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Abstract

The task of person re-identification (ReID) is to match

images of the same person over multiple non-overlapping

camera views. Due to the variations in visual factors,

previous works have investigated how the person identity,

body parts, and attributes benefit the person ReID prob-

lem. However, the correlations between attributes, body

parts, and within each attribute are not fully utilized. In

this paper, we propose a new method to effectively aggre-

gate detailed person descriptions (attributes labels) and vi-

sual features (body parts and global features) into a graph,

namely Graph-based Person Signature, and utilize Graph

Convolutional Networks to learn the topological structure

of the visual signature of a person. The graph is inte-

grated into a multi-branch multi-task framework for per-

son re-identification. The extensive experiments are con-

ducted to demonstrate the effectiveness of our proposed ap-

proach on two large-scale datasets, including Market-1501

and DukeMTMC-ReID. Our approach achieves competitive

results among the state of the art and outperforms other

attribute-based or mask-guided methods. Source available

at https://github.com/aioz-ai/CVPRW21_GPS.

1. Introduction

Person re-identification (ReID) aims to retrieve a par-

ticular person image in a collection of images captured by

multiple cameras from various viewpoints across time. The

challenges of the person ReID task come from significant

variations of human attributes such as poses, gaits, clothes,

as well as challenging environmental settings like illumina-

tion, complex background, and occlusions. With the rise

of deep learning, most of the recent studies utilize Convo-

lutional Neural Network (CNN) to tackle the person ReID

problem. Many approaches have been proposed such as

metric learning [14, 30, 3], attention-based [40, 47, 2, 27],

GAN-based [32, 9, 57], attribute-based [19, 21, 11, 1, 25,

52], and spatial-temporal-based methods [41].

Recently, attribute-based methods have shown great

success in providing semantic features for the deep net-

work [25, 39]. Unlike the person identity label, which of-

fers only coarse information to identify one identity among

all other person identities, the attributes are the detailed de-

scriptions that are highly intuitive and mostly unchanged

between images captured from different cameras. There-

fore, they can be used to explicitly guide the model to learn

a robust person representation by defining human character-

istics. Furthermore, as shown in [21], attributes can also be

used to speed up the retrieval process of the person ReID

task by filtering out images from the gallery that do not

share the same attributes with the probe image.

In this work, we propose to utilize the person attribute in-

formation with its associated body part to encode the visual

person signature in one unified framework. We hypothe-

size that the detailed person descriptions (attributes labels)

can be integrated with visual features (body parts and global

features) to create a unique signature for a particular person.

Since both body parts and attributes provide local represen-

tations, by linking them together, the network can have a

better understanding of the relationship between visual fea-

tures and attribute descriptions. Although previous works

have investigated how person identity, body parts, and at-

tributes benefit the task of person ReID [21, 52, 35, 39], our

key difference is that we utilize Graph Convolutional Net-

works (GCN) to effectively construct and model the correla-

tion between attributes and body parts with global features.

In particular, we treat body part regions and attributes as

nodes in a graph and utilize a GCN to learn the topologi-

cal structure of a person’s signatures. The GCN propagates

messages on a graph structure. After message traversal on

the graph, the node’s final representations are obtained from

its data and from other node’s information. Fig. 1 shows the

effectiveness of our approach.

2. Related work

Methods based on deep convolutional networks have

dominated in the ReID community. In this section, we thor-
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Figure 1. The effectiveness of our GPS in improving retrieval results on Market-1501 dataset [56]. Note that the green/red boxes denote

true/false retrieval results, respectively. The retrieval results of the baseline model BoT [24] have some different attributes, e.g., ‘bag’ and

‘backpack’. This leads to false retrieval results at rank-1 and rank-4. However, when integrating our GPS into BoT, these false results

are removed. Our GPS gives the correlations between attributes and body parts (the graph in blue background). The correlation between

‘male’ and ‘backpack’ is higher than between ‘male’ and ‘bag’ (i.e., 0.79 > 0.15). Therefore, the information extracted from GPS makes

the person feature more discriminative and consequently improves the results.

oughly review two popular approaches similar to our pro-

posed method: Part-based approach and Attribute-based ap-

proach. Other approaches are briefly also mentioned.

Part-based approach. Several efforts [43, 48, 53] learn

meaningful features from local parts of a probe image to

improve the representativeness of a person by incorporating

the body part region information, i.e., the local spatial infor-

mation. In particular, the local CNN method [48] proposed

to split the backbone network into multiple parts horizon-

tally and incorporate the local region information at each

layer. Meanwhile, MGN [43] used a multi-branch network;

each branch takes responsibility for extracting coarse-to-

fine information. In [10], the authors proposed to accurately

combine human parts and the coarse non-human parts with

a self-attention mechanism. SPReID [16] was proposed

to integrate semantic human parsing to person ReID with

local visual cues of human parts. Song et al. [37] com-

bined binary segmentation mask with a mask-guided atten-

tion model for the person ReID task.

Attribute-based approach. Many studies utilize at-

tribute information to improve the representation of local

features in the person ReID task. In [21], the authors pro-

posed an attribute-person recognition (APR) network which

learns person ReID and person attribute recognition simul-

taneously. A3M [11] introduced a new attention mech-

anism by learning attribute-guide attention and category-

guided attention reciprocally. In [22], the authors proposed

a multi-task learning framework with four subtasks for per-

son ReID. In [25], the authors proposed AFFNet, which

is a multi-branch model that fuses features from person

identity branch and attribute branch. In [52], the authors

proposed a multi-branch model levering both identity la-

bel and attribute information. The AANet [39] combined

the global representation with three tasks, including person

ReID, body part localization, and person attribute recogni-

tion. The APDR [19] method fused attribute features and

body part features to result in the final local features which

are then concatenated with the global features for person

re-identification.

Other approaches. Deep CNN has been used in var-

ious tasks in combining vision, language, and scene at-

tributes [47, 28, 27, 4, 6, 29]. In [55], the authors pro-

posed a pyramid model that can match images at different

scales by incorporating local and global information and

the gradual cues between them. Considering the distance

part-to-part relationship, in [47], the authors proposed an

attention mechanism to capture non-local and local corre-

lations directly via second-order feature statistics. Inspired

by GAN, Zheng et al. [57] proposed a joint learning frame-

work that couples ReID learning and data generation in an

end-to-end manner. More recently, in [41] the authors pro-

posed a two-stream spatial-temporal person ReID (st-ReID)

framework that uses both visual semantic information and

spatial-temporal information from the camera setting, thus

eliminates lots of appearance ambiguity images. Zhou et

al.[59] proposed a online joint multi-metric adaptation al-

gorithm which not only takes individual characteristics of

testing samples into consideration but also fully utilizes the

visual similarity relationships among both query and gallery

samples. In [4], the authors proposed the Salience-guided

Cascaded Suppression Network which enables the model

to mine diverse salient features and integrate these features



into the final representation by a cascaded manner. In [49],

Yang et al. proposed a Spatial-Temporal Graph Convo-

lutional Network which enables to extract robust spatial-

temporal information that is complementary with appear-

ance information for video-based Person Re-identification

task. The UnityStyle [23] method was proposed to smooth

the style disparities within the same camera and across dif-

ferent cameras. Zhang et al. [54] proposed the Relation-

Aware Global Attention module which captures the global

structural information for better attention learning. Besides,

several methods are proposed to solve the problems of Oc-

cluded Person Re-Identification [13, 26, 8, 42].

3. Methodology

The proposed framework is presented in Figure 2. We

denote I is a probe person image. This probe image I is

first passed through a backbone CNN to get the feature map

F. By utilizing a human parsing pretrained model, we ex-

tract the body part masks to obtain the visual features of

each part. The person attributes are then represented by a

lookup word embedding. Given body part features and at-

tribute features, we construct the Graph-based Person Sig-

nature which includes attribute nodes and body part nodes

conditioned on the correlation matrix. We employ the GCN

[17] for reasoning on the person signature graph and en-

coding the graph into more representativeness features. Our

proposed method is a multi-branch multi-task framework

for person ReID, where the main branch performs the veri-

fication task by optimizing two well-known loss functions:

Triplet loss [45] and Center loss [46]. The auxiliary branch

performs reasoning on the proposed person signature graph

and solves the attribute recognition as well as the person

identity classification tasks. The training process is ex-

plained in detail in Section 3.3.

3.1. Graphbased Person Signature: Construction

The proposed GPS, denoted by G = (V, E), consists of

nodes V = {v1, v2, ..., vN} with the total number of nodes

NG = NA+NP , where NA is the number of attributes and

NP is the number of body parts. Each node denotes either

a person attribute or a human body part and is initialized

with a Dw-dims feature vector xv . The graph is represented

by an adjacency matrix M ∈ R
NG×NG containing weights

associated with each edge (vi, vj) ∈ E . The correlation

matrix M has the following form

M =

[

AA AP

PA PP

]

,

where AA ∈ R
NA×NA is the attribute-attribute correlation

matrix, PP ∈ R
NP×NP is the parts-parts correlation ma-

trix, PA ∈ R
NP×NA is the parts-attributes correlation ma-

trix, and AP ∈ R
NA×NP is the attribute-parts correlation

matrix.

The attributes-attributes matrix. We follow the pro-

cess as described in [5] to construct the attributes-attributes

matrix AA. The element AAij denotes the probability of

occurrence of attribute j when the attribute i occurs, which

is formulated as follow

AAij =
Lij

Ki

, (1)

where Ki denotes the occurrence times of attribute i in the

training set, and Lij denotes the co-occurence of attribute

pair i and j.

The parts-parts matrix. We assume that the body parts

are always recognizable for every probe image in the train-

ing set. Thus we set all elements in the PP matrix to 1.

This can be inferred as if a body part i is recognized, the

probability of recognizing the body part j is 1.

The parts-attributes matrix. The element of the ma-

trix PAij denotes the probability of the attribute i occurs

when the body part j is recognized. We establish a heuris-

tic observation that some attributes only attached to a spe-

cific body, e.g., ‘hair length’ is only attached to ‘head’, not

‘lower body’. The body parts and their associate attributes

are summarized in Table 1. Based on the recognizable body

parts assumption above, given body part i, PAij = 0 if

the attribute j is not attached to the body part i, otherwise

PAij = kj where kj is the percentage of attribute j occurs

in the dataset.

The attributes-parts matrix. The element of the ma-

trix APij denotes the probability of the body part i is

recognized while the attribute j occurs. Due to our as-

sumption that all body parts are recognizable in the dataset.

APij = 1 if attribute j is attached to body part i, otherwise,

APij = 0.

In practice, the attributes are represented by word em-

bedding Z ∈ R
NA×Dw , where NA is the number of at-

tributes and Dw is the dimensionality of word-embedding

vector.

Body parts representation. To obtain the visual pre-

sentation of person body part, we utilize the state-of-the-art

SCHP pretrained model [18] trained on LIP dataset [20]

to predict the body part masks for all the images in ad-

vance. Although LIP dataset has 20 labels, in our work,

we combine the labels to form the more coarse body part

regions, namely head, upper, lower, arm, and foreground.

Note that the foreground is the combination of other body

parts, which represents the global attributes of a person

such as age and gender. The parser segments each probe

image into NP body parts represented by a set of masks

H = {Hk}
NP

k=1, where Hk is a binary mask with the same

size as the probe image. Each mask Hk is scaled to the

same size as feature map F and is applied L1 normaliza-

tion, which results in H′

k. The feature map F ∈ R
W×H×D

has W × H locations, each location i is associated with a
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Figure 2. Illustration of our proposed framework including two branches: (1) global branch which extracts person global features; (2) GPS

branch which performs reasoning the person attributes and body parts using GCN.

Table 1. Body parts and their associated attributes.

Body part Attribute

Foreground gender, age

Head hair length, wearing hat

Upper body upper clothing’s type, upper clothing’s color, carrying backpack

Lower body lower clothing’s type, lower clothing’s color, lower clothing’s length

Arm sleeve length, carrying bag, carrying handbag

feature vector fi ∈ R
D. The k-th body part f

(k)
part is com-

puted as below:

f
(k)
part =

NP
∑

i=1

h
(k)
i fi, (2)

where h
(k)
i is the scalar value at the location i of H′

k. The

f
(k)
part is projected to a Dw-dim vector.

3.2. Graphbased Person Signature: Reasoning

Generally, GCN defines a multi-layer propagation pro-

cess on a graph G. Precisely, each layer in GCN is formu-

lated as a function f(X,M) which updates the node rep-

resentations by propagating information between the input

nodes X ∈ R
NG×Dw , where each row represents a node,

under the guidance of correlation matrix M. Denoting H(k)

is the feature matrix after passing the input nodes X to k-th

GCN layers. We follow GCN formulation proposed in [17],

which takes node features H(k) ∈ R
NG×d and the corre-

sponding correlation matrix M as inputs and pass through

a GCN layer to transform to H(k+1) ∈ R
NG×d′

. According

to [17], every GCN layer can be represented as

H(k+1) = LeakyReLU(M̂H(k)Θ(k)), (3)

where Θ(k) ∈ R
d×d′

is a layer-specific trainable weight ma-

trix and M̂ is the normalized version of correlation matrix

M. Formally, M̂ is defined as:

M̂ = (I+D)−
1

2 (M+ I)(I+D)−
1

2 , (4)

where D is the diagonal degree matrix of M, the identity

matrix I ∈ R
NG×NG is added for forcing the self-loop in

G. We aim to learn a set of parameters Θ = {θ1, θ2, ..., θk}
that maps X to a set of inter-dependent classifier for person

multi-attribute recognition.

3.3. Training

3.3.1 Attributes recognition

In training process, we pass the feature map F to the global

average pooling (GAP) layer to get the global feature fglobal
which is then passed through a BNNeck layer [24] to get

fbnn. For graph reasoning, the input node features X is

fed to stacked of k-GCN layers and output node matrix

H(k) ∈ R
NG×D. We get a subset nodes Va ⊂ V , where

va ∈ Va is considered as attribute nodes, and the corre-

sponding output node features of Va are stacked to form

W ∈ R
NA×D which is used to parameterized the multi-



attributes classifier CA. The feature fbnn is passed throught

the classifier CA to get the attribute prediction ŷ

ŷ = Wfbnn, (5)

Given ŷ ∈ R
NA , prediction score of attribute c is indicated

as ŷc. We denote the ground-truth label of an image is y ∈
{0, 1}NA , where yc indicate whether attribute c appears in

the image or not. The cross-entropy loss function is adopted

for multi-label recognition. Let L
(i)
a be the attribute loss for

probe image I(i), which is computed as

L(i)
a = −

1

NA

NA
∑

c=1

y(i)c log(σ(ŷ(i)c ))+(1−y(i)c ) log(1−σ(ŷ(i)c )),

(6)

where σ(.) is the sigmoid function. The attribute loss for

whole training set is computed as

La =
1

N

N
∑

i=1

L(i)
a , (7)

where N is the number of samples in the training set. By

optimizing the attribute recognition loss function La, the

network implicitly models the correlation between person

attributes and their associated visual body parts. However,

the correlation between attributes and body parts is weakly

linked here because it is not aware of the person identity

information. To leverage all the information, we add the

identity classification objective to the framework.

3.3.2 Person identity classification

The purpose of identity classification is to discriminate the

features of a person among all other identities. However, in

the person ReID problem, the number of identities is sig-

nificant. At the same time, the images of each identity are

also varied due to the factor of variations (e.g., environment,

camera viewpoint, pose, etc.). This intra-variation is a criti-

cal challenge for a person ReID system.

However, the attributes of one person do not change

significantly when a probe image is captured from differ-

ent cameras or poses. In GPS, the body part nodes are

obtained from the feature map of the probe image; thus,

they retain the given person’s visual representation. The vi-

sual information is propagated to other nodes in the graph

after passing through several GCN layers. Denoting the

node features of graph G after passing through l GCN lay-

ers is H(l). We map the whole graph into a graph feature

fgraph = 1
n

∑n

i=1 h
(i), where h(i) is the representation of

node i. By doing that, the graph features fgraph not only

can represent the visual information as well as the semantic

representation of the person (i.e., correlation of attributes)

but also is robust to the addressed variations.

The graph features are then concatenated with person

global features fbnn, the resulted features is used for identity

classification. The identity prediction logits are computed

as follow

p = softmax(FC(fbnn ⊙ fgraph)), (8)

where ⊙ denotes the concatenate operation. Let q(i) be

the one-hot vector indicating the ground-truth identity and

p(i) is the identity prediction logits of image i. We use the

Cross-entropy loss as folow

Lid = −
1

N

N
∑

i=1

q(i) logp(i) (9)

3.3.3 Multi-task loss

The network in Figure 2 is trained end-to-end using the fol-

lowing multi-task loss function

L = α1Lid + α2Ltriplet + α3Lcenter + α4La (10)

where Lid is the identity loss (9), Ltriplet is the triplet loss

[45], Lcenter is the center loss [46], and La is attribute

recognition loss (7). Since attribute recognition and per-

son identity classification use global features as input, the

Triplet loss and Center loss are used to improve the repre-

sentativeness of global features and generalize well to an

unseen person in the test set.

4. Experiments

4.1. Experimental Setup

Implementation. We integrate our GPS into the re-

cent work BoT [24] as the strong baseline. We employ the

ResNet-50 [12] pre-trained on ImageNet as the backbone

network in all experiments. To enhance the discriminat-

ing power of the backbone, we integrate non-local atten-

tion (NLA) [44] into each ResNet block. For each probe

image, we resize them into 256 × 128 and pad the resized

image 10 pixels with zero values. After that, we randomly

crop them into a 256 × 128. For the data augmentation,

similar to [24, 40, 2], we use random horizontal flipping

and erasing with the probability of 0.5 for both methods.

Attribute labels are transformed into NA × 300 word em-

bedding. Note that NA corresponds to the number of at-

tributes of the dataset, i.e., 30 and 23 for Market1501 [56]

and DukeMTMC-ReID [34] dataset, respectively.

Dataset. To evaluate our proposed method, we conduct

our experiments on two large-scale attribute person ReID

datasets which are Market-1501 [56] and DukeMTMC [34].

We follow the standard train/test split of each dataset in our

experiments.



Table 2. The contribution of losses to the performance of person ReID task on Market1501 [56] dataset. Note that the experiments are

conducted with ResNet-50 [12] as backbone CNN network.

Lid Ltriplet Lcenter
without La with La

mAP R-1 mAP R-1

X 85.5 94.0 87.0 95.1

X X 87.1 94.7 87.6 95.2

X X X 87.5 94.9 87.8 95.2

Table 3. The transferable ability of our GPS evaluated on cross-dataset

Models
Market-1501 → DukeMTMC-ReID DukeMTMC-ReID → Market-1501

mAP R-1 mAP R-1

BoT [24] 14.6 27.6 21.6 48.6

GPS (our) 21.9 37.0 24.7 52.1

Evaluation. To evaluate the person ReID performance

of our GPS and to compare the results with the state-of-the-

art methods, we report standard ReID metrics: Cumulative

Matching Characteristic (CMC) (as R-1, R-5, and R-10) and

mean Average Precision (mAP). Note that, as [21], we ig-

nore the distractor and junks images which are not labelled

attributes.

4.2. GPS Analysis

Loss Contribution. In Table 2, we show the contri-

bution of each loss to the final performance on the Mar-

ket1501 dataset. The person ID classification loss, triplet

loss, center loss, and attribute recognition loss are denoted

as Lid, Ltriplet, Lcenter, and La, respectively. The per-

formance is improved when we incorporate all losses to the

framework, which justifies the effectiveness of our proposed

method. By using only Lid, we still achieve comparative re-

sults with other mask-guided and attribute-based methods.

While the triplet loss Ltriplet demonstrates its capability on

improving the performance, the center loss Lcenter shows

a slight impact on the performance. Notably, the attribute

loss La shows stability when being incorporated with other

loss functions.

Model Interpretability. In this section, we conduct

cross-dataset experiments to evaluate the effectiveness of

GPS. The model is trained on the source dataset and test

directly on the target dataset without finetuning. As shown

in Table 3, our GPS archives a significant improvement over

the Bag-of-Tricks baseline [24]. This demonstrates the in-

terpretability of our proposed method as well as confirms

the effectiveness of learning the attributes for the person

ReID task.

Training Parameters. We also provide the number of

training parameters of our GPS and the baseline BoT [24]

in Table 4 to show the complexity of each method. Overall,

our GPS slightly increases about 3M parameters in com-

parison with the baseline BoT while achieving much better

performance.

4.3. Comparison to the State of the Art

Mask-guided and Attribute-based Methods. We com-

pare our method (GPS) to the recent state-of-the-art that

used body parts: MGCAM [37], SPReID [16], P2-Net [10].

For attribute-based approach, we compare our results with

ACRN [35], MLFN [1], A3M [11], AANet [39], APR [21],

AFFNet [25], PAAN [52], and APDR [19]. Among them,

AANet [39], PAAN [52], and APDR [19] are works that use

both attributes and body parts to enhance the performance

of person ReID task. However, there is no work that lever-

age the relationship between attributes and body parts to ex-

tract person signature embedding as our proposed method.

Other Approaches. We also compare our method

with other ReID approaches, including global-based ap-

proach: SVDNet [38], TriNet [14]; stripes-based approach:

Pyramid [55], Auto-ReID [33], GCP [37]; attention-

based approach: Mancs [40], SONA2+3 [47], SCAL [2];

GAN-based approach: PN-GAN [32], FD-GAN [9], DG-

Net [57]; graph-based approach: SGGNN [36]; spatial-

temporal-based approach: st-ReID [41]; other approaches:

CAMA [50], DSA [53], FPR [13], SAN [15]. No post-

processing such as re-ranking [58] or multi-query fusion

[56] is applied to our method.

GPS vs. Baseline. The last two rows of Table 5 show the

result of our GPS when being integrated into the baseline

BoT. The results clearly show that our GPS significantly

improves the performance of BoT in both Market-1501 and

DukeMTMC-ReID dataset. This demonstrates the effec-

tiveness of our GPS and confirms the usefulness of learning

the attributes in the ReID task.

Evaluation on Market-1501. We evaluate our GPS with

other methods on Market-1501 dataset in Table 5. The re-

sults show that our method outperforms the state-of-the-art

attribute-based methods [39] that use attribute and body part

information in all evaluation metrics. Specifically, we out-

performs AANet [39] by 5.3% and 1.3% at mAP and R-1,

respectively. Our GPS also outperforms the state-of-the-

art mask-guided methods, and especially, we outperform



Table 4. The number of parameters of our GPS in comparision with the baseline BoT [24] on Market1501 and DukeMTMC-ReID datasets

using ResNet-50 [12] as the backbone network. #nParam indicates the number of parameters and 1K=1000.

Models
DukeMTMC-ReID Market1501

#nParam (K) #nParam (K)

BoT [24] 25,668 25,829

GPS (our) 28,866 28,715

Table 5. Comparison with state-of-the-art methods on Market-1501 [56] and DukeMTMC-ReID [34] datasets. The cyan and yellow boxes

are the best results corresponding to mask-guided/attribute-based and other approaches, respectively. Note that no post-processing is

applied to our method.

Approach Method
Market1501 DukeMTMC-ReID

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

Others

SVDNet [38] 62.1 82.3 92.3 95.2 56.8 76.7 86.4 89.9

TriNet [14] 69.1 84.9 94.2 - - - - -

AGW-att [51] 86.9 94.9 - - 77.6 87.5 - -

Pyramid [55] 88.2 95.7 98.4 99.0 79.0 89.0 - -

HPM [7] - - - - 74.3 86.6 - -

Auto-ReID [33] 85.1 94.5 - - - - - -

GCP [31] 88.9 95.2 - - 78.6 89.7 - -

Mancs [40] 82.3 93.1 - - 71.8 84.9 - -

SONA2+3 [47] 88.8 95.6 98.5 99.2 78.3 89.4 95.4 96.6

SCAL [2] 89.3 95.8 98.7 - 78.4 88.6 - -

PN-GAN [32] 72.6 89.4 - - 53.2 73.6 - 88.8

FD-GAN [9] 77.7 90.5 - - 64.5 80.0 - -

DG-Net [57] 86.0 94.8 - - 74.8 86.6 - -

SGGNN [36] 82.1 92.3 - - 68.2 81.1 - -

st-ReID [41] 87.6 98.1 99.3 99.6 83.9 94.4 97.4 98.2

CAMA [50] 84.5 94.7 - - 72.9 85.8 - -

DSA [53] 87.6 95.7 - - 74.3 86.2 - -

FPR [13] 86.6 95.4 - - 78.4 88.6 - -

SAN [15] 88.0 96.1 - - 75.5 87.9 - -

Mask-guided &

Attribute-based

MGCAM [37] 74.3 83.8 - - - - - -

SPReID [16] 81.3 92.5 97.2 98.1 71.0 84.4 91.9 93.7

P2-Net [10] 85.6 95.2 98.2 99.1 73.1 86.5 93.1 95.0

ACRN [35] 62.6 83.6 92.6 95.3 52.0 72.6 84.8 88.9

MLFN [1] 74.3 90.0 - - 62.8 81.0 - -

A3M [11] 69.0 86.5 95.2 97.0 - - - -

AANet [39] 82.5 93.9 - 98.6 72.6 86.4 - -

APR [21] 66.9 87.0 95.1 96.4 55.6 73.9 - -

AFFNet [25] 81.7 93.7 - - 70.7 84.6 - -

PAAN [52] 77.6 92.4 - - 65.5 82.6 - -

APDR [19] 80.1 93.1 97.2 98.2 69.7 84.3 92.4 94.7

BoT [24] 85.9 94.5 - - 76.4 86.4 - -

GPS (ours) 87.8 95.2 98.4 99.1 78.7 88.2 95.2 96.7

P2-Net [10] by 2.2% at mAP. At the same time, we also

get comparative results when comparing with other recent

ReID approaches.

Evaluation on DukeMTMC-ReID. Table 5 also sum-

maries the results of our GPS and other methods on

DukeMTMC-ReID dataset. Our GPS significantly outper-

forms other attribute-based methods in all metrics. Specif-

ically, our method outperforms the recent state-of-the-art

attribute-based method AANet [39] by 6.1% at mAP and

1.8% at R-1. In addition, we also outperforms ADPR [19]

by 9.0%, 3.9%, 2.8%, 2.0% at mAP, R-1, R-5, R-10, re-

spectively. Moreover, our GPS outperforms the state-of-



Query BoT without GPS BoT with GPS
Figure 3. Top 5 retrieval results of some queries on Market-1501 dataset [56]. Note that the green/red boxes denote true/false retrieval

results, respectively.

the-art mask-guided method P2-Net [10] by 4.9%, 1.7%,

2.1%, 1.7% at mAP, R-1, R-5, R-10, respectively. Besides,

we also achieve comparative results with other ReID ap-

proaches.

Attributed-based and Mask-guided vs. Other ap-

proaches. From Table 5, we notice that although our

GPS shows a definite improvement over mask-guided and

attributed-based methods, it achieves competitive results

with methods from other approaches and particularly being

outperformed by st-ReID method [41]. Note that the re-

sults of st-ReID also completely dominate all methods from

all other approaches. The effectiveness of st-ReID comes

from the fact that it also uses the spatial-temporal informa-

tion (i.e., the spatial map of camera setting and temporal

information from video timestamp) into the network. This

extra information allows the network to encode the person

identity from multiple viewpoints, which significantly re-

duces the effect of different poses, viewpoints, or ambigu-

ity challenges. From experiments, we have observed that

our GPS, as well as other attribute-based and mask-guided

methods, suffers from the fact that the pretrained body part

network cannot provide adequate segmentation masks, so

the retrieval results are also affected.

We present some retrieval examples with five retrieved

images for each query in Figure 3. As in the visualization,

our GPS obtained better retrieval results than the baseline.

In the first row of Figure 3, the baseline gets the false re-

trieval result at Rank-5 due to the similarity of gender, wear-

ing a hat, etc., except the color of the clothes. By leveraging

our GPS, the extracted features are more robust to attribute

and body part information, then, lead to better retrieval re-

sults for ReID model. In the second row, the model with

our GPS gives better results by extracting more information

about the relationship between ‘backpack’ attribute and this

person identity, thereby eliminating false cases. We also

show an example that our GPS does not yet produce en-

tirely correct retrieval results in the third line of the Figure

3. In this case, the lower body of the probe image is partly

covered by the bicycle. Thus, the extracted features (i.e.,

the color of the pants) are not fully captured, which results

in the feature misalignment between the probe image and

retrieval results.

To conclude, our experiment results demonstrate that our

GPS has successfully encoded two sources of local informa-

tion (i.e., attributes and body parts) and global features, as

well as modeling the correlations between them to create a

visual signature of person identity. In the future, we would

like to combine our approach and spatial-temporal informa-

tion as in [41] to further improve the results.

5. Conclusion

This paper proposes Graph-based Person Signature

(GPS) that effectively captures the dependencies of per-

son attributes and body parts information. We utilize the

GCN on the GPS to propagate the information among nodes

in the graph and integrate the graph features into a novel

multi-branch multi-task network. The experimental results

on benchmark datasets confirm the effectiveness of our

GPS and demonstrate that our GPS performs better than re-

cent state-of-the-art attribute-based and mask-guided ReID

methods.
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