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Abstract

Multimodal representations and continual learning are

two areas closely related to human intelligence. The for-

mer considers the learning of shared representation spaces

where information from different modalities can be com-

pared and integrated (we focus on cross-modal retrieval

between language and visual representations). The latter

studies how to prevent forgetting a previously learned task

when learning a new one. While humans excel in these

two aspects, deep neural networks are still quite limited. In

this paper, we propose a combination of both problems into

a continual cross-modal retrieval setting, where we study

how the catastrophic interference caused by new tasks im-

pacts the embedding spaces and their cross-modal align-

ment required for effective retrieval. We propose a gen-

eral framework that decouples the training, indexing and

querying stages. We also identify and study different factors

that may lead to forgetting, and propose tools to alleviate

it. We found that the indexing stage pays an important role

and that simply avoiding reindexing the database with up-

dated embedding networks can lead to significant gains. We

evaluated our methods in two image-text retrieval datasets,

obtaining significant gains with respect to the fine tuning

baseline.

1. Introduction

Human intelligence requires integrating, processing and

comparing information from multiple modalities. Ideally,

mental representations should lie in an abstract common

space that is decoupled from the specific modality of the

perceived information. Language and vision already in-

teract in simple tasks such as object classification, where

images are mapped to concepts in a closed vocabulary of

categories. However, multimodal representations [4] allow

for richer interactions enabling cross-modal tasks such as

cross-modal retrieval [11, 63, 9, 66, 13], image caption-

ing [18, 12, 49], visual question answering [47, 23, 10, 65],

and more recently text-to-image synthesis [32, 75]. Lan-

guage models are also useful to extend visual classification
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Figure 1. Stages in continual cross-modal retrieval (i.e. training

feature extractors, indexing and query). The output of each stage

is highlighted in red (i.e. feature extractors, index and ranking,

respectively).

beyond the limited categories seen during training by pro-

jecting to language spaces, also known as zero-shot recog-

nition [15, 71].

Another characteristic of humans is their ability for con-

tinual learning, which allows us to perform well tasks

learned long back in time. In contrast, neural networks suf-

fer from catastrophic interference [42, 39], which leads to

almost complete forgetting of previous tasks when adapt-

ing to new ones, being a critical limitation to advance to-

wards highly autonomous agents that can learn and adapt

to changing environments. Continual learning (often re-

ferred to also as lifelong, sequential or incremental learn-

ing) in neural networks is an active research area, with re-

cent methods addressing catastrophic forgetting with novel

regularization [33, 35, 73], architectural [40, 5, 58] and

(pseudo)-rehearsal [37, 59, 69, 62] mechanisms. Most con-

tinual learning methods focus on classification tasks.

Motivated by these two challenges, here we study con-

tinual learning in multimodal embedding spaces applied to

cross-modal retrieval, and the specific problems that arise

in this scenario. In continual learning, training (of new

tasks) can happen at different points in time. In a retrieval

scenario, we must consider also the indexing operation,

where an embedded representation is extracted from the in-
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put sample and stored in the database for future comparison.

Since indexing in a continual setting could also happen at

different points in time, we pay special attention to the role

of this additional stage (see Fig. 1). An advantage of learn-

ing embedding networks instead of classification networks

is that we operate in a single space shared by all tasks, so

we can naturally retrieve data regardless whether we know

or not the task related to that particular query sample (often

referred to as task-aware and task-agnostic settings). Re-

trieval performance in continual learning is affected by how

the embedded space may be distorted and cause represen-

tations to drift, as a result of the catastrophic interference.

Additionally, these distortions and drifts may be unequal

for each multimodality. Similarly, catastrophic forgetting

affects differently to indexed data and query data.

In this paper we propose a continual cross-modal re-

trieval framework that can effectively perform retrieval in

known and unknown domains. We identify and study the

different factors that lead to forgetting in cross-modal em-

beddings and retrieval. Addressing those factors, we study

modifications in the retrieval framework, network architec-

ture and regularization that can help to alleviate them.

2. Related Work

2.1. Deep metric learning

Deep metric learning learns both feature extraction and

a distance metric in an end-to-end fashion. It maps images

to an embedding space in which a simple distance metric

such as the Euclidean distance can be applied. For train-

ing, it requires positive pairs (PP), which should be close

in the embedding space, and negative pairs (NP), which are

mapped at least a margin apart. Initial work was based on

Siamese networks [6] which consist of two identical neu-

ral networks with shared weights, each taking one of the

two inputs and map them to an embedding space. They are

widely used in patch matching [60], face verification [55],

image retrieval [17], etc.

Regarding the training loss, two of the most widely used

are contrastive loss [19] and triplet loss [21]. The former

continually pushes similar instances closer, whereas nega-

tive pairs are only required to be at least a margin away.

In the latter, similar samples are only required to be closer

to each other than to any dissimilar ones. The training of

Siamese and triplet networks is known to be difficult. Es-

pecially, since many of the negative pairs are already far

apart in embedding space, they do not result in any train-

ing signal. Therefore, it was shown to be important to per-

form hard negative mining [60]. Later works observed that

it was computationally advantageous to first pass the im-

ages through a single network, and only form the pairs in

the loss layer [48, 36]. Other losses include center loss [67]

and proxy-NCA [44].

2.2. Cross­modal retrieval

Cross-modal retrieval requires a coordinated representa-

tion [4] that allows computing a similarity measure between

the query representation and that of the retrieved data, even

when they belong to different modalities and extracted with

different feature extractors. There are two main aproaches

to this problem: canonical correlation analysis (CCA) [22]

and metric learning [31].

CCA [22] learns linear projections to a space where the

projections of two random vairables are maximally corre-

lated, which makes it attractive to cross-modal retrieval.

CCA has also been extended to deep networks [2, 64], and

in particular to cross-modal retrieval [14, 16, 29]. A limita-

tion of CCA approaches is the expensive computation of the

covariance matrix that requires having all data in memory.

Metric learning has also been applied sucessfully to

cross-modal retrieval. Early examples of joint text-image

embeddings are WSABIE [68] and DeViSE [15] which map

image and text embeddings into a single space using rank-

ing losses. Kiros et al. [28] applied a similar approach to

sentences using an LSTM model. Socher et al. [61] use an

extended language model which includes dependency trees.

Xu et al. [70] propose a joint representation for video and

sentences. Two-branch networks [63] address image-text

matching tasks with a bi-directional ranking loss. Multi-

modal representations have been also used for cross-modal

retrieval of more structured visual-text documents, such as

recipes [54, 43] and learning facts from images [13].

Efficient retrieval from large databases is also a concern,

so cross-modal hashing [7] learns compact representations

in binary spaces where indexing and retrieval can be per-

formed efficiently. Cross-modal hashing has also been ex-

tended to deep models [8, 24].

2.3. Continual learning

A well known phenomenon in neural networks is catas-

trophic forgetting, where learning new tasks interferes with

remembering previous ones [42, 39]. To enable networks to

succeed in scenarios requiring continual learning, different

techniques have been proposed.

A popular approach is to add regularization terms to the

loss. Weight regularization methods [27, 74, 1, 35] add

quadratic terms to penalize large differences to the solution

for previous tasks, weighted by some importance measure

so differences in more important parameters are penalized

more. Elastic weight consolidation (EWC) [27] uses the di-

agonal approximation of the Fisher information matrix to

estimate the importance. Rotated EWC [35] proposes a

reparametrization that makes EWC more effective. Synap-

tic intelligence (SI) [74] estimates the importance measure

during training by accumulating gradients. Memory aware

synapses (MAS) [1] uses perturbation theory to estimate

the importance in an unsupervised way. Forgetting can also
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be prevented by regularizing the activations, as in learning

without forgetting (LwF) [33], where a snapshot of the net-

work right before starting to learn the new task (and there-

fore not suffering interference from it) is used as a teacher

and a distillation loss [20] is used during the training of the

new task. Encoder-based lifelong learning [50] uses distilla-

tion in task-specific projections, estimated by autoencoders.

Another way of avoiding forgetting is rehearsal [52, 51],

where a fraction of data (i.e. exemplars) from previous

tasks is kept and revisited during training, and pseudo-

rehearsal [52, 3], where pseudo-exemplars are sampled

from an auxiliary model trained to model previous tasks.

Recent pseudo-rehearsal methods include deep genera-

tive models models [59, 69]. Other approaches to contin-

ual learning include networks that expand their capacity to

allocate new tasks [53, 72, 56] and task-attention mecha-

nisms [58].

While most works focus on classification, continual

learning has also been studied in other settings such as im-

age generation [69, 57, 46], word embeddings [25, 41],

Atari games [27] and continual adaptation of agents [45].

MAS[1] is evaluated in facts learning that involves image

and structured text. However, to our knowledge, there is

not any work specifically studying the implications of con-

tinual learning in a retrieval setting, and catastrophic forget-

ting from the perspective of cross-modal embeddings.

3. Continual cross-modal retrieval

3.1. Cross­modal deep metric learning

Our framework is based on a two-branch network [63],

with image-specific and text-specific embedding branches

that project images and text into a common space. The im-

age embedding operation is u = fθ (x), where u ∈ R
E

is the image embedding of an input image x, extracted by

the image embedding network fθ , parametrized by θ. Sim-

ilarly, the text embedding v ∈ R
E of an input text y is ob-

tained as v = gω (y) by the text embedding network gω
parametrized by ω. Both u and v are normalized using

l2 norm. Images and text are compared in the embedding

space using the Euclidean distance as d (x, y) = ‖u− v‖ =
‖fθ (x)− gω (y)‖.

The image set X = {xi}
NI

i=1 is aligned with a text set

Y = {yj}
NT

j=1 via a pairwise similarity matrix S. This cross-

modal pairwise similarity is indicated by a variable sij ∈ S

which takes value 1 when xi and yj are similar (i.e. pos-

itive pair) and 0 otherwise (i.e. negative pair). We want

the distance between positive pairs to be significantly lower

than the distance between negative pairs. In order to do that

we use the bi-directional ranking loss of [63], which selects

triplets and imposes constraints

d (xi, yj) +m ≤ d (xi, yk)

s.t. sij = 1 and sik = 0
(1)

and (in the other direction)

d (yi′ , xj′) +m ≤ d (yi′ , xk′)

s.t. si′j′ = 1 and si′k′ = 0
(2)

where m is the predefined margin. The triplets are con-

structed based on a positive pair, and a negative pair creating

by replacing either the image or the text by a dissimilar one.

These triplet constraints are included using a margin-based

loss function (where [z]+ = max (0, z)):

LT (X ,Y) = λ1

∑

i,j,k

[d (xi, yj) +m− d (xi, yk)]+

+λ2

∑

i′,j′,k′

[d (yi′ , xj′) +m− d (yi′ , xk′)]+

(3)

3.2. Training, indexing and query stages

In general, machine learning assumes two different

stages, namely training and evaluation (or test), which take

place in that exact order (although in continual learning it

is not the case). We focus on retrieval with a learned fea-

ture extractor (i.e. embedding networks in our case). In this

scenario we identify three stages (see Fig. 1):

Training (feature extractors(s)). Described in the pre-

vious section, the training stage learns the embedding net-

works from the image and text datasets X and Y , and its

result is the parameters θ and ω.

Indexing (database data). The database datasets X̂ and

Ŷ to be indexed are processed using the embedding net-

works to obtain the text and image embeddings, which are

subsequentially indexed in the database. Note that training

data and database data are not required to be the same.

Querying (query data). This stage computes the simi-

larity between a query sample and the indexed data. The re-

sult is a ranking with the most similar sample on top. In our

cross-modal case there are two directions: querying with

images, retrieving from indexed texts (im2txt) and querying

with text, retrieving from indexed images (txt2im).

Note that these three stages are assumed to take place

in that particular order, and a deployed system only per-

forms the querying stage. For simplicity we consider that

the database data is also used as training data, i.e. X̂ = X
and Ŷ = Y .

3.3. A framework for continual retrieval

Now we consider a continual learning setting, in which

data is presented as a sequence of tasks
{

T (t)
}T

t=1
. Each

3



"a black cat"

Time 
(indexing)

Time
(query) 

(c) (d)(a) (b)

"a black cat"

Distance
ranking

Time 
(indexing&query)

"a black cat""a black cat"

Task=animals

Distance
ranking

Distance
ranking

Distance
ranking

Figure 2. Variants of indexing data from a previous task t
′ when

queried at time t > t
′ (a-b) and retrieval (c-d): (a) reindexing, (b)

not reindexing, (c) task known, (d) task unknown.
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Figure 3. Types of pairs in continual cross-modal retrieval: (a)

available in joint training, and (b) available in continual learning,

i.e. without cross-task negative pairs (CTNP). CTNPs are crucial

to avoid overlap between samples of different tasks (bottom). Best

viewed in color.

task T (t) =
(

X (t),Y(t),S(t)
)

involves data from a differ-

ent domain (e.g. animals, vehicles). We assume that the

embedding networks are updated (i.e. fine tuned) with data

of a particular task (i.e. training stage) before indexing data

of that task. The resulting parameters after training task t

are θt and ωt.

The retrieval system is evaluated in the querying stage

with separate data from every task. We consider two set-

tings for evaluation: known task and unknown task, depend-

ing on whether that information is available at query time

(see Fig. 2a-b).

As described previously, the network is trained using

cross-modal positive and negative pairs. When all data is

presented jointly, all negative pairs are available for sam-

pling. However, in the continual setting, pairs are formed

within the same task, i.e. combining samples from X (t)

and Y(t). Thus, we further classify a negative pair (xi, yj)
as intra-task negative pair (ITNP), when xi ∈ X (t) and

yj ∈ Y(t) (sij = 0, sij ∈ S(t)), or as cross-task nega-

tive pair (CTNP), when xi ∈ X (t′) and yj ∈ Y(t), t′ 6= t.

Note that, for simplicity, we assume that all positive pairs

are intra-task. In continual retrieval, CNTPs are not avail-

able during training (see Fig. 3).
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Figure 4. Causes of forgetting in cross-modal embeddings: (a) em-

bedding networks become less discriminative due to drift in pa-

rameter space, and (b) unequal drift increases cross-modal mis-

alignment, and (c) task overlap in embedded space (when task is

unknown). Best viewed in color.

3.4. Do or do not reindex?

The conventional retrieval scenario assumes that training

and indexing are performed once. In this case, there is only

a static set of embeddings, extracted with the same network

at the same time. The same network is used to extract em-

beddings from queries. In continual retrieval this may not

be the case, since training and indexing are performed every

time a new task is presented.

Reindexing. We first consider the straightforward ex-

tension of cross-modal retrieval that assumes that current

and previous tasks all are reindexed with the version of the

embedding networks with updated parameters fθt
and gωt

after a new task t is learned (see Fig. 2a). We refer to this

case as reindexing. However, it has the drawbacks of being

time and resource consuming, since it requires indexing the

same data multiple times, and always requiring access to the

image and text samples of previous tasks. It has the advan-

tage that database and query samples are processed with the

same networks.

No reindexing. We also propose the variant no rein-

dexing that only indexes the data of current task t after

training task t (see Fig. 2). This variant is more efficient,

since database samples are processed only once, and flexi-

ble since it does not require access to previous images and

text (only to their indexed embeddings for retrieval). On

the other hand, no reindexing introduces asymmetry, since

query embeddings are extracted with fθt
(or gωt

), while

database embeddings with gω
t′

(or fθ
t′

, with t′ ≤ t).

4. Catastrophic forgetting in cross-modal em-

beddings

Learning a new task implies that the values of the net-

work parameters will shift away from the previous ones.

This is particularly important when the new task is very dif-

ferent from previous, causing interference between new and

previous tasks that leads to lower performance in the latter.

For simplicity, we will refer to this drop in performance

as catastrophic forgetting. In the following, we identify
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several phenomena that may lead to forgetting in continual

cross-modal retrieval.

Embedding networks. We first consider forgetting in

each embedding network separately, without considering

pairwise interactions. As their parameters move away from

the optimal values for t − 1 (see Fig. 4a), the embeddings

u and v will also drift from their previous values. In gen-

eral, the new values fθt
and gωt

are less discriminative than

previous previous fθt−1
and gωt−1

, causing lower perfor-

mance, because the embedding spaces of u(t) and v(t) are

also less discriminative.

Embedding misalignment. In the particular case of cross-

modal networks, embeddings of different modalities may

drift differently (see Fig. 4a). This unequal drift in u and

v spaces causes additional misalignment that also leads to

higher distances than in the optimal case. Note that uni-

modal retrieval with Siamese networks or Triplet networks

does not suffer from this problem, since parameters are

shared across de various branches.

Task overlap. Negative pairs pull dissimilar samples away

in the embedded space. However, in continual retrieval CT-

NPs cannot be sampled (unless we include some samples

from previous tasks). CNTPs are the only repulsive force

between samples of different tasks. Without them, it is

likely that samples from different tasks will overlap in the

embedded space (see Fig. 4a). Knowing the task at query

time makes this problem less important, since data from

other tasks are not considered at query time.

5. Preventing forgetting

In the following we propose several tools to alleviate for-

getting by addressing the previous causes.

5.1. Preventing embedding drift

A common approach to prevent forgetting is regularizing

the weights with a quadratic term in the loss that penalizes

the weighted Euclidean distance (in the parameter spaces)

to the solution for previous tasks [27, 74, 1, 35]. This can

help to avoid significant drift in the embeddings and to keep

them discriminative for previous tasks. We can write the

particular regularization term for our case as

LR =
∑

k

Θ
(t−1)
k

(

θ
(t−1)
k −θk

)2

+

+
∑

k′

Ω
(t−1)
k′

(

ω
(t−1)
k′ −ωk′

)2
(4)

where Θk and Ωk′ control the regularization strength de-

pending on the importance of θk and ωk, respectively, for

previous tasks. During the training of the first task there is

no regularization, i.e. Θ
(0)
k = 0 and Ω

(0)
k′ = 0. The way

to compute the importance differs in different methods. We

consider two variants:

Global. Here we estimate the importance with respect

to the loss, adapting elastic weight consolidation (EWC) to

our particular triplet loss as (LTR represents the triplet loss):

Θ
(t)
k = Ex,y

[

(

∂

∂θk
LTR

(

X (t),Y(t)|θt,ωt

)

)2
]

(5)

which is computed by sampling triplets as in 1 and

2, and analogously for Ωk′ . This loss already takes into

account triplets and their interactions.

Branch. Instead of estimating importance values that

depend on a joint loss, we consider regularizing each branch

independently. In this case we estimate the importance us-

ing the approach memory aware synapses (MAS), which

can be computed unsupervisedly for each branch with im-

ages or text. The importance for the image branch is esti-

mated as:

Θ
(t)
k = Θ

(t−1)
k + Exi∼X (t)

[

∂

∂θk
l22(fθt(xi))

]

(6)

which is accumulated over previously computed one.

For the text branch the estimation of Ωk′ is analogous. In

this equation, l22 is the squared l2 norm of the function out-

puts, which is used to estimate the importance of parameters

in MAS method.

The final loss combines (3) and (4) as L = LT + λ3LR.

5.2. Preventing unequal drift

In order to prevent unequal drift we propose tying the

networks by sharing layers at the top (bottom layers must

remain modality-specific). In this way, the unequal drift

can be alleviated since the gradients are tied and only differ

in the lower layers.

In some cases when the drifts in text and image embed-

ding are in opposite directions, refraining from reindexing

the database can be an effective tool to alleviate drift, since

only one of the embeddings is affected while the other re-

mains fixed. Fig. 4b illustrates how in that case no reindex-

ing keeps matching pairs at lower distances.

5.3. Decoupling retrieval directions

So far we assumed only a single model is trained to per-

form both text to image and image to text retrieval. This is

reasonable when embeddings are reindexed since the archi-

tecture and the loss are symmetric. However, when database

data is not reindexed and query is, the forgetting is asym-

metric. In that case we can decouple both directions and

train one model for each direction, only regularizing the
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weights in the query branch. This can also be beneficial

in some cases when the image and text embeddings drift in

different directions, keeping one fixed in the previous posi-

tion can keep the distance lower (see example in Fig. 4b).

5.4. Preventing cross­task overlap

The lack of CTNPs can lead to cross-task overlap, since

there is no force separating them. However, reducing the

drift, keeping the embeddings discriminative via weight

regularization and sharing layers may indirectly help to

keep tasks separated (we observed that in our experiments).

Nevertheless, we made some preliminary experiments

creating pseudo-CTNPs (ui, xj) in models with decoupled

retrieval directions using the already indexed embeddings

(analogously for text to image retrieval for the other direc-

tion), but we found they did not help in our experiments,

probably because the asymmetric force that only pushes the

embeddings of one branch. In this case the gradients are

only backpropagated through one branch. We leave their

study more in depth for future work.

6. Experiments

Baselines and variants We evaluate the different vari-

ants of our continual cross-modal framework in two tasks

involving images and text, one focusing on regions and the

other on scenes. We follow the implementation of the two-

branch networks in [63] where 4096-dim image features are

extracted from a VGG-19 model trained on ImageNet, and

text features are 6000-dim from HGLMM features (reduced

with PCA from initial 18000-dim) [29]. The image branch

includes two additional fully connected layers with sizes

2048 and 64 (for SeViGe, 2048 and 512 for SeCOCO) on

top and l2 normalization, and the same for the text branch.

We focus our study on the two fully connected layers on top,

while the initial feature extractors remain fixed. As in [63]

we set λ1 = 1.0, λ2 = 1.5 and the margin m = 0.05. The

resulting model is trained with Adam[26] and a learning rate

of 0.0001, and using dropout after ReLu with probability

0.5. We evaluate different variations of this architecture:

• Joint vs continual. We compare the variants of the

proposed framework (continual) with two baselines

that learn all tasks jointly (joint), differing on whether

CTNPs are sampled or not during training.

• Retrieval direction. We evaluate both text to image

retrieval (txt2im) and image to text retrieval (im2txt).

• Task knowledge. We evaluate both the cases where

the task is known and unknown.

• Reindexing. We consider the embeddings for database

samples are extracted when the corresponding task was

learned (no reindex), or are at the same time as the

query embeddings (reindex).

• Weight regularization. We consider fine tuning with

no regularization (ft), with joint regularization on the

loss (EWC) and with regularization on each u and v

embedding independently (MAS). We set λ3 = 106.

• Decoupled directions. For no reindex we also con-

sider variants where EWC or MAS are only computed

in the branch extracting query embeddings (e.g. MAS-

txt when MAS is computed only on the text branch). In

this case we run two different experiments, each spe-

cialized for one particular retrieval direction.

• Layer sharing. We consider keeping both embedding

networks independent (no sharing) or sharing the top

fully connected layer (sharing).

We consider experiments where each task consist in up-

dating the embedding networks by learning a new domain.

After training the model, the same training data is indexed

(i.e. we extract image and text embeddings) and then the

retrieval performance can be evaluated. We report the fi-

nal results after all tasks are learned. We use Recall@K as

evaluation metric (with K = 10, results for other K in the

supplementary material), with respect to the indexed data

of the same domain (known) or to the whole indexed data

with all domains (unknown). We repeat each experiment

five times and report the average.

6.1. Sequential Visual Genome

Sequential Visual Genome (SeViGe) dataset. We cre-

ated a dataset based on the regions with object-description

pairs in the Visual Genome dataset [30]. Based on the ob-

ject categories of those regions, we selected pairs related

with the domains animals (9 categories), vehicles (6 cat-

egories) and clothes (6 categories), which are learned in

sequence as tasks in our experiments. Each task has a to-

tal of 10481, 7531 and 10200 training images, respectively,

and additional 900/900, 600/600 and 600/600 for valida-

tion/test, respectively (100/100 per category).

Cross-modal retrieval. We evaluate the different meth-

ods in cross-modal region image-text retrieval. The results

for both directions are shown in Table 1. We focus on av-

erage for evaluation when the task is known, and A+V+C

to evaluate when the task is unknown (i.e. the aggregate

of all domains). We first observe that training all tasks

jointly delivers higher performance than the continual set-

ting, as expected. Significant part of that superiority is due

to CTNP, since the performance of joint training drops sig-

nificantly when not sampled. This provides a more realistic

and tighter upper bound, since in the continual scenario CT-

NPs are not available. This drop is more moderate when the

task is known (∼1-2% known, ∼3-4% unknown), since task

overlapping is not a problem. This drop still suggests that

CTNPs still contribute to shape the embedding spaces to be

discriminative beyond simply avoiding task overlap. When
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the top layer is shared, the drop is also smaller, although the

overall performance is also lower than not sharing the layer.

Focusing on continual learning we observe that the sin-

gle modification that most reduces forgetting is not rein-

dexing the database, which provides 3% and 5.1% boosts in

im2txt and txt2im directions, respectively (1.6% and 3.4%

if task is unknown). This surprising result, showing that

reindexing can be harmful, suggests that the misalignment

caused by the unequal drift of image and text embeddings is

more critical than the misalignment caused by not extract-

ing embeddings at the same time, and that keeping good and

discriminative representations in the database is also impor-

tant (recall that in no reindexing only the query embedding

has endured catastrophic interference). Note that this is spe-

cific to cross-modal retrieval because branches do not share

parameters. This may not be the case in image-to-image or

text-to-text retrieval with Siamese or Triplet networks be-

cause the embeddings of the two branches drift equally.

Sharing layers by itself gives an improvement of 1.4% in

im2txt, while not having impact in txt2im. Not reindexing

also gives a similar boost as in the previous case. Interest-

ingly, sharing layers harms performance in joint training,

while for the continual setting it improves the performance,

probably because it reduces the unequal drift by tying the

drift of both modalities at least in the shared layers.

Weight regularization has moderate impact and could

harm the performance sometimes. Decoupling both modal-

ities and applying regularization only in the query network

extractor seems to help in some cases (e.g. +1.3%/+1.6%

gain with MAS-txt vs MAS in txt2im, and +0.7%/+0.9% in

im2txt in the sharing architecture). In this dataset regular-

izing embeddings independently with MAS instead of the

whole network with EWC seems to work better, although

the differences are very marginal. Here we can see that the

forgetting in embedding network is not a significant prob-

lem in cross-modal retrieval setting.

Overall, the best combination provides improvements

of 6%/6.3% in known/unknown txt2im retrieval, and more

moderate improvements of 2.9%/2% in im2txt retrieval.

Insights about the embedding space. We use t-SNE [38]

to visualize the embedding space of variants with shared

layers. Although distances in t-SNE do not reflect real dis-

tances, it is useful to identify structure. We combine text

and image embeddings and runt-SNE, color coding data

with modality and task labels. Joint training (see Fig. 5a)

generates embeddings where data is structured clearly in

separated tasks, and within tasks, in separated clusters

(probably the categories within each task in SeViGe). This

happens in both modalities, which also overlap, aligned ac-

cording to the related clusters. Not sampling CTNPs still

results in intra-task structure (see Fig. 5b, e.g. category

clusters are clear), but the modalities are significantly more

misaligned and with larger overlap, showing the important

(a)

Joint, sharing, w/ CTNPs Joint, sharing, w/o CTNPs

(b)

Continual, sharing, reindexing

(c) (d)

Continual, sharing, no reindexing, txt2im

Figure 5. t-SNE visualization of the cross-modal embedding space

of SeViGe, with the sharing architecture: (a) joint training (with

CTNPs), (b) joint training (without CTNPs), (c) continual (rein-

dexing), and (d) continual (no reindexing). Best viewed in color.

role of CTNPs in aligning modalities and separating tasks.

When learned in a continual fashion (see Fig. 5c), the mis-

alignment is more extreme, even resulting in text and image

samples distributed in different halves of the space. No rein-

dexing (see Fig. 5d for txt2im direction) seems to keep the

image embeddings (database) more discriminative, which

may explain the improved results compared to reindexing.

For example, the image embeddings of animals and vehicles

seem much better separated in Fig. 5d than in Fig. 5c.

6.2. Sequential MS­COCO

Sequential MS-COCO (SeCOCO) dataset. We cre-

ated a second dataset with image-description pairs of MS-

COCO[34]. Each image in MS-COCO is annotated with

five image-level descriptions of the scene and a variable

number of object annotations localized to specific regions

and labeled with one of 80 disjoint object categories. Ob-

ject categories are further organized in 12 disjoint super-

categories. Organizing the data into tasks is challenging in

this case since we want to avoid overlap between tasks, but

there are many object annotations in each image. We orga-

nized the data into groups of super-categories and removed

the images with object annotations in more than one group.

After removing overlapping images we use those groups as

tasks. We finally selected animal, accessory, kitchen, food

and furniture for task 1, vehicle, outdoor, electronic, appli-

ance and indoor for task 2 and person and sports for task

3, with 22475, 13903 and 13919 training images respec-

tively, in addition to 1000/1000 images for validation/test

for each task. Note that many other objects and concepts

remain unannotated, so there is still semantic overlap across

tasks that we cannot control.

Cross-modal retrieval. Table 2 shows the recall@10 for
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Domain

im2txt txt2im

Joint Continual Joint Continual

CTNP reindexing no reindexing CTNP reindexing no reindexing

Yes No ft EWC MAS ft EWC EWC-im MAS MAS-im Yes No ft EWC MAS ft EWC EWC-txt MAS MAS-txt

Architecture: no sharing

animals 29.1 26.0 16.1 16.8 16.9 24.5 24.6 24.2 24.7 24.3 27.8 25.9 15.4 15.2 15.4 20.8 20.8 20.9 19.8 20.7

vehicles 30.9 27.7 20.8 23.3 22.7 24.0 25.1 24.8 26.0 24.8 30.9 27.0 17.5 18.6 19.5 27.2 29.4 28.0 28.8 28.7

clothes 27.9 27.5 27.4 27.0 27.5 27.4 27.0 27.3 27.5 26.3 29.3 27.7 28.1 27.5 28.0 28.1 27.5 27.4 28.0 28.5

average 29.3 27.0 21.5 22.3 22.4 24.5 24.6 24.2 24.7 24.3 29.3 26.8 20.3 20.5 21.0 25.4 25.9 25.4 25.6 26.0

A+V+C 28.5 24.4 17.0 18.4 17.8 18.6 17.9 17.5 19.0 18.3 28.0 23.8 16.3 16.3 16.9 20.7 21.3 20.9 20.9 21.4

Architecture: sharing

animals 28.3 25.3 18.4 17.1 16.4 23.1 21.2 21.4 21.1 21.4 26.8 24.4 16.6 14.8 14.3 22.1 20.7 21.1 20.6 22.2

vehicles 30.2 28.6 22.6 24.7 23.5 23.0 24.9 25.0 23.8 26.0 31.2 27.9 16.9 17.8 16.3 27.3 29.4 29.5 28.4 28.7

clothes 26.7 27.4 27.7 26.9 27.1 27.7 26.9 27.3 27.1 26.7 27.5 26.8 27.2 27.0 26.0 27.2 27.0 27.5 26.0 28.0

average 28.4 27.1 22.9 22.9 22.3 24.6 24.3 24.6 24.0 24.7 28.5 26.4 20.3 19.9 18.9 25.6 25.7 26.0 25.0 26.3

A+V+C 27.8 24.5 18.2 18.2 17.6 19.0 17.9 18.2 17.9 18.8 27.2 23.7 15.9 15.5 14.9 21.8 21.5 22.2 21.0 22.6

Table 1. Results in SeViGe after learning all tasks (Recall@10 in %). average measures performance with known task, while A+V+C with

unknown task. Best joint learning result in green, best continual learning result in red.

Domain

im2txt txt2im

Joint Continual Joint Continual

CTNP reindexing no reindexing CTNP reindexing no reindexing

Yes No ft EWC MAS ft EWC EWC-im MAS MAS-im Yes No ft EWC MAS ft EWC EWC-txt MAS MAS-txt

Architecture: no sharing

task1 65.7 63.8 33.6 32.0 33.0 49.8 48.1 47.2 50.5 47.1 69.7 68.2 40.1 38.0 38.2 59.8 59.2 58.3 60.0 59.7

task2 56.5 54.9 39.8 38.5 40.0 47.0 46.6 46.4 47.0 46.9 65.2 62.6 46.8 44.7 46.9 54.6 55.5 55.1 55.5 55.9

task3 38.2 39.9 39.7 40.1 40.2 39.7 40.1 39.9 40.5 39.7 44.6 45.7 46.7 46.7 46.0 46.7 46.7 46.7 46.0 46.2

average 53.5 52.9 37.7 36.9 37.7 45.5 44.9 44.5 46.0 44.6 59.8 58.9 44.5 43.1 43.7 53.7 53.8 53.4 53.8 54.0

total 52.4 49.8 33.0 32.1 33.0 37.1 36.2 35.6 37.4 36.0 58.5 56.3 40.4 38.7 39.7 48.3 48.0 47.3 48.2 48.4

Architecture: sharing

task1 65.3 63.9 32.9 31.9 34.1 48.4 47.7 47.7 47.8 45.1 70.2 67.7 38.2 37.4 39.8 58.6 56.3 58.4 57.1 57.5

task2 55.7 55.3 40.6 39.9 40.4 46.3 46.0 45.2 44.0 44.4 64.7 63.1 46.0 45.7 46.3 54.6 54.2 55.6 54.6 54.9

task3 37.6 40.1 39.6 39.7 39.3 39.6 39.7 39.9 40.0 39.7 44.8 46.5 46.2 45.8 45.7 46.2 45.8 45.7 46.7 46.1

average 52.9 53.1 37.7 37.2 37.9 44.8 44.5 44.3 43.9 43.1 59.9 59.1 43.5 43.0 43.9 53.1 52.1 53.2 52.8 52.8

total 51.8 50.1 33.2 32.5 33.5 36.1 35.9 35.4 35.5 35.3 58.7 56.4 39.3 38.9 39.9 47.7 46.8 48.1 47.1 47.5

Table 2. Results in SeCOCO after learning all tasks (Recall@10 in %). average measures performance with known task, while total with

unknown task. Best joint learning result in green, best continual learning result in red.

different methods on SeCOCO. In this case joint training

also performs better than continual learning methods. The

drop due to not training with CTNPs is relatively lower than

in SeViSe. This can be explained by a higher semantic over-

lap between tasks that makes CTNPs less critical. The rel-

ative importance of sharing layers is also less important in

this case, with very little difference in the results.

Regarding continual learning methods, no reindexing is

again the most helpful tool to prevent forgetting. Compar-

ing with the ft baselines it gives important boosts of roughly

7-9%/3-8% in known/unknown tasks, for both sharing and

not sharing layers. As in joint training, sharing layers does

not have significant impact in this dataset. Similarly, weight

regularization only brings marginal gains. In total, the best

result for txt2im retrieval improves 9.5%/8% over the base-

line for known/unknown tasks. For im2txt retrieval the im-

provement is 8.3%/4.4%. The results are still far from joint

training, so there is space for improvement in future works.

7. Conclusion

In this paper we propose, to our knowledge, the first

study on how forgetting affects multimodal embedding

spaces, focusing on cross-modal retrieval. We propose a

continual cross-modal retrieval model that emphasizes the

important role of the indexing stage. Cross-modal drifts are

also key factors in forgetting in cross-modal tasks. We eval-

uated several specific tools to alleviate forgetting.
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