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Abstract

Incrementally training deep neural networks to recog-

nize new classes is a challenging problem. Most exist-

ing class-incremental learning methods store data or use

generative replay, both of which have drawbacks, while

‘rehearsal-free’ alternatives such as parameter regulariza-

tion or bias-correction methods do not consistently achieve

high performance. Here, we put forward a new strat-

egy for class-incremental learning: generative classifica-

tion. Rather than directly learning the conditional distri-

bution p(y|x), our proposal is to learn the joint distribu-

tion p(x, y), factorized as p(x|y)p(y), and to perform clas-

sification using Bayes’ rule. As a proof-of-principle, here

we implement this strategy by training a variational autoen-

coder for each class to be learned and by using importance

sampling to estimate the likelihoods p(x|y). This simple

approach performs very well on a diverse set of continual

learning benchmarks, outperforming generative replay and

other existing baselines that do not store data.

1. Introduction

Deep neural networks excel in supervised learning tasks,

but only when all the classes to be learned are available at

the same time. Incrementally training a deep neural net-

work to distinguish between a gradually growing number

of classes has turned out to be very challenging [12, 43,

48, 50]. Successful strategies for class-incremental learn-

ing generally either rely on storing a subset of the past data

and/or on replaying (representations of) past data, both of

which have important disadvantages. Storing data is not

always possible in practice (e.g. due to safety/privacy con-

cerns or because of limited storage capacity), while replay

— or rehearsal — is computationally expensive as it in-

volves constant retraining on past data.

These drawbacks have sparked recent interest in

‘rehearsal-free’ continual learning [32], in which storing
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data or using replay are not allowed. In the past few years

several methods have been proposed that can do class-

incremental learning without replay or stored data [7, 19,

31, 34]. However, those methods rely on protocols with

explicit task boundaries and/or their performance critically

depends on the availability of a suitably pre-trained feature

extractor.

In this paper, we put forward generative classification

as a promising new strategy for class-incremental learn-

ing. Specifically, instead of training neural networks to di-

rectly learn the conditional distribution p(y|x), we propose

to train them to learn the joint distribution p(x, y), factor-

ized as p(x|y)p(y), and then to perform classification using

Bayes’ rule. A key benefit of this strategy is that it rephrases

a challenging class-incremental learning problem as a more

easily addressable task-incremental learning problem (see

Section 4.1).

To demonstrate the potential of generative classification

for class-incremental learning, as a proof-of-principle we

implement this strategy by training a variational autoen-

coder model for each class to be learned and by using im-

portance sampling to estimate the class-conditional like-

lihoods during inference. We find that such a straight-

forward implementation of a generative classifier performs

very well on a diverse range of class-incremental learn-

ing problems, outperforming generative replay and existing

rehearsal-free methods. Moreover, this approach does not

use replay, it does not store data, it can be applied to arbi-

trary class-incremental data streams (i.e. no need for task

boundaries) and it does not rely on pre-trained networks,

although if available those can be used effectively.

2. Problem formulation

In continual or incremental learning, an algorithm does

not have access to all data at the same time, but it encoun-

ters the data in a sequence [13, 17, 41]. Recently, three

different types, or ‘scenarios’, of continual learning have

been described [52]: in task-incremental learning an al-

gorithm must incrementally learn a set of clearly distinct

tasks, in domain-incremental learning an algorithm must



learn the same task but with changing contexts, and in class-

incremental learning an algorithm must incrementally learn

to distinguish between a growing number of classes. In

this paper, we focus on class-incremental learning, which

is generally considered to be the most challenging contin-

ual learning scenario [6, 35, 42].

2.1. Class­incremental learning

There are various different ways in which a class-

incremental learning problem can be set up. This makes

direct comparisons between studies challenging, even when

they use the same datasets. We therefore start by discussing

some important assumptions that vary between studies.

2.1.1 Task-based vs. task-free

The goal of class-incremental learning is to learn, given a

dataset D = {xi, yi}
n
i=1, a classification rule that maps an

input x ∈ X to a predicted label y ∈ Y . However, unlike

in classical machine learning, the algorithm that must learn

this mapping is not given access to the entire dataset at once.

Instead, the data is made available according to a particular

class-incremental protocol.

Task-based class-incremental learning A commonly

used class-incremental learning protocol is to split up the

dataset into distinct ‘tasks’ (or ‘episodes’), whereby each

task contains a different subset of classes [e.g. 43, 48, 52].

The algorithm is then sequentially given access to the data

of each task (Figure 1A). Importantly, after transitioning

from one task to the next, the data from the previous task

is no longer available. During each task, the training data of

that task could either be given to the algorithm all at once,

or it might be presented according to a fixed stream that is

not controlled by the algorithm (see Appendix B in [1]).

Task-free class-incremental learning It has been argued

that task-based protocols are not representative of real-

world problems, and that the community should shift its

focus to ‘task-free’ continual learning [2, 3, 19, 56]. In a

task-free protocol, the algorithm is presented with an arbi-

trary stream of data, without any prior knowledge about the

structure of this stream (Figure 1B). Many existing methods

for class-incremental learning cannot deal with this setting,

because they rely on the presence of ‘task boundaries’ (see

Table B.1 in [1] for an overview).

In general, benchmarks for task-free class-incremental

learning need to include a protocol for how the data stream

should be generated (i.e. they should specify when sam-

ples from each class are presented). An open, largely un-

addressed research question relates to the development of a

principled way to design such data streams. In this paper

we side-step this question, because for the particular imple-

mentation of generative classifier considered here — with a

Figure 1. Schematic illustrating the distinction between (A) task-

based and (B) task-free class-incremental learning.

separate generative model for each class — the actual class-

incremental sequence of the data stream does not matter.

Task-free continual learning has also been referred to

as ‘streaming’ or ‘online’ continual learning. In that case,

sometimes additional constraints are that each training sam-

ple should only be presented once and that the mini-batch

size should be one [2, 19]. However, it is worth pointing

out that these constraints relate to the sample efficiency of

an algorithm and its robustness to noisy updates and, al-

though they are topics worth studying, these are indepen-

dent from the distinction between task-based and task-free

class-incremental learning. For one of the benchmarks re-

ported in this paper, we follow this more strict definition of

streaming learning.

2.1.2 Other critical assumptions

Data storage An important assumption made by many

class-incremental learning methods is that it is acceptable to

store a limited amount of past samples in a memory buffer.

The size of this memory buffer is typically one of the most

important determinants of a method’s performance [4, 42].

In practice, storing data is not always possible (e.g. safety

or privacy concerns), and in this study we do not allow data

storage, a setting which has been referred to as memoryless

class-incremental learning [7].

Pre-training Another assumption commonly made in the

class-incremental learning literature, especially by studies

that do not allow storing data, is that a suitably pre-trained

network or feature extractor is available or that there is an

extended, non-incremental initialization phase that can be

used for pre-training [e.g. 19, 30, 34, 50]. While the im-

portance of the assumption about data storage seems to be

widely acknowledged, this assumption about pre-training

has received less attention. Here we investigate the impor-

tance of pre-training by considering both benchmarks with

pre-trained networks available (CIFAR-100 and CORe50)

and benchmarks without (MNIST and CIFAR-10).

3. Existing class-incremental learning methods

3.1. Methods relying on stored data

Many class-incremental learning methods store a sub-

set of past data in a memory buffer. That data could be

replayed when training on new data [10, 33, 46], they



could be used as exemplars or prototypes to guide classi-

fication decisions [12, 43] or they could be used in other

ways [5, 21, 54]. Important questions when storing data are

which samples to store [37, 39] and in what format [9, 18].

As discussed, we do not consider methods that store data.

3.2. Generative replay

If it is not possible to store data, an alternative is to replay

generated ‘pseudo-data’ [45]. This strategy has been shown

to be successful for toy problems with relatively simple in-

puts [48, 52], but it struggles on problems with more com-

plex inputs, such as natural images [2, 28]. Some recent

studies have shown competitive performance with genera-

tive replay on class-incremental learning problems with nat-

ural images [11, 30, 50], but the approaches in those studies

depend on pre-trained networks (or on an extensive, non-

incremental initialization phase [30]).

We include two generative replay methods in our com-

parison: deep generative replay [DGR; 48], which re-

plays pixel-level representations, and brain-inspired replay

[BI-R; 50], which replays latent feature representations.

3.3. Regularization­based methods

A popular strategy for continual learning is parameter

regularization, which aims to minimize changes to param-

eters important for previously learned tasks. Examples of

this strategy are elastic weight consolidation [EWC; 25]

and synaptic intelligence [SI; 55]. Although it is well-

established that these parameter regularization methods by

themselves do not perform well in the class-incremental

learning scenario [15, 22, 51], we include them in our

comparison for completeness. Some regularization-based

methods can be interpreted as performing approximate

Bayesian inference on the parameters of the neural net-

work [16, 25, 38] (i.e. Bayes’ rule is used to find p(θ|D),
with D the observed data). Note that this is different from

the generative classification strategy proposed in this paper,

which uses Bayes’ rule for the classification decision (i.e. to

find p(y|x)).

3.4. Bias­correcting algorithms

When a standard softmax-based classifier is trained on

a class-incremental learning problem, it ends up predicting

only the most recently seen classes [29]. It has been ar-

gued that this is due to a bias in the output layer [6, 54],

and several recent class-incremental learning methods aim

to correct this bias by making the magnitude of the output

weights of all classes comparable. Examples of this strat-

egy are ‘CopyWeights with Re-init’ [CWR; 31] and its im-

proved version CWR+ [34]. A disadvantage of these two

methods is that they freeze the parameters of all hidden lay-

ers after the first task, so representation learning is limited.

To address this, the method AR1 was proposed [34], which

is similar to CWR+ except that it does not freeze the hidden

layers but regularizes them using a modified version of SI.

There are also several bias-correcting algorithms that

rely on stored data from previously seen classes [e.g. 5, 54],

but as discussed we do not consider those methods here.

Related to these bias-correction algorithms, a trick to

prevent large differences in the magnitude of the output

weights between tasks in the first place, is to always only

train on the classes from the current task (i.e. only include

the output units of classes from the current task in the

softmax-normalization, see Appendix A.1.5 in [1] for de-

tails). Zeno et al. [56] called this the ‘labels trick’. A lim-

itation of this trick is that there is no attempt to train the

network to distinguish between classes from different tasks.

3.5. Other methods

Incremental linear discriminant analysis [23, 40] is a

popular method in the data mining community that is suit-

able for class-incremental learning. Until recently, this

method had largely been ignored in the continual learn-

ing community, likely because it can only learn a linear

classifier. However, a recent study applied this method —

now referred to as streaming linear discriminant analysis

[SLDA; 19] — to the features extracted by a fixed, pre-

trained deep neural network, which resulted in impressive

performance on several class-incremental learning prob-

lems. The main disadvantage of SLDA is that it is not ca-

pable of representation learning, which means that its per-

formance will likely heavily depend on the availability of

suitably pre-trained networks. Here we test this: on the

benchmarks in this paper for which no pre-trained networks

are available, we apply SLDA directly on the input space.

4. Proposed strategy: generative classification

4.1. General framework & intuition

In deep learning, the typical approach to classification is

to train a neural network to directly learn the conditional

distribution p(y|x) that we are interested in, for example

by training a feed-forward classifier with a softmax output

layer using cross-entropy loss. When all classes are avail-

able at the same time, this approach indeed works very well.

In the incremental setting, however, this direct approach

breaks down. A softmax classifier trained in the standard

way heavily over fits to the most recently seen classes, a

phenomenon referred to as catastrophic forgetting. A rea-

son for this catastrophic forgetting is that, based on the most

recently seen data, the empirical version of p(y|x) — which

the softmax classifier aims to learn — is indeed heavily bi-

ased towards the most recent classes. So far, as reviewed in

Section 3, the dominant approach in the continual learning

field has been to try to find methods and tricks to alleviate

catastrophic forgetting.



Here we propose a shift of gears. Breaking with the tra-

ditional deep learning approach of training classifiers dis-

criminatively, we propose to tackle class-incremental learn-

ing with generative classifiers. Rather than training deep

neural networks to directly learn the conditional distribu-

tion p(y|x), we propose to train them to learn the joint dis-

tribution p(x, y) — factorized as p(x|y)p(y) — and to use

Bayes’ rule for classification. The key benefit of this pro-

posed strategy is that, in a class-incremental learning set-

ting, based on the most recently seen data the empirical ver-

sion of p(x|y) should not have any particular bias. Only the

empirical version of p(y) is biased, but learning this distri-

bution without catastrophic forgetting is typically straight-

forward (e.g. the number of times each label is observed

could be counted) or not needed (e.g. if it can be assumed

that all labels have the same prior probability).

Class-incremental problem becomes task-incremental

Another way to describe the benefit of the proposed gen-

erative classifier strategy is that it turns a challenging

class-incremental learning problem into an easier task-

incremental learning problem. This is the case because

learning p(x|y) can be interpreted as a task-incremental

problem whereby each ‘task’ consists of learning a class-

conditional generative model for a specific label y. An im-

portant advantage of task-incremental learning is that it

is possible to train networks with task-specific compo-

nents [e.g. 36, 47, 53], or even to use completely separate

networks for each task to be learned. This last insight is

used for our proof-of-principle implementation of a gener-

ative classifier with a separate generative model for every

class. Note however that it should be possible to use other

task-incremental learning techniques to enable parameter

sharing between these models (see also the discussion).

4.2. Implementation: VAEs & importance sampling

In this paper, to demonstrate the potential of the pro-

posed generative classification strategy, we implement a

generative classifier by training a variational autoencoder

[VAE; 24] model for each class to be learned1 and by us-

ing importance sampling to estimate the likelihoods p(x|y).
For p(y) we use a uniform distribution over all possible

classes, as all benchmarks have an approximately equal

amount of samples per class. In general, p(y) could be

learned from the data as well, for example by counting the

number of times each class is observed in the training data.

4.2.1 Variational autoencoder

To learn the distribution p(x|y), we train a VAE model for

each class to be learned. For the experiments on MNIST

1Note that this setup could also be described as a single VAE

model with class-specific masks whereby for each class a different, non-

overlapping subset of parameters is unmasked.

and CIFAR-10, a completely separate VAE model is learned

for every class, while for the experiments on CIFAR-100

and CORe50 the lower, pretrained layers are shared be-

tween all models (see Section 4.3).

A VAE model consists of an encoder qφ that maps an

input x to a posterior distribution qφ(z|x) in latent space,

a decoder pθ that maps a latent variable z back to a distri-

bution pθ(x|z) in the input space and a prior distribution

pprior(z). For the VAE models used in this paper, these dis-

tributions are given by:

qφ(z|x) = N
(

z

∣

∣

∣
µ

(x)
φ ,σ

(x)
φ

2
I
)

(1)

pθ(x|z) = N
(

x

∣

∣

∣
µ

(z)
θ , I

)

(2)

pprior(z) = N (z |0, I ) (3)

whereby µ
(x)
φ and σ

(x)
φ are the outputs of the encoder net-

work when x is fed in, and µ
(z)
θ is the output of the decoder

network when z is fed in. For both the encoder network

and the decoder network, we use deep neural networks. See

Appendix A.3 in [1] for full details on the architectures that

are used for the different benchmarks. Importantly, for each

benchmark, the architecture of the VAE models is chosen so

that the total number of parameters of the generative classi-

fier is similar to the number of parameters used by genera-

tive replay.

The VAE models are trained by optimizing a variational

lower bound to the likelihood pθ(x) =
∫

pθ(x, z)dz =
∫

pθ(x|z)pprior(z)dz. This lower bound, or ELBO, is given

by:

LELBO (θ,φ;x) = Eqφ(z|x)

[

log
pθ(x, z)

qφ(z|x)

]

= Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||pprior(z))

(4)

where DKL is the Kullback-Leibler divergence. Full details

of the VAE training are given in Appendix A.2 in [1].

4.2.2 Importance sampling

To estimate the likelihoods p(x|y), we use importance sam-

pling [8, 44]. This means that the likelihood of a test sam-

ple x under the VAE model of class y is estimated using:

p(x|y) =
1

S

S
∑

s=1

pθy

(

x|z(s)
)

pprior

(

z(s)
)

qφ
y

(

z(s)|x
) (5)

whereby θy and φy are the parameters of the VAE model

of class y, S is the number of importance samples and z(s)

is the sth importance sample drawn from qφ
y
(z|x). For the

results in Table 2, we use S = 10, 000 importance samples



Table 1. Overview of the benchmarks used in this paper. Each benchmark consists of an image dataset split up into a number of distinct

tasks, with all tasks containing an equal number of classes. Such a task-based design is not needed for our generative classifier, but it is

used to enable a comparison with other methods. Within each task, the training data is presented to the algorithm in a random, i.i.d stream,

with the number of iterations per task and the mini-batch size being part of the benchmark. Another important aspect of each benchmark

is whether pre-trained models are available. For all benchmarks considered in this paper, storing data is not allowed.

Dataset Info Data-Stream Parameters Pretrained

Classes Image-type Tasks Iterations Batch size Models?

MNIST 10 28x28, grey 5 2000 128 -

CIFAR-10 10 32x32, RGB 5 5000 256 -

CIFAR-100 100 32x32, RGB 10 5000 256 ConvLayers

CORe50 10 128x128, RGB 5 single pass 1 ResNet18

for each likelihood estimation. The effect of reducing the

number of importance samples is explored in Table 4.

Based on Bayes’ rule: p(y|x) ∝ p(x|y)p(y), classifica-

tion is then done using:

ŷ(x) = argmax
y∈Y

p(x|y)p(y) = argmax
y∈Y

p(x|y) (6)

whereby ŷ(x) is the class label predicted by the generative

classifier for test sample x. Note that the last equality in

Eq. 6 holds because, in this paper, p(y) is modelled with a

uniform distribution over all possible classes.

4.3. When pre­trained models are available:
reconstruction loss in the feature space

The generative classifier approach described so far does

not depend on the availability of pre-trained networks, as it

is possible to train the full generative models from scratch.

If pre-trained models are available, however, there are var-

ious ways in which they could be used. For example, sup-

pose that pre-trained convolutional layers are available. One

option would be to use these to initialize the convolutional

layers of the encoder networks of the VAE models, and then

to proceed with training in the standard way. Another op-

tion, which is the approach taken in this paper, is to use the

pre-trained convolutional layers as a fixed feature extractor,

and then to train the VAE models on the extracted features

rather than on the raw inputs. An advantage of this second

approach, which is reminiscent of recent studies that per-

formed generative replay in the feature space [30, 50], is

that it appears to be easier to learn good generative mod-

els for such extracted features, presumably because they are

less complex than the raw inputs.

5. Experiments

In this section we test the above implementation of the

proposed generative classification strategy on a diverse set

of class-incremental learning benchmarks. On each bench-

mark, we compare our generative classifier with the ap-

plicable methods discussed in Section 3 that do not store

data (see Appendix A.1 in [1] for technical details of all

compared methods). As far as possible, we use the same

“base network” architecture and the same training settings

for all compared methods. Full details of the architec-

tures and training settings used for each benchmark are pro-

vided in Appendix A.3 in [1]. Documented code for all

experiments (including for all compared methods) is avail-

able online: https://github.com/GMvandeVen/

class-incremental-learning.

5.1. Benchmarks

An overview of the benchmarks used in this paper is pro-

vided in Table 1. All benchmarks are set up as task-based,

in order to be able to compare with current state-of-the-art

class-incremental learning methods, even though our gen-

erative classifier can be applied to task-free protocols as

well.2 Important aspects of each benchmark are the number

of tasks, the number of iterations per task, the mini-batch

size and whether pre-trained models are available. For all

benchmarks, within tasks the training data is always fed to

the network in an i.i.d. stream, although some of the com-

pared methods (EWC, and SLDA for the first task) addi-

tionally assume they can access a task’s training data in one

large batch (see Appendix B in [1]).

5.1.1 MNIST

The first benchmark is based on the MNIST dataset [27],

which is split up into 5 tasks with 2 digits each. Following

previous studies [22, 51], this benchmark has 2000 itera-

tions per task and a mini-batch size of 128. The base net-

work for this benchmark is a fully-connected network with

2 hidden layers of 400 ReLU units and a softmax output

layer. No pre-training is used.

2For the specific implementation of the generative classifier used in

this paper, with a separate model for each class, the performance does not

depend on the specific class-incremental sequence at all. The reason is that

the class-specific VAE models are trained only on samples of their own

class, and it therefore does not matter if those classes are intermingled in

certain ways.



Table 2. Final test accuracy (as %) of all compared methods on the different benchmarks. Evaluation is according to the “class-incremental

learning scenario” or the “single-headed setting” (i.e. the model has to chose between all classes). Only methods that do not store data are

included. All experiments were performed 10 times with different random seeds, reported are the means (± SEMs) over these runs.

Strategy Method MNIST CIFAR-10 CIFAR-100 CORe50

Baselines
None 19.92 (± 0.02) 18.74 (± 0.29) 7.96 (± 0.11) 18.65 (± 0.26)

Joint 98.23 (± 0.04) 82.07 (± 0.15) 54.08 (± 0.27) 71.85 (± 0.30)

Generative Replay

DGR 91.30 (± 0.60) 17.21 (± 1.88) 9.22 (± 0.24) -

BI-R - - 21.51 (± 0.25) 60.40 (± 1.04)

BI-R + SI - - 34.38 (± 0.21) 62.68 (± 0.72)

Regularization
EWC 19.95 (± 0.05) 18.63 (± 0.29) 8.47 (± 0.09) 18.56 (± 0.31)

SI 19.95 (± 0.11) 18.14 (± 0.36) 8.43 (± 0.08) 18.69 (± 0.26)

Bias-correction

CWR 32.48 (± 2.64) 18.37 (± 1.61) 21.90 (± 0.68) 40.28 (± 1.13)

CWR+ 37.20 (± 3.11) 22.32 (± 1.08) 9.34 (± 0.25) 40.12 (± 1.06)

AR1 48.84 (± 2.55) 24.44 (± 1.08) 20.62 (± 0.45) 45.27 (± 1.02)

Labels Trick 32.46 (± 1.95) 18.43 (± 1.31) 23.68 (± 0.26) 42.59 (± 1.03)

Other SLDA 87.30 (± 0.02) 38.35 (± 0.03) 44.49 (± 0.00) 70.80 (± 0.00)

Generative Classifier 93.79 (± 0.08) 56.03 (± 0.04) 49.55 (± 0.06) 70.81 (± 0.11)

5.1.2 CIFAR-10 without pre-training

For this benchmark the CIFAR-10 dataset [26] is split up

into 5 tasks with 2 classes each. The number of iterations

per task for this benchmark is 5000 and the mini-batch size

is 256. Following previous studies [2, 12, 33], the base net-

work is a small version of ResNet18 [20] with three times

less feature maps across all layers. No pre-training is used.

5.1.3 CIFAR-100 with pre-training on CIFAR-10

This benchmark is taken from the study that proposed

BI-R [50]. The CIFAR-100 dataset [26] is split up into 10

tasks with 10 classes each. There are 5000 iterations per

task with mini-batch size of 256. The base network is a con-

volutional neural network with 5 pre-trained convolutional

layers followed by 2 randomly initialized fully-connected

layers with 2000 ReLU units and a softmax output layer.

The convolutional layers were pre-trained on CIFAR-10.

To enable a direct comparison, we use the exact same pre-

trained convolutional layers as in [50], which were made

publicly available by the authors.

5.1.4 CORe50 with pre-training on ImageNet

The final benchmark is based on the CORe50 dataset [31].

This dataset is made up of image-frames cropped from short

15 second videos of moving objects. There are 10 differ-

ent classes, with each class represented in the dataset by 5

different objects that were each filmed in 11 different envi-

ronments. As in [14, 31], we use the images from eight of

these environments for training and the others for testing.

This results in approximately 10, 500 training images per

class. The dataset is split up into 5 tasks with 2 classes

each. This benchmark follows the more strict definition

of streaming learning: each training image is presented by

itself (i.e. mini-batch size of 1) and only once. Follow-

ing [19], a standard ResNet18 pretrained on ImageNet is

used as a fixed feature extractor. The base network on top

of this feature extractor consists of one fully connected layer

with 1024 ReLU units and a softmax output layer.

5.2. Results

Table 2 shows the performance of our generative classi-

fier on the four benchmarks described above, along with the

performance of the methods discussed in Section 3 that also

do not store data. The generative classifier performed very

strongly, comfortably outperforming all compared methods

on three out of four benchmarks. Of special note are the

substantial gaps with the generative replay variants, while

these methods used similar number of parameters. Only

on the CORe50 benchmark, in which an extensively pre-

trained network was used and in which each sample was

presented only once, the performance of the generative clas-

sifier was comparable to that of SLDA, while still substan-

tially higher than that of the other compared methods.

An interesting result is that SLDA still performed com-

petitively when it was applied directly on the raw inputs of

MNIST and CIFAR-10. Although its performance was well

below that of our generative classifier, it outperformed al-

most all other methods.

Another thing to note from these results is the modest

performance of the bias-correction methods, especially on

benchmarks where no pre-training was used. When pre-

trained networks were available the relative performances



Figure 2. Samples randomly drawn from the VAE models of the generative classifier for (A) MNIST and (B) CIFAR-10.

Table 3. Comparison of the performance of the generative classifier with the performance of a softmax-based classifier discriminatively

trained on samples from the VAE models of the generative classifier. Shown is the test accuracy (as %) over all classes. All experiments

were performed 10 times with different random seeds, reported are the means (± SEMs) over these runs.

MNIST CIFAR-10 CIFAR-100 CORe50

Generative classifier 93.79 (± 0.08) 56.03 (± 0.04) 49.55 (± 0.06) 70.81 (± 0.11)

Discriminative classifier trained on generated samples 85.93 (± 0.43) 13.71 (± 0.61) 33.84 (± 0.14) 47.86 (± 1.77)

of these methods improved, but they did not come close to

those of the best performing methods.

5.3. Generative classification vs. generative replay

An intriguing result from the above comparisons is that

our generative classifier consistently and sometimes sub-

stantially outperformed generative replay. This suggests

that directly using generative models to perform classifica-

tion might be a better strategy than using those models indi-

rectly to generate replay for discriminatively training a clas-

sifier. However, it could be argued that this conclusion is not

completely warranted by these results, as both strategies did

not use the exact same generative models (even though the

total number of parameters was similar). For generative re-

play one large generative model was incrementally trained

on all classes, while for the generative classifier a series of

smaller, separate generative models was trained.

To more directly compare generative classification and

generative replay, we trained — in an i.i.d. manner — a

softmax-based classifier on samples generated by the VAE

models of the generative classifier (see Appendix A.4 in [1]

for full details on this experiment). Another way to phrase

this experiment is that a discriminative classifier was trained

exclusively with ‘generative replay’ produced by the same

generative models as used by the generative classifier. For

all benchmarks, we found that the generative classifier

substantially outperformed the discriminative classifier that

was trained on its own samples (Table 3). This suggests

that, also when the same generative models are used, gener-

ative classification outperforms generative replay.

The results in Table 3 also indicate that the quality of

the samples produced by the VAE models of our genera-

tive classifiers was not so good. To check this, we visual-

ized samples drawn from the VAE models of the generative

classifier for the MNIST and CIFAR-10 benchmarks (Fig-

ure 2). While for MNIST the generated samples look rea-

sonable, for CIFAR-10 they are indeed not great. This thus

indicates that competitive class-incremental learning per-

formance could be obtained by a generative classifier even

without high-quality generative models.

6. Discussion

Class-incremental learning is a challenging problem. So

far the deep learning community has tackled this prob-

lem by directly learning a discriminative classifier, which

only seems to work in combination with tricks such as pre-

training, storing data or replay. Here we proposed an alter-

native strategy — to learn a generative classifier — and we

showed that it can outperform generative replay and exist-

ing rehearsal-free methods.

An interesting finding from our comparison of class-

incremental learning methods was the strong performance

of SLDA [19]. It outperformed generative replay variants

on three out of four benchmarks, and it achieved competi-

tive performance even when applied directly on the raw in-

puts. We believe this strong performance can be explained



Table 4. Performance of generative classifier as function of number of importance samples used for inference. Shown is test accuracy (as

%) over all classes. Experiments were performed 10 times with different random seeds, reported are the means (± SEMs) over these runs.

S = 1 S = 10 S = 100 S = 1, 000 S = 10, 000

MNIST 91.14 (± 0.08) 92.46 (± 0.09) 93.25 (± 0.09) 93.62 (± 0.10) 93.79 (± 0.08)

CIFAR-10 50.86 (± 0.10) 54.64 (± 0.09) 55.43 (± 0.10) 55.83 (± 0.09) 56.03 (± 0.04)

CIFAR-100 45.02 (± 0.10) 48.45 (± 0.10) 49.26 (± 0.10) 49.48 (± 0.08) 49.55 (± 0.06)

CORe50 61.00 (± 0.19) 69.09 (± 0.14) 70.33 (± 0.14) 70.62 (± 0.14) 70.81 (± 0.11)

because SLDA can be interpreted as a generative classifier.

SLDA learns a mean vector µy for each class y and a co-

variance matrix Σ that is shared between all classes. The

generative model that SLDA implicitly assumes for each

class y is given by p(x|y) = N
(

x
∣

∣µy,Σ
)

. SLDA is how-

ever “a generative classifier in disguise” because it does not

explicitly compute the likelihoods during inference, since

with its assumptions the decision boundaries implied by the

underlying generative models can be computed analytically.

The main disadvantage of SLDA is that it can only learn

linear classifiers. To further improve upon SLDA, it seems

necessary to find a way to do representation learning in a

class-incremental way. This is exactly what our deep gen-

erative classifiers are able to do. Learning good represen-

tations is not easy, and it is not surprising that this abil-

ity comes at a cost of increased sample complexity. How-

ever, (complex) representation learning is not a necessary

component of our proposed strategy. When the amount of

training data is small, or when the representations provided

by a pre-trained network are already good, it is probably

better to learn relatively simple generative models. Indeed,

SLDA’s performance can be seen as the minimal attainable

performance for a generative classifier, upon which can be

improved when sufficient data is available.

Compared with generative replay, an important advan-

tage of generative classifiers is that training is less costly, as

replay is not necessary. On the flip-side, inference (i.e. mak-

ing a classification decision) with generative classifiers is

relatively costly, as it involves computing/estimating the

likelihood of a test sample under the generative model of

each possible class. For our specific implementation, this

seems especially problematic because a large number of

importance samples tends to be needed for high precision

likelihood estimates with VAE models [49]. For the results

reported in Table 2, we used 10, 000 importance samples

for each likelihood estimation. However, we found that the

number of importance samples could be lowered substan-

tially without large drops in performance (Table 4). Even

using just a single importance sample resulted in state-of-

the-art class-incremental learning performance on three out

of four benchmarks. Moreover, there are also other tricks

that could speed up inference: it might be possible to use

uncertainty estimates (which can be obtained from the gen-

erative models [37]) to inform the number of importance

samples to use, or the classification decision could be made

hierarchical (e.g. first decide whether it is a cat or a dog,

then decide on the specific breed).

Another disadvantage of our specific implementation of

the generative classifier is that a completely new generative

model is learned for each new class. It could be questioned

how scalable this is. In this regard, we believe it is im-

portant to point out three things. Firstly, to ensure a fair

comparison between our generative classifier and genera-

tive replay, we controlled for the total number of parame-

ters. Secondly, as illustrated by SLDA, even using small

or minimal generative models for each class can result in

competitive performance. Finally, and perhaps most impor-

tantly, the main point of this paper is to highlight the poten-

tial of generative classification for class-incremental learn-

ing: our implementation with independent VAE models is

a proof-of-principle. For practical applications, the gener-

ative models of the different classes should probably share

substantial parts of their networks. Such sharing introduces

the risk of interference, but it also opens up the possibility

of positive transfer between the generative models. Impor-

tantly, as pointed out in Section 4.1, learning the different

class-conditional generative models is a task-incremental

problem, which is an important simplification compared to

the original class-incremental problem [52]. We therefore

expect the question of how to optimally share parts of the

generative models to be a fruitful topic for further research.
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