
ILCOC: An Incremental Learning Framework

based on Contrastive One-class Classifiers

Wenju Sun Jing Zhang Danyu Wang Yangli-ao Geng Qingyong Li*

Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, 100044, China

{SunWenJu,j zhang,WangDanYu,gengyla,liqy}@bjtu.edu.cn

Abstract

In the class incremental learning, the number of classes

to be handled dynamically raises with the number of con-

sidered tasks. The main challenge of this learning schema

is catastrophic forgetting, that is the performance degra-

dation on old tasks after learning new tasks. Existing in-

cremental learning algorithms generally choose to train a

multi-class classifier (e.g. softmax classifier), which learns

a decision boundary to divide the feature space into sev-

eral parts. Therefore, when new data arrive, the learned

boundary will be updated and thus may cause forgetting.

Compared with multi-class classifiers, a one-class classifier

focuses on characterizing the distribution of a single class.

As a result, the decision boundary learned for each category

is tighter and does not change during learning new tasks.

Inspired by this characteristic of one-class classifier, we

propose a novel Incremental Learning framework based on

Contrastive One-class Classifiers (ILCOC) to avoid catas-

trophic forgetting. Specifically, we train a specific one-

class classifier for each category and parallelly use them

to achieve incremental multi-class recognition. Besides, we

design a scale-boundary loss, a classifier-contrastive loss

and a negative-suppression loss to strengthen the compara-

bility of classifiers outputs and the discrimination ability of

each one-class classifier. We evaluate ILCOC on MNIST,

CIFAR-10 and Tiny-ImageNet datasets, and the experimen-

tal results show that ILCOC achieves state-of-the-art per-

formance.1

1. Introduction

Deep learning methods have been widely applied to

many fields and have shown powerful performance in many

tasks, such as image classification [14], object detection

[26] and semantic segmentation [27]. Although it is great

progress, current deep learning algorithms are still far from

*Corresponding author: Qingyong Li (liqy@bjtu.edu.cn).
1Code available at https://github.com/SunWenJu123/ILCOC.

real intelligence. One of the main reasons is that most deep

learning algorithms can not continuously learn new tasks

while keeping the knowledge learned from old tasks. When

a new task arrives, normal deep learning models need to

be retrained with both new and old data. This training

schema limits the application of deep learning techniques

as, in some scenarios, the data of all tasks is not available at

the same time. To solve this problem, incremental learning

was proposed and has become a research hotspot [5].

Incremental learning tries to solve the problem of learn-

ing from a non-i.i.d. stream of data, with the goal of pre-

serving and extending the acquired knowledge [19]. The

main challenge of incremental learning is catastrophic for-

getting [22, 7], which is manifested as that the performance

on previous tasks drops dramatically due to the learning

of new tasks. Particularly, there are three settings in the

current incremental learning community: class incremental

learning (class-IL), task incremental learning and domain

incremental learning [35]. Our method and the subsequent

discussion in this paper are all based on the class-IL setting.

Under the class-IL setting, samples are divided into several

sets with disjoint label spaces, and one-by-one use them to

train the model in the task order.

To achieve incremental learning, various methods have

been proposed. According to the working mecha-

nism, existing incremental learning algorithms can be

divided into three categories: rehearsal-based methods,

regularization-based methods and dynamic architecture

methods. Rehearsal-based methods need to use an ad-

ditional memory space to store representative samples of

previous tasks [25, 11, 8, 36]. Regularization-based algo-

rithms use knowledge distillation technique to regularize

network activation [16, 6] or penalize the changes of es-

sential network parameters to avoid forgetting [39, 1, 12].

Dynamic architecture algorithms address the catastrophic

forgetting problem by changing the network structure for

specific tasks. Representatively, PackNet [21] and Piggy-

back [20] assign network parameters to each task by learn-

ing masks during training. PNN [30], DEN [38] and RCL

[37] focus on expanding network capacity for new tasks.

1

(a) Multi-class Classifier (b) One-class Classifier

Figure 1: The comparison between multi-class classifiers (a) and one-class classifiers (b). (a) The decision boundary of the

multi-class classifier learned by old samples cannot be applied to new samples. (b) The decision boundaries of the one-class

classifiers learned by old samples can be fused with the boundaries learned by new samples naturally.

A common point of the above methods is that they gen-

erally use multi-class classifier (e.g. softmax classifier) to

achieve incremental classification, which has the following

two limitations: (1) As old data is unavailable in new tasks,

the imbalance between old and new data will lead incre-

mental learning models to obtain a local optimal solution

rather than a global one [23, 39]. As a result, the trained

multi-class classifier based models are likely to recognize

old samples as new categories [36, 40]. (2) As shown in

Figure 1a, the working mechanism of multi-class classifiers

is to learn decision boundaries to divide the entire embed-

ding space into several parts. When new samples (red sam-

ples) arrive, the boundaries decided by old samples (blue

samples) are likely to be unsuitable for the distribution of

the new data. Compared with multi-class classifiers, one-

class classifiers focus on describing the distribution of their

target samples, which can be seen as aiming to find a mini-

mum hypersphere to wrap all target samples. The decision

boundaries of old classes learned in this way can be natu-

rally merged with those of new classes, as shown in Figure

1b, which means the knowledge learned in old tasks will not

be forgotten when learning new tasks. Inspired by this idea,

we propose to use one-class classification models as the ba-

sic classifier to solve the incremental learning problem.

In this paper, we propose an Incremental Learning

framework based on Contrastive One-class Classifiers (IL-

COC). ILCOC train multiple one-class classifiers with the

same network structure but different parameters for all cat-

egories. Each one-class classifier is trained contrastively

with the previous one-class classifiers. During testing, each

one-class classifier calculates a confidence score which rep-

resents the probability that the input sample belongs to the

corresponding category.

In this paper, our main contributions are listed as follows:

• We propose a novel incremental learning framework

based on contrastive one-class classifiers named IL-

COC, which avoid the catastrophic forgetting problem

by parallelly using one-class classifiers.

• For incremental learning scenario, we design a scale-

boundary loss, a classifier-contrastive loss and a

negative-suppression loss to strengthen the compara-

bility of classifiers and improve the discrimination

ability of each one-class classifier, respectively.

• We evaluate ILCOC on MNIST, CIFAR-10 and Tiny-

ImageNet datasets, and the experimental results show

that our method achieves state-of-the-art performance.

The rest of this paper is organized as follows. In Sec-

tion 2, we introduce some classic and latest algorithms of

incremental learning and one-class learning. In Section 3,

we propose ILCOC which prevents forgetting via one-class

classifiers. In Section 4, we compare ILCOC with state-of-

the-art methods and analyze the effectiveness of each part

of ILCOC through ablation experiments. Finally, in Section

5, we summarize our work and offer some directions for

future research.

2. Related work

2.1. Incremental Learning

According to the working mechanism, incremental

learning algorithms can be divided into three categories:

rehearsal-based methods, regularization-based methods and

dynamic architecture methods.

Rehearsal-based methods utilize a fix sized memory to

store samples of previous tasks and jointly train a neural net-

work by using both stored and new data. iCaRL [25] com-

2

pletes multi-classification tasks by the prototypes, and in-

novatively utilizes samples in memory to generate the pro-

totypes after learning each task. PRS [11] proposes a mem-

ory management algorithm to conquer the problem that data

imbalance in memory, which is caused by training data that

follow a long-tail distribution. Remind [8] uses compres-

sion algorithms to store more samples in the memory with

a fixed size. BiC [36] uses the samples in the memory to

calibrate the network output, which solves the problem of

bias in the neural network. Although an addition memory

effectively alleviates the forgetting caused by sample imbal-

ance, this kind of algorithm limits its application due to its

dependence on memory, especially in scenarios with small

memory (mobile phones, personal computers).

Regularization-based methods focus on using regulariza-

tion terms in the loss function to prevent forgetting. WA

[40] solves the bias problem of the network by normalizing

the parameters of the last FC layer. EWC [12], SI [39] and

MAS [1] employ the fisher matrix, the contribution of loss

reduction and the first-order derivative to identify important

parameters, respectively. Then, all these three methods im-

pose penalties on the changes of essential parameters to pre-

vent forgetting. GEM [18] prevents forgetting by constrain-

ing the descent direction on the new task and the gradient

direction on the old task to be an acute angle. Knowledge

distillation based methods such as LWF [16] and PodNet

[6] regularize the activation of the network to prevent for-

getting.

Dynamic architecture methods provide independent pa-

rameters for each task to prevent forgetting. PNN [30]

creates an independent network for each task, and trans-

fers knowledge among different networks through horizon-

tal connections. To decrease the number of network pa-

rameters, DEN [38] and RCL [37] dynamically expand the

network capacity as needed when learning new tasks. Pack-

Net [21] and CPG [10] use network compression technique

to retain important parameters while improving the utiliza-

tion rate of the network parameters. Piggyback [20] learns

masks for each task to complete multiple tasks through a

single network. Most of these algorithms have the advan-

tage of dynamically expanding network capacity. Under

class-IL setting, a model can not access the task identities

for each sample during testing. However, due to the need

of selecting network parameters for a corresponding task,

some algorithms of this category may need to use task iden-

tifications when inferring, which violates the class-IL set-

ting.

Our ILCOC method trains an independent one-class

classifier for each class, so it belongs to the third category.

Besides, due to the outputs among different tasks can be

integrated naturally, ILCOC can meet the class-IL setting.

2.2. One­class learning

The goal of one-class learning is to learn a representation

and/or a classifier that enables the recognition of positively

labeled queries during inference, by using data with positive

class and some quantity of weakly distributed negative class

[24, 3], similar tasks include anomaly detection, outlier de-

tection. In traditional methods, one-class SVM [31] and

SVDD [34] learn a hypersphere with the smallest volume

in the feature space to wrap the positive samples, and judge

a sample is normal or not by whether the sample is within

the hypersphere. Isolated forest [17] continuously separates

samples by using a binary tree, and the sample that is easily

separated is regarded as an anomaly. Deep-SVDD [28] and

its semi-supervised version Deep-SAD [29] map a sample

from the feature space to a latent space through a deep neu-

ral network and obtain a latent vector. This algorithm first

initializes a fixed center point in the latent space, and then

constrains the latent vector of a positive sample to be close

to the center point during training. By assuming that the la-

tent vectors of abnormal samples are far from the center, the

distance between a latent vector and the center point can be

regarded as an anomaly score.

3. Method

In this section, we will introduce the proposed ILCOC

method in detail. Specifically, we first introduce the incre-

mental learning setting and notations of this paper in Sec-

tion 3.1. After that, a basic incremental learning framework

based on parallel one-class classifiers is presented in Sec-

tion 3.2. Based on this framework, we propose our ILCOC

method in Section 3.3 which has a more powerful perfor-

mance.

3.1. Problem Definition

This paper focuses on the class-IL setting, in which the

entire dataset D is divided into disjoint T parts, that is

D = {Dt}Tt=1. Under this setting, the data of task t can

be denoted as Dt = {(xt
k, y

t
k)}

nt

k=1
, where nt, x

t
k and ytk

represent the number of samples in Dt, the feature and the

label of the k-th sample, respectively. Let Y t represent the

label set of Dt, and it is worth noting that there is no in-

tersection between the label sets of different tasks, that is,

when i 6= j, Y i ∩ Y j = ∅. Taking the MNIST [15] as

an example, we can divide it into 5 subsets, and each sub-

set contains two categories of samples. Accordingly, their

label sets can be denoted as Y 1 = {0, 1}, Y 2 = {2, 3},

Y 3 = {4, 5}, Y 4 = {6, 7}, Y 5 = {8, 9}.

Each data subset is divided into training and testing

set with a same manner Dt = {Dt
train, D

t
test}. During

the learning of task t, the model learns from the train-

ing set Dt
train. Then, we evaluate the model by using

D1
test∪D

2
test...∪D

t
test, which means the performance of the

3

Figure 2: The diagram of incremental learning framework based on parallel one-class classifiers.

model on all learned tasks is tested. Note that our algorithm

does not utilize the data of previous tasks when training a

new task. Besides, we follow the class-IL setting where the

model has no access to the task identification during testing.

3.2. Incremental Learning Based on Parallel One­
Class Classifiers

The incremental learning models based on multi-class

classifiers often face the following two challenges: (1) Due

to the imbalance between old and new data, network param-

eters will be updated to fit the distribution of new categories.

Under this situation, the predictions of multi-class classi-

fiers are biased to new classes [36, 40], which may cause

catastrophic forgetting. (2) Multi-class classifiers learn de-

cision boundaries to completely divide the feature space,

which may be not suitable for new tasks, as shown in Fig-

ure 1a. Thus, training on new tasks inevitably changes the

decision boundaries learned by old tasks.

Compared with multi-class classifiers, one-class classi-

fiers are robust to the scenarios with imbalanced samples.

Besides, as shown in Figure 1b, one-class classifiers focus

on finding a minimal hypersphere to wrap all target samples,

which means their decision boundaries are tighter and do

not affect the modeling of other samples. Thus, we propose

to use one-class classifiers to achieve incremental recogni-

tion.

Figure 2 illustrates the diagram of our incremental learn-

ing framework based on parallel one-class classifiers. In

this framework, we train a specific one-class classifica-

tion model for each category, and then use their outputs

to represent the probabilities that samples belong to their

corresponding classes. As it is a parallel structure, we

call it Incremental Learning based on Parallel One-class

Classifiers (ILPOC) framework. Considering the perfor-

mance and scalability, we choose Deep SVDD [28] as our

basic one-class classification model to implement our multi-

class classification idea. The core principle of Deep SVDD

is to use a neural network to project samples from a visual

feature space to a latent space, in which the samples be-

longing to the target category are required to be as close as

possible to a center point. Specifically, for the new category

i of task t, the objective of Deep SVDD model is:

min
Wi

1

n+
t

∑

yt
k
=i

∥

∥φ(xt
k;Wi)− ci

∥

∥

2
+ λ ‖Wi‖

2

F , (1)

where φ(.), Wi and ci represent the projection function, its

parameters and the center point for category i, respectively.

4

Figure 3: The diagram of ILCOC. During the training of i-th category in task t, the scale-boundary loss (red arrow) pulls all

samples of class i into the hypersphere. All the hyperspheres in each latent space have the same radius r, which ensures the

outputs of all models following similar distribution. Besides, the classifier-contrastive loss (green arrow) forces the model to

output a score that higher than the scores predicted by the previous model. On the other hand, for the samples that belong to

other classes, the negative-suppression loss (blue arrow) pushes the latent embedding vectors far away from the center.

n+
t = |{xt

k|(x
t
k, y

t
k) ∈ Dt

train and ytk = i}| is the number

of samples belonging to category i in set Dt
train. The first

term requires the latent vectors of samples to be as close as

possible to the center ci. The second term is a regularization

term with a weight parameter λ > 0. In our framework,

when a new task t comes, we will train |Y t| Deep SVDD

models.

After training, we calculate the score of the sample x by

the following formula:

scorei(x) =
1

‖φ(x;Wi)− ci‖
2
+ ε

, (2)

where scorei(x) can be seen as the confidence that the sam-

ple x belongs to the category i, and ε is set to prevent the

denominator equal to 0. Directly, we choose the category

with the highest score as the prediction result of x, that is:

ŷ = argmax
i

{scorei(x)}
|Y |
i=1

, (3)

where ŷ represents the prediction of x, and Y = Y 1 ∪Y 2 ∪
. . . ∪ Y t represents the set of all seen categories.

3.3. Incremental Learning Based on Contrastive
One­Class Classifiers

The ILPOC framework in Section 3.2 has two major lim-

itations: (1) The comparability of the output scores from

different one-class classification models is inadequate. Due

to the difference in sample distribution and network param-

eters, the distribution of output scores is quite different. (2)

As each one-class classification model can only see the data

in a single task, the trained model may have poor perfor-

mance on unseen data.

To mitigate the impact of the above two problems,

we further design a scale-boundary loss, a classifier-

contrastive loss and a negative-suppression loss. Figure

3 shows the diagram of our method with the above three

loss functions.

Scale-boundary loss. In order to improve the compara-

bility of sample scores from different models, we require

that the target samples of different classification models

have a similar distribution in each latent embedding space.

5

Specifically, we define a hypersphere whose center is ci and

radius is r, and ask the positive samples should be in this

hypersphere. This practice can not only relax the constraint

in Eq. (1) to avoid the model over-fitting, but also make

positive samples have a similar distribution pattern. The

formula of the scale-boundary loss is:

LSB =
1

n+
t

∑

yt
k
=i

max{0,
∥

∥φ(xt
k;Wi)− ci

∥

∥

2
− r2}, (4)

where r is a fixed hyperparameter shared by all one-class

classification models.

Classifier-contrastive loss. As each one-class classifi-

cation model can only see the data of one task, the trained

model likely has poor discrimination performance on the

data of other tasks, especially those who are similar to the

samples in this task. To solve this problem, we propose

a classifier-contrastive loss to strengthen the discrimination

ability of newer models. Given the samples of category i in

the task t, the classifier-contrastive loss for the i-th model

is:

LCC =
1

n+
t

∑

yt
k
=i

(
1

|Y p
i |

∑

j∈Y
p

i

max{0,
∥

∥φ(xt
k;Wi)− ci

∥

∥

2

−
∥

∥φ(xt
k;Wj)− cj

∥

∥

2
}),

(5)

where Y
p
i = {j|0 ≤ j < i} contains the indexes of

the models trained in the former tasks. The classifier-

contrastive loss forces the new one-class classification

model to give higher confidence scores for the positive sam-

ples than those calculated by the models trained before.

Negative-suppression loss. The scale-boundary loss

and the classifier-contrastive loss are applied to the samples

belonging to the current category i. But we need to notice

that there are also other categories in each task, which con-

tain abundant information that can be used to improve the

discrimination ability of a one-class classification model.

To make full use of these negative (non-target) data, we

propose a simple negative-suppression loss to suppress their

scores, which can be denoted as:

LNS =
1

n−
t

∑

yt
k
6=i

1

‖φ(xt
k;Wi)− ci‖

2
+ ε

, (6)

where n−
t = |{xt

k|(x
t
k, y

t
k) ∈ Dt

train and ytk 6= i}| is

the number of samples not belonging to category i in set

Dt
train.

Finally, the total loss of training a one-class classification

model is as follows:

L = LSB + α1LCC + α2LNS , (7)

where α1 and α2 are weight parameters.

4. Experiments

We compare our ILCOC method with state-of-the-

art methods on MNIST, CIFAR-10 and Tiny-ImageNet

datasets. We also perform ablation experiments to analyze

the effect of each component in our approach.

4.1. Datasets and Implementation Details

We carry out experiments following the experimental

settings in [4]. We use the widely used precision as our eval-

uation metric and three datasets are selected as our bench-

marks:

MNIST [15] includes 60,000 training images and 10,000

testing images of 10 handwritten digit classes. These 10

classes are divided into 5 incremental batches.

CIFAR-10 [13] contains 60,000 32 × 32 RGB images

from 10 different categories. The 10 classes are also divided

into 5 incremental batches.

Tiny-ImageNet [33] has 200 classes, and each class has

500 training images, 50 validation images and 50 testing

images. The 200 classes are divided into 10 incremental

batches.

All methods are implemented with PyTorch, and opti-

mized by stochastic gradient descent. For MNIST dataset,

we employ a fully-connected network to achieve feature

projection. The network has two hidden layers and each

layer contains 100 neurons. For CIFAR-10 and Tiny-

ImageNet datasets, we use ResNet18 [9] as our basic net-

work, and train it with 50 and 100 epochs respectively.

For the hyperparameters in ILCOC, we set r2 = 0.1 in

all three datasets. We set α1 = 1 and α2 = 0.8 for MNIST

and CIFAR-10 datasets. For Tiny-ImageNet, we set α1 =
0.5 and α2 = 0.04.

4.2. Incremental Learning Comparison

In this section, we compare the performance of ILCOC

with state-of-the-art methods on three datasets with differ-

ent scales (MNIST, CIFAR-10 and Tiny-ImageNet). We se-

lect three regularization-based methods which are oEWC

[32], SI [39] and LWF [16]. oEWC [32] and SI [39] use

the fisher matrix and the contribution of loss reduction to

measure the importance of network parameters and penalize

their changes, respectively. LWF [16] regularizes activation

by knowledge distillation to prevent forgetting. Besides, we

choose a rehearsal-based algorithm FDR [2] as a contrast.

It defines a function space with the help of samples in the

memory, and uses the function space to measure the impor-

tance of network parameters. After then, it will penalize

the changes of the essential parameters during learning new

tasks. Note that, compared with other methods, FDR needs

an additional memory which can store up to 200 samples.

For the convenience of comparison, we also provide two ba-

sic comparison methods which are JOINT and SGD. JOINT

6

Method MNSIT CIFAR-10 Tiny-ImageNet

JOINT 95.57% 92.20% 95.99%

SGD 19.60% 19.62% 7.92%

oEWC [32] 20.46% 19.49% 7.58%

SI [39] 19.27% 19.48% 6.58%

LWF [16] 19.62% 19.61% 8.46%

FDR* [2] 79.43% 30.91% 8.70%

Ours(ILCOC) 74.51% 38.40% 16.97%

Table 1: Incremental learning performance comparison on

three datasets. The results of the comparison methods come

from [4]. Note that FDR* needs additional memory to store

old samples.

uses all task data to fully train a neural network, which can

be seen as the upper bound of incremental learning; SGD

does not use any incremental learning strategy, and the net-

work is directly fine-tuned with new data in each task.

Table 1 reports the test accuracies of all methods on

three incremental learning benchmarks. The results show

that our ILCOC achieves state-of-the-art performance in al-

most all datasets. Specifically, compared with oEWC, SI

and LWF, the accuracy of ILCOC is much higher, verifying

our idea that one-class classifiers can produce robust deci-

sion boundaries and help the model alleviate the impact of

catastrophic forgetting. Besides, we can also observe that

ILCOC has better performance than FDR, which uses an ad-

ditional memory to store representative samples. We think

the reason may be that the fixed memory size of FDR can

not ensure the stored samples simulate the data distribution

of true samples.

4.3. Ablation Study

Based on the architecture of ILPOC, ILCOC adds a

scale-boundary loss, a classifier-contrastive loss and a

negative-suppression loss to establish the relationship be-

tween one-class classifiers and enhance its feature learning

ability. In this subsection, we analyze the effect of each

component of ILCOC by ablation experiments. The varia-

tions we construct are as follows:

Variation1: we set r = 0 on the basis of ILCOC, which

means that the scale-boundary loss is degraded to Eq. (1);

Variation2: we set α1 = 0 on the basis of ILCOC, that is,

the classifier-contrastive loss has no effect;

Variation3: we set α2 = 0 on the basis of ILCOC, which

means the negative-suppression loss is removed;

ILPOC: the basic ILPOC model which is obtained by set-

ting r = 0, α1 = 0, α2 = 0 on the basis of ILCOC.

The results of ablation experiments are shown in Figure

4. First of all, comparing Variation1 and ILCOC, it can

be seen that Variation1 obtains a higher accuracy in task 1

Figure 4: The results of ablation experiments on CIFAR-10

dataset. The x-axis indicates the number of learned classes.

(when the number of learned classes is two). This is because

the scale-boundary loss slightly suppresses the performance

of one-class classifiers. We also can find that the accura-

cies of ILPOC in subsequent tasks are lower than ILCOC,

which shows that the scale-boundary loss can improve the

comparability of different one-class classifiers. Secondly,

the performance gap between Variation2 and ILCOC proves

that the classifier-contrastive loss can effectively use the in-

formation of former classifiers to help the training of the

current classifier. Thirdly, the results of Variation3 and IL-

COC show that the negative-suppression loss successfully

improves the discrimination ability of each one-class clas-

sifier. Finally, by comparing ILPOC and ILCOC, we can

infer that the added three loss functions greatly enhance the

multi-classification performance of the ILPOC model. All

these results prove the effectiveness and robustness of our

ILCOC method.

5. Conclusion

In this paper, we introduce an incremental learning

framework based on contrastive one-class classifiers which

we called ILCOC. ILCOC parallelly uses one-class clas-

sifiers to produce tight decision boundaries, which can be

naturally merged together. To improve the comparability of

classifier outputs and enhance the relationship between one-

class classifiers, we further design a scale-boundary loss, a

classifier-contrastive loss and a negative-suppression loss.

The experimental results show that ILCOC can achieve

state-of-the-art performance in most cases. Since ILCOC is

a parallel structure, the size of the model increases linearly

with the number of tasks. In the future, we will enhance the

capacity of ILCOC in this aspect.

Acknowledgment. This work was supported in part by

7

the National Natural Science Foundation of China under

Grant U2034211, 62006017, in part by the Fundamental

Research Funds for the Central Universities under Grant

2020JBZD010, in part by the Beijing Natural Science Foun-

dation under Grant L191016.

References

[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory aware

synapses: Learning what (not) to forget. In Eur. Conf. Com-

put. Vis., pages 139–154, 2018. 1, 3

[2] Ari S. Benjamin, David Rolnick, and Konrad P. Körding.

Measuring and regularizing networks in function space.

In International Conference on Learning Representations,

2019. 6, 7

[3] Jay Bhatt and Nikita S Patel. A survey on one class classifica-

tion using ensembles method. IJIRST-International Journal

for Innovative Research in Science and Technology, 1:19–23,

2014. 3

[4] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide

Abati, and SIMONE CALDERARA. Dark experience for

general continual learning: a strong, simple baseline. In

Adv. Neural Inform. Process. Syst., volume 33, pages 15920–

15930, 2020. 6, 7

[5] M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A.

Leonardis, G. Slabaugh, and T. Tuytelaars. A continual

learning survey: Defying forgetting in classification tasks.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 2021. 1

[6] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas

Robert, and Eduardo Valle. Podnet: Pooled outputs distilla-

tion for small-tasks incremental learning. In Eur. Conf. Com-

put. Vis., pages 86–102, 2020. 1, 3

[7] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville,

and Yoshua Bengio. An empirical investigation of catas-

trophic forgetting in gradient-based neural networks. arXiv

preprint arXiv:1312.6211, 2013. 1

[8] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj

Acharya, and Christopher Kanan. Remind your neural net-

work to prevent catastrophic forgetting. In Eur. Conf. Com-

put. Vis., pages 466–483, 2020. 1, 3

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In IEEE Conf. Comput. Vis. Pattern

Recog., pages 770–778, 2016. 6

[10] Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung

Chen, Yi-Ming Chan, and Chu-Song Chen. Compacting,

picking and growing for unforgetting continual learning. In

Adv. Neural Inform. Process. Syst., volume 32, pages 13647–

13657, 2019. 3

[11] Chris Dongjoo Kim, Jinseo Jeong, and Gunhee Kim. Im-

balanced continual learning with partitioning reservoir sam-

pling. In Eur. Conf. Comput. Vis., pages 411–428, 2020. 1,

3

[12] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. Proceedings of the national academy of sci-

ences, 114(13):3521–3526, 2017. 1, 3

[13] Alex Krizhevsky. Learning multiple layers of features from

tiny images. University of Toronto, 05 2012. 6

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. Adv. Neural Inform. Process. Syst., 25:1097–1105,

2012. 1

[15] Yann LeCun and Corinna Cortes. MNIST handwritten digit

database. 2010. 3, 6

[16] Zhizhong Li and Derek Hoiem. Learning without forgetting.

IEEE Trans. Pattern Anal. Mach. Intell., 40(12):2935–2947,

2017. 1, 3, 6, 7

[17] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation

forest. In IEEE International Conference on Data Mining,

pages 413–422. IEEE, 2008. 3

[18] David Lopez-Paz and Marc' Aurelio Ranzato. Gradient

episodic memory for continual learning. In Adv. Neural In-

form. Process. Syst., volume 30, pages 6467–6476, 2017. 3

[19] Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyun-

woo Kim, and Scott Sanner. Online continual learning in

image classification: An empirical survey. arXiv preprint

arXiv:2101.10423, 2021. 1

[20] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-

back: Adapting a single network to multiple tasks by learn-

ing to mask weights. In Eur. Conf. Comput. Vis., pages 67–

82, 2018. 1, 3

[21] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-

tiple tasks to a single network by iterative pruning. In IEEE

Conf. Comput. Vis. Pattern Recog., pages 7765–7773, 2018.

1, 3

[22] Michael McCloskey and Neal J Cohen. Catastrophic inter-

ference in connectionist networks: The sequential learning

problem. In Psychology of learning and motivation, vol-

ume 24, pages 109–165. Elsevier, 1989. 1

[23] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu,

and Hassan Ghasemzadeh. Understanding the role of train-

ing regimes in continual learning. In Adv. Neural Inform.

Process. Syst., volume 33, pages 7308–7320, 2020. 2

[24] Pramuditha Perera, Poojan Oza, and Vishal M Patel.

One-class classification: A survey. arXiv preprint

arXiv:2101.03064, 2021. 3

[25] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. icarl: Incremental clas-

sifier and representation learning. In IEEE Conf. Comput.

Vis. Pattern Recog., pages 2001–2010, 2017. 1, 2

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Adv. Neural Inform. Process. Syst.,

volume 28, pages 91–99, 2015. 1

[27] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241,

2015. 1

8

[28] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas

Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Em-

manuel Müller, and Marius Kloft. Deep one-class classifi-

cation. In International Conference on Machine Learning,

pages 4393–4402, 2018. 3, 4

[29] Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexan-

der Binder, Emmanuel Müller, Klaus-Robert Müller, and

Marius Kloft. Deep semi-supervised anomaly detection.

In International Conference on Learning Representations,

2020. 3

[30] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

arXiv preprint arXiv:1606.04671, 2016. 1, 3

[31] Bernhard Schölkopf, John C Platt, John Shawe-Taylor,

Alex J Smola, and Robert C Williamson. Estimating the sup-

port of a high-dimensional distribution. Neural computation,

13(7):1443–1471, 2001. 3

[32] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina,

Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pas-

canu, and Raia Hadsell. Progress & compress: A scalable

framework for continual learning. In International Confer-

ence on Machine Learning, pages 4528–4537, 2018. 6, 7

[33] Stanford. Tiny imagenet challenge (cs231n). 2015. 6

[34] David MJ Tax and Robert PW Duin. Support vector data

description. Machine learning, 54(1):45–66, 2004. 3

[35] Gido M Van de Ven and Andreas S Tolias. Three scenar-

ios for continual learning. arXiv preprint arXiv:1904.07734,

2019. 1

[36] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,

Zicheng Liu, Yandong Guo, and Yun Fu. Large scale incre-

mental learning. In IEEE Conf. Comput. Vis. Pattern Recog.,

pages 374–382, 2019. 1, 2, 3, 4

[37] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In

Adv. Neural Inform. Process. Syst., volume 31, pages 907–

916, 2018. 1, 3

[38] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju

Hwang. Lifelong learning with dynamically expandable net-

works. In International Conference on Learning Represen-

tations, 2018. 1, 3

[39] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual learning through synaptic intelligence. In International

Conference on Machine Learning, pages 3987–3995, 2017.

1, 2, 3, 6, 7

[40] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-

Tao Xia. Maintaining discrimination and fairness in class

incremental learning. In IEEE Conf. Comput. Vis. Pattern

Recog., pages 13208–13217, 2020. 2, 3, 4

9

