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1. Qualitative Results of VQ-VAE in CIFAR-
100 and ImageNet

In this section, we show the qualitative results of re-
constructed images by the hierarchical VQ-VAE pretrained
given half classes of CIFAR-100 (the one used in our main
paper). Fig. 1 shows the model architecture of the hierar-
chical VQ-VAE.

Example reconstructed images from CIFAR-100 are pro-
vided in Fig. 2-(a). And those from ImageNet with resolu-
tion 32, 64, 224 are in Fig. 2-(b), Fig. 2-(c)), Fig. 2-(d))
respectively. Looking at the qualitative results presented
in Fig. 2, we argue that our VQ-VAE is capable of recon-
structing varying sizes of images adequately, despite being
applied to a dataset (ImageNet) that is different from the
training dataset (CIFAR-100). To answer why the VQ-VAE
has such a good generalization ability, intuitively, a VQ-
VAE is just a pixel reconstructor and the data (50 classes
from CIFAR-100) used for pretraining contains diverse im-
ages that provides a considerably good pixel distribution for
learning.

2. Compression for Codes via Bit-Swap

Because we use the codebook size of 512, the discrete
value of a code ranges from [0, 511]. Theoretically, a code
can be saved using 9 bits (29 = 512), but in practice, a sys-
tem saves codes data in the least unit of byte, so it causes
2 bytes, i.e., 16 bits to save an uncompressed code. Ac-
cording to entropy coding scheme, the entropy of a certain
data distribution p(x), defined by H[x] , E[− log p(x)],
is the lower bound on how many average bits (called ‘mes-
sage length’) a lossless compression method can achieve to
encode data points coming from this distribution. Table 1
shows the entropy of top-level and bottom-level codes ob-
tained by compressing a certain dataset via the VQ-VAE
(the one used in our main paper). For example, the entropy
of top codes and bottom codes of samples of 100 classes
from CIFAR-100 are 8.6032 bits and 8.6404 bits respec-
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Figure 1. The hierarchical VQ-VAE architecture for incremental
learning. E , D , VQ represent Encoder, Decoder, and Vector
quantisation respectively.

tively. And Bit-Swap models trained by 3000 epochs for
each of them could achieve 8.8376 or 8.8450 average bits
cost for compressing them respectively. We originally ex-
pected the more codes data (from 50 classes to 100 classes)
can reveal a better distribution with less entropy in terms of
a certain dataset. In contrast to our expectation, the entropy
of codes distribution changed a little (less than 0.1) during
the incremental setting on CIFAR-100, i.e., more new codes
did not decrease the average overall entropy. Moreover, if
we mixed the top and bottom codes, the entropy increased.



Dataset top bottom top & bottom
CIFAR-100 8.6032 8.6404 8.7482
SubImg 224x224 6.7936 7.1016 7.4683

Table 1. Entropy of codes distributions for different dataset.
‘SubImg’ refers to a subset (contains 100 classes) of ImageNet

We also ran preliminary results on Subset-ImageNet that
contained random 100 classes (128, 856 training samples)
from ImageNet-1K with an image resolution of 224× 224.
We obtained codes of ImageNet using the VQ-VAE pre-
trained on CIFAR-100 as discussed in the main paper. For
all top-level codes of Sub-ImageNet, after trained for 2100
epochs, a Bit-Swap cost 7.86 average bits to encode one
top-level code. As for bot-level codes, another Bit-Swap
trained for 1100 epochs cost 7.83 average bits to encode
one bottom-level code. Our preliminary results showed that
more iterations (epochs) could further improve the com-
pression performance.

3. Implementation details of compared meth-
ods

We compare our methods with the following baseline
methods and state-of-the-art methods with their original im-
plementation settings on CIFAR-100:

• Upper Bound (UB) saves all (50,000) exemplars and
trains from scratch a Resnet-18 for each new training
phase. For training UB, we use the same hyperparam-
eters as our DRR.

• GFR [6] requires no exemplar to be stored. It has a
two-stage training: The first stage jointly trains a fea-
ture extractor and a classifier for 200 epochs, where
they use a Resnet-18 and treat the former layers as the
feature extractor. They save a copy of the old model af-
ter a training phase and initialize the new model with
the weights of the old ones. The second stage trains a
GAN used a frozen feature extractor and the classifier
for 500 epochs.

• iCaRL [9] saves 20 exemplar per class and 2, 000 in
total. It uses a rank function to select samples to be
reserved, and a Resnet-32 is trained or fine-tuned for
160 epochs.

• LUCIR [4] saves 20 exemplar per class using class-
rebalance strategies. It also uses the rank function in-
troduced in iCaRL. We use the setup of LUCIR as pre-
sented in [7] where a Resnet-32 is used and is fine-
tuned for 160 epochs in new training phases.

• Mnemonics [7] is built upon LUCIR while it saves 20
trainable exemplars per class instead. Two-level train-
ing includes model-level training for a Resnet-32 and

exemplar-level training for exemplars. The classifier
and learnable exemplars are fine-tuned in the training
phase.

• LWF [5] is one of the most representative non-replay-
based methods and no exemplar is saved. It incor-
porates knowledge distillation technique [3] as an ex-
tra regularisation term to consolidate previous knowl-
edge when learning new knowledge. We also use the
setup of LWF as presented in [7] where a Resnet-32 is
used and is fine-tuned for 160 epochs in new training
phases.

4. The Choice of Resnet for CIFAR-100
Residual Network (Resnet) was proposed by He et al. [2]

in 2015. Resnet-18 was also proposed in [2], which had
18 layers with a hyperparameter ‘in-planes’ set to 64. The
‘in-planes’ was used to control the number of filters in lay-
ers. For example, with ‘in-planes = 64’, the layers in ith
ResBlock had 64 × i filters. There were many variants of
Resnet with a different number of layers and different ‘in-
planes’. In recent incremental learning works researchers
prefer a Resnet-32 [7, 9, 8] with ‘in-planes = 16’ that had
more layers but lower capacity than original Resnet-18 with
‘in-planes = 64’. In our preliminary experiments, we found
that Resnet-32 with ‘in-planes = 16’ resulted in underfitting
of our models in some cases, e.g., if a strong Data Aug-
mentation was applied. Our further experiments showed
that if we increased the number of filters in Resnet-32, i.e.,
setting the hyper-parameter ‘inplanes’ from 16 to 64, our
method performed even slightly better as compared to that
used Resnet-18 with ‘inplanes=64’. We conjectured that
Resnet-32 with ‘inplanes =16’ was adequate only for re-
playing 20 (low resolutions) samples per class. However,
for replaying more samples like ours and [10] or gener-
ated sample models (like GFR [6]), Resnet-18 or Resnet-32
with ‘inplanes=64’ was more suitable for CIFAR-100. Note
that we only used simple data augmentation like ‘horizon-
tal flip’ and ‘random crop’ for the experiments in the main
paper, but our previous studies showed that DRR could ben-
efit from a strong data augmentation strategy [1] as well as
test-time augmentation strategy [11, 12]. We will further
test IB-DRR with the above data augmentation strategies in
the future.
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