarks are responsible for implementing con-
tinual learning scenarios such as New Instance (NI), New
Class (NC), or both. Each benchmark implements the nec-
essary code for loading task-specific training data. Given
our experience in CL research, we have also delegated
the task of loading the episodic memory and loading
joint/multitask training data to the benchmarks. Note that
the Algorithm still has access to Benchmark and can
create a separate episodic memory.
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Figure 1. Main Components of CL-Gym

The Algorithm component is responsible for the ma-
jority of the research code. Each algorithm implements nec-
essary codes for different functions of a continual learning
method: training on each task, possibly updating episodic
memory (e.g., ER-Ring [3]), regularization (e.g., EWC [7]),
and gradient manipulation (e.g., A-GEM [2], OGD [5]). We
note that the algorithm component in CL-Gym is not respon-
sible for implementing the neural network model, and this
responsibility is delegated to the Backbone component.
Finally, the Trainer component handles non-essential re-
search codes and engineering codes such as experiment
management, collecting metrics, logging, training on dif-
ferent devices, and etc.

We illustrate how different components of CL-Gym in-
teract with each other using the following code:

import cl_gym as cl

# Rotated MNIST benchmark with 5 tasks

benchmark = cl.benchmarks.RotatedMNIST (
num_tasks=5,
per_task_rotation_degrees=10,
per_task_memory_examples=10)

# backbone of the algorithm: a 2-Layer MLP model
backbone = cl.backbones.MLP2Layers ()

# algorithm: handles research code
#e.g., EWC, AGEM, OGD, MCSGD, ER

algorithm = cl.algorithms.EWC (backbone, benchmark)

# trainer: handles engineering code
trainer = cl.trainer.ContinualTrainer (algorithm)
trainer.fit ()




2. Design Philosophy

CL-Gym is inspired by many popular libraries such as
PyTorch Lightning [4] and PyTorch Geometric [60]. More
specifically, the architecture of CL-Gym is designed with
the following principles in mind:

1. Research code should be completely separated from
the engineering code: For instance, distributed training
or experiment management should not happen in the
same place as the algorithmic logic.

2. Components should be open for extension but closed
for modification: For example, it should be easy to
build upon many algorithms or benchmarks, but the
internal abstractions of each component should remain
the same.

3. Many scenario-specific components are better than one
general-purpose component: For instance, instead of
having a general interface for all regularization algo-
rithms, each algorithm should have its own interface.

We believe these principles help with both the develop-
ment and usability of the CL-Gym library.

3. CL-Gym Components

In this section, we discuss each of the CL-Gym compo-
nents in detail. In Section 4, we will present our roadmap
for each component in future releases.

3.1. Benchmarks

The Benchmark component includes several standard
continual learning benchmarks from various domains. Each
benchmark can have a specific number of tasks, where for
each task, a dataset is required. This abstraction allows
for creating benchmarks in New Instance (NI) scenarios
where for each task, a new dataset is required (e.g., ro-
tated MNIST), New Class (NC) scenarios where the dataset
for each task can be a subset of a larger dataset (e.g., split
MNIST). We note that the same abstraction works for task-
agnostic scenarios, and the task-specific details (e.g., task-
identifiers, heads) can be hidden from the algorithm.

Moreover, each benchmark should implement the fol-
lowing methods:

* prepare_datasets: Where the customized logic
for loading the datasets for each task is implemented.

* load (task): for providing training and validation
loaders to the algorithm.

* loadmemory (task): For providing episodic
memory loaders. This method is optional if the bench-
mark is not supposed to support episodic memory (i.e.,
by setting memory size to 0).

* load_joint (task): For providing data loaders
for multitask/joint training, where for task ¢, the all
datasets for tasks 1 to ¢ will be loaded together. This
method is optional if the benchmark is not initialized to
support joint training (i.e., by setting the joint training
budget to 0).

* loadmemory_joint (task): This method allows
loading the episodic memory for all previous tasks and
not for a single task. This method will be useful for
rehearsal methods in NI scenarios. This method is also
optional if the benchmark is initialized without a mem-
ory size.

The current implemented benchmarks are described in
Table 1.

Benchmark Type Scenario Details
Rotated MNIST Vision NI Rotation of MNIST digits
Permuted MNIST  Vision NI Shuffled pixels of MNIST

. .. Includes 5 task,
Split MNIST Vision NC each introduces 2 new digits.
Split CIFAR-10  Vision NC Includes 5 task,

each introduces 2 new classes.

Split CIFAR-100  Vision NC Includes 20 tasks,

each introduces 5 new classes.
Includes 2 or 4 tasks,

each a binary classification.
Includes between 2 to 5 tasks,
each a 1D regression problem
Includes 9 tasks, each a
human activity recognition
using wearable sensors.

Toy Classification  Toy - 2D NI

Toy Regression Toy - 1D NC

PAMAP2 Time Series NI/NC

Table 1. Supported benchmarks in CL-Gym

In addition to classical vision benchmarks, CL-Gym sup-
ports two toy datasets for classification and regression,
which facilities the research on CL by allowing working in
a low-dimensional regime. We have found empirically that
even over-parameterized neural networks suffer from catas-
trophic forgetting in low-data regimes. Moreover, to bring
more diverse benchmarks to the CL research, we include
the PAMAP?2 dataset [14], a time series dataset for human
activity classification using wearable sensors.

Finally, we note that finding valuable benchmarks in
continual learning is as challenging as overcome algorith-
mic challenges such as catastrophic forgetting. We are cur-
rently working on providing helpful benchmarks for CL re-
search that are also computationally cheap. In Section 4,
we will discuss our future plans for providing more diverse
benchmarks.

3.2. Backbones

The Backbone component in CL-Gym refers to neu-
ral network models that include additional features required
in CL settings. Backbone inherits from the PyTorch nn
module and supports all the features this module provides.



Algorithm 1: Behavior of an algorithm on a benchmark.

Input: backbone, benchmark, params

initialize;
/* train on all tasks */
for task € [1, benchmark.num_tasks] do
/* load training data and optimizers */
optimizer = prepare_optimizer(task);
batches = prepare_train_data(task);
for epoch € params.num_epochs do
for batch € batches do
/* training step x/
train_step(backbone, batch, optimizer);
/* task-end hook (optional) additional update */
/* e.g.: EWC regularization, or A-GEM gradient manipulation */
train_step_end();
end
/* epoch-end hook (optional): additional works after batch x/
/* e.g., updating episodic memory */
train_epoch_end();
end
/* task-end hook (optional): additional work after each task */
/+ e.g., updating A-GEM episodic memory, EWC consolidation, or OGD orthogonal basis update */
task_end();
end

The most notable feature of Backbone would be support-
ing multiple classification heads in required scenarios (e.g.,
NC). The algorithm module will have complete access to
the backbone model and can manipulate gradients, or freeze
layers.

Currently, CL-Gym supports the MLP architecture with
two hidden layers, ResNet18 with three times fewer fea-
ture maps used in several research papers [2, 3, 11, 10],
and a simple one-dimensional CNN network for time-series
benchmarks. The choice of backbones is due to the number
of times they have used in recent research papers.

3.3. Algorithms

The Algorithm component is responsible for most of
the research code of in CL-Gym . We start this section by
providing the abstraction of an algorithm in CL-Gym , fol-
lowed by the description of methods each algorithm should
implement.

Algorithm 1 represents an abstract behavior of every al-
gorithm implemented in CL-Gym . This abstraction allows
for implementing a variety of algorithms we introduce in
the next section. The main methods each algorithm can im-
plement are:

e prepare_optimizer: Creating an optimizer for
each task. This allows delegating the choice of opti-
mizer and its parameters, which are part of the research

code, to the algorithm component.

* prepare_train_data: Loading training data us-
ing the benchmark interface. This allows an algo-
rithm to control the training data with possible modifi-
cations.

e train_step (backbone, batch,
optimizer): The most important method
an algorithm should implement. It will include
algorithm-specific logic for the main optimization
step for each batch. For instance, EWC applies an
additional loss in this step, while A-GEM, OGD, and
MC-SGD manipulate gradients.

In addition, algorithms have the option of using cus-
tomized hooks at different stages of training, including:

* train_step_end: For adding specific behavior after
training on each batch.

e train_epoch_end: For adding specific behavior at
the end of each epoch.

* train_task_end: Allows adding custom behavior
at the of each task. Methods that use episodic memory
can update their memory in this stage, or methods such
as EWC can consolidate parameters in this step. Also,
methods such as OGD can update their orthogonal ba-
sis in this step.



Algorithm Details

Elastic Weight Consolidation (EWC) [7] Regularization

Averaged Gradient Episodic Memory (AGEM) [2]  Episodic Memory
Experience Replay RingBuffer (ER-Ring) [3] Episodic Memory
Orthogonal Gradient Descent (OGD) [5] Gradient Memory

Stable SGD (SSGD) [1 1] Optimal training regime
Mode Connectivity SGD (MCSGD) [10] Regularization & Memory

Table 2. Supported algorithms in CL-Gym , in addition to baselines
such as naive finetuning or joint training (i.e., multitask)

3.3.1 Supported Algorithms

Table 2 shows the supported continual learning algorithms
in CL-Gym that includes a diverse family of methods (e.g.,
regularization, rehearsal). The criteria for implementing
these algorithms are their performance and their usage,
among other continual learning papers. We aim to extend
this component in future releases.

3.4. Trainer

The Trainer component is responsible for most of the
non-essential research code and engineering code. These
responsibilities include managing a continual learning ex-
periment and working with the A1gorithm component by
executing Algorithm 1.

Moreover, to accomplish its responsibility, the
Trainer will implement a timeline for the continual
learning experience, as illustrated in Figure 2.  This
includes breaking the learning experience into smaller
intervals such as training_step, training_epoch,
and training_task. At the start/end of each in-
terval, the trainer will emit events that allow adding
customized behavior to the trainer on the fly. For instance,
at the end of training_task, the trainer will call the
on_after_training_task () method which can be
used for metric collection.

We note that Trainer component in CL-Gym is heavily
influenced by the Trainer component in PyTorch Light-
ning [4] for three reasons. First, it allows separating the re-
search code from the engineering code as explained in Sec-
tion 2. Secondly, this logic is known to both researchers and
engineers in the machine learning field because of the pop-
ularity of PyTorch Lightning and makes the usage. Finally,
this implementation makes executing our future plans for
integrating CL-Gym with PyTorch Lightning easier, which
leads to many extra features such as distributed training, ef-
ficient deployment, and experiment management.

3.5. Utility Components

In addition to the three previous main components we
discussed, CL-Gym includes two minor components that
are helpful in continual learning experiments. These com-
ponents include Callback for customized behavior to
the Trainer, and Metric for calculation metrics (e.g.,
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Figure 2. Trainer Timeline

forward-transfer, backward-transfer).

3.5.1 Callbacks

A Callback can optionally support any of
the events in Figure 2. For instance, a sim-
ple callback for collecting metrics, can implement
on.after_training._task (trainer) and log the
validation metrics to an experiment manager. Moreover,
since callbacks have access to the Trainer object, they
can add customized logic to the Trainer. For example, in
task-agnostic scenarios, a custom Callback can evaluate
the Algorithm at any given point.

3.5.2 Maetrics

To evaluate the performance a continual learning algorithm,
several metrics can be used. The most notable examples are
forward-transfer and backward-transfer that work with the
validation accuracy of an algorithm.

The Metric component in CL-Gym is responsible
for collecting metrics of an Algorithm. The current
Metric component, can calculate two common metrics
used repeatedly in CL research [2, 3, 11, 10]:

¢ Average Accuracy: defined as

1 T
7207 (1
j=1

Where T represents number of tasks, and a; ; denotes
the test accuracy on task j after the algorithm has fin-
ished learning task .

* Average Maximum Forgetting: defined as

1 T-1

T—1+4 1e{1r,?%¥—1}(al’j - aT’j) 2)
Jj=1

Where T represents the number of tasks, and a; ; de-
notes the test accuracy on task j after the algorithm has
finished learning task . The average forgetting shows
the decrease in performance for each of the tasks be-
tween their peak accuracy and their accuracy after the
learning experience is finished.



4. Release Roadmap

In this section, we introduce the future release roadmap
for CL-Gym. However, we note that these plans are subject
to change depending on the feedback we receive from the
community.

4.1. Integration with PyTorch Lightning

PyTorch Lightning (PL), is a popular library in the deep
learning community which shares a similar philosophy
with CL-Gym in separating research code from other non-
research codes. In our current implementation of CL-Gym
, the Algorithm component corresponds to Lightning
Module of PL, and the Trainer module corresponds to
the Trainer module of PL.

The integration with PyTorch Lightning adds additional
features to CL-Gym , including:

* Distributed training and execution of on different de-
vices such as CPUs, GPUs, and TPUs. The distributed
training of algorithms will be delegated to PL.

» Experiment management by providing loggers to vari-
ous experiment management services.

» Performance and bottleneck profiling.

¢ Access to the rich callback ecosystems for a variety of
tasks such as automatic model check-pointing, gradi-
ent clipping, and layer freezing.

4.2. Additional Benchmarks

One crucial aspect of continual learning research is de-
veloping diverse and meaningful benchmarks that can help
with our understanding of challenges in continual learning.

While the computationally expensive benchmarks are
welcome, the core maintainers of CL-Gym will primarily
focus on developing toy benchmarks that are easy to use for
researchers. We note that even on the relatively simple Ro-
tated MNSIT benchmark, the performance gap between the
state-of-the-art CL algorithm to the joint (i.e., multitask) is
quite significant and adding more difficult benchmarks may
not be helpful until this gap is diminished on simpler bench-
marks. Moreover, we empirically have found that even on a
toy 2D classification task where the classes are linearly sep-
arable, the catastrophic forgetting happens, and the methods
that perform better on MNIST and CIFAR benchmarks also
perform better on this toy benchmark.

To this end, we aim to continue improving our toy bench-
mark submodule of the Benchmark component in future
releases.

4.3. Additional Utility Components
4.3.1 Callbacks

After the integration with PyTorch Lightning, the CL-Gym
callbacks will be modified to have the same interface as PL
callback. This allows using PL callbacks in CL-Gym and
vice versa.

4.4. Hyper-parameter Optimization

Recent research on continual learning has shown that the
important role of the training regime on continual learn-
ing performance [9, 11]. Mirzadeh et al. [11] showed that
a naive finetuning SGD method could outperform several
state-of-the-art algorithms such as A-GEM with the stable
training regime.

Because of the significance of the training regime, pa-
rameter optimization can play a crucial role in a CL algo-
rithm’s performance. To this end, we are planning to in-
clude a new component for hyper-parameter tuning with ab-
stract implementations that allows integration with AutoML
libraries such as Optuna [1].

4.5. CL-Gym Leaderboard

Finally, we are planning on providing a leaderboard for
classical CL benchmarks using the CL-Gym algorithms.
The leader board will include tuned algorithms in various
scenarios (e.g., different number of tasks, different mem-
ory size). In addition, the experiments will be stored online
with the links for the community to reproduce the results.
We believe adding the leaderboard to CL-Gym project will
help with reproducibility in continual learning research.

5. Comparison with Other Libraries

Recently, several other libraries have been released that
facilitate the research on continual learning, which shows
the growth of the continual learning research and the need
for continual learning libraries. In this section, we compare
CL-Gym with these libraries.

Generally, each library approaches the continual learn-
ing research differently. While Sequoia [12] aims to cap-
ture supervised, reinforcement, and self-supervised contin-
ual learning using the same abstraction (i.e., a hierarchy
tree), Avalanche [8] and CL-Gym mostly focus on the su-
pervised continual learning. As a result, the code base of
Sequoia is more complex.

Sequoia

The current implementation of Sequoia focuses on rein-
forcement learning methods for continual learning, and
while it can support supervised learning methods (e.g.,
A-GEM, MC-SGD), those methods have not been imple-
mented yet. Moreover, Sequoia does mix engineering and



research code in a single place, while as explained in Sec-
tion 2, we believe this increases the complexity of the li-
brary.

Finally, to the best of our knowledge, the current ver-
sion of Sequoia does not support hooks and callbacks ex-
cept when each task ends. We believe this makes imple-

mentations of several supervised-learning algorithms (e.g.,
OGD, MC-SGD) very difficult.

However, we note that these are architectural decisions
and comes to the preferences of different users.

Avalanche

Avalanche and CL-Gym are very similar to each other. They
both share the benchmark, backbone, and training compo-
nents. Moreover, both have very similar callback and hook
mechanisms.

However, evaluation and logging in Avalanche are
implemented as main components. In contrast, in CL-Gym
, evaluation/logging is done by updating metrics/calling
the experiment manager at different stages of training,
using the Trainer callbacks. Moreover, Avalanche
supports more computer vision benchmarks while CL-Gym
supports toy datasets and time-series benchmarks. In
addition, Avalanche implements more classical continual
learning algorithms while CL-Gym implements more recent
algorithms (e.g., OGD, MC-SGD, and Stable SGD).

Finally, we emphasize that different design philosophies
and implementations by Avalanche, Sequoia, and CL-Gym
yield to different use-case scenarios that might be suitable
for different groups of users.

6. Conclusion

In this paper, we presented CI-Gym, a full-featured
PyTorch [13] library for continual learning research and
development. We explored the architecture, features of
several components in CI-Gym such as Algorithms,
Benchmarks, and Trainer that are helpful for using
designing new CL methods, or using several established
methods. Moreover, we discussed the future roadmap of
CL-Gym for future releases.

Continual learning is one of the most active research
areas within the Al community. We believe CL-Gym is
an important contribution to continual learning research
by preparing the necessary technical infrastructure for re-
searchers and engineers.

CL-Gym will always remain an open-source library, and
we will welcome the community feedback and contribu-
tions to CL-Gym project.
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