Supplementary material for
Ternary Feature Masks: zero-forgetting for task-incremental learning

Marc Masana
Computer Vision Center
Barcelona, Spain

mmasana@cvc.uab.es

A. More on related work

We show in Table S1 a comprehensive overview of some
of the characteristics that we consider to be more relevant
to the experimental setup we propose.

B. Ternary Mask Implementation

The formulation of our proposed method in Sec. 3 states
that we can combine both masks m? and n' into a ternary
mask. In order to make the implementation easier and more
efficient, this is done by creating a ternary mask that is set to
be state 2 for all features at task 1. This means that the first
task will work as a normal network that allows for learning
the task at hand as if we were using finetuning. Then, when
moving to task 2, we will grow the network and add new
features. The masks for task 1 associated with the new fea-
tures will be set to state 0, therefore these are not used when
evaluating nor are they learnable for task 1. The masks for
task 2 will then be created by setting the previous existing
features to state 1 and the new added features to state 2. This
would allow the features with state 1 to be used during the
forward pass for mask n'=2, while the features with state
2 will contribute to both forward pass for mask n*=2 and
backward pass for mask m!=2 (using Eq. 6). This process
is explained in Algorithm S1.

C. Experimental Setup details

Datasets. Tiny ImageNet is a 64 x 64 x 3 resized version of
200 ImageNet classes. ImageNet uses 256 x 256 x 3 inputs
that use random cropping to 224 x 224 x 3 during training
for data augmentation. In the case of Birds we resize the
bounding box annotations of the objects to 224 x 224 x 3 for
all splits. We do the same for Actions but without using the
bounding box annotations. For Flowers we resize to 256 x
256 x 3 and also do data augmentation by random cropping
224 x 224 x 3 patches during training and using the central
crop for evaluation. In all experiments we perform random
horizontal flips during training for data augmentation.

Tinne Tuytelaars
ESAT-PSI
KU Leuven, Belgium

tinne.tuytelaars@esat.kuleuven.be

Joost van de Weijer
Computer Vision Center
Barcelona, Spain

joost@cvc.uab.es

Algorithm S1 : Growing Ternary Feature Masks
Input: ternary mask m for each task and layer
Input: s number of features to add per layer
Require: Network with L layers
Require: Tasks 1,...,7, current task £ > 1
% Loop for each layer %
forl=1,...,L

old_size < current_output_size(l)

new_size < old_size + s'

9 For each previous task %

fork=1,...,t—1

mP![old_size:new_size] « 0

end for

% For the current task %

mtH[0:0ld_size] + 1

mbtold_size:new_size] « 2
end for

We decide to not do experiments on permuted MNIST
since it has been shown to not allow fair comparison be-
tween different approaches [7]. The MNIST data contains a
too large amount of zeros per input, which leads to an easy
identification of important weights that can be frozen to not
overlap with the other tasks. Furthermore, the MNIST data
might be too simple to represent more realistic scenarios.

Hyperparameters. Distillation and model-based ap-
proaches use hyperparameters to control the trade-off be-
tween forgetting and intransigence on the knowledge of pre-
vious tasks. On top of that, LwF has a temperature scaling
hyperparameter for the cross-entropy loss. From the mask-
based models, HAT has a trade-off hyperparameter too and
a maximum for the sigmoid gate steepness. PackNet has a
prune percentage of the layers. We consider the values pro-
posed by the papers if they have results on the same experi-
mental setup. Otherwise, we use the hyperparameter search
proposed in [3] and [13], which chooses hyperparameters
with only the information at hand for each task.

Table S1. Summary of related work characteristics. pf: per feature, pp: per parameter, pt: per task, pfp: per feature and parameter.

. Revisit Require Easily . Forward Features
Family Method data Backbone net expandable Overhead Forgetting transfer or weights

Finetune No No Yes None Yes Little neither

Baseline Joint Yes No Yes None No Little neither
Freeze No Yes Yes None No Backbone only neither

LwF [8] No No No 1 float pp Some Yes weights

S LFL [4] No No No 1 float pp Some Yes weights
Distillation PNN [16] No No Yes duplicate pt Some Yes weights
P&C[17] No No No extra network Some Little weights

EWC [5] No No No 1 float pp Some Yes weights

R-EWC [Y] No No No 1 float pp Some Yes weights

E IMM [7] No No No 1 float pp pt Some Yes weights
Model-based SI[21] No No No 1 float pp Some Yes weights
MAS [1] No No No 1 float pp Some Yes weights

SSL [2] No No No 1 float pfp Some Yes both

PackNet [12] No No No 1 int pp pt No Yes weights

PiggyBack [11] No Yes No 1 bit pp pt No Backbone only weights

Mask-based HAT [18] No No Yes 1 float pf pt Some Yes features
TFM w/o FN (Ours) No No Yes 2 bits pf pt No Yes features

TFM (Ours) No No Yes 2 bits + 2 floats pf pt No Yes features

D. A note on choosing expansion rates

The continual learning philosophy states the rule of not
using data from previous tasks when learning new ones;
only data of the current task can be used at each step of the
setup. It is also common in machine learning setups to use
a part of the training set as validation in order to choose the
best hyper-parameters. Therefore, when learning each task,
a validation set of that specific task at hand can be used to
train the network avoiding overfitting, but no other data can
be used (neither from test nor from other previous or future
tasks). It is important to state that we strictly comply to
these rules in the experiments we propose.

As explained in Section 3.4, our proposed approach can
be expanded as needed in order to learn the new tasks with-
out having to change the connections from previous tasks.
However, this flexibility of choosing how many features
will be added to each layer can easily become a rabbit-hole
of architecture optimization. Because of that, we decide to
propose a simple setup for how we apply our proposed ap-
proach to be comparable to the other state-of-the-art. We
take the maximum layer size for all approaches to be the
same as the VGGnet or AlexNet architectures for the exper-
iments in Section 4. This way, all approaches will have a
similar number of parameters.

The differences between Figures 2 and 3 are further ex-
plained in Fig. S1. During the first task, the only used fea-
tures are those that have a grey-border in them. This means
that for the two shown layers, task 1 is learned by using
8 features (with 12 connections). Once task 2 arrives, we
fix the grey-border features and expand the network with
the green-border ones. The new task then uses the existing

forward (use)

@i:backward (modify)
®

= \Neights used on Tm3

— Weights usedon T, ,

— Weights used on T,

J/f
i

Kl
X

\\\
&

s
4

Figure S1. Network growth with ternary feature masks over three
tasks.

network and expands it with 5 features (with 24 new con-
nections). The masks for the green-border features are set
to unused for masks of task 1, while they are learnable for
task 2. Finally, as task 3 comes, 5 features are also added
(with 36 new connections). Masks corresponding to the new
features are set to unused for tasks 1 and 2, while set to
learnable for task 3. This way of expanding the network
also shows that as we learn more tasks, more knowledge is
available from previous ones. This opens the possibility of
having to add less and less features over time since the ad-
dition of each feature creates more connections to learn. In
practice, one can imagine that when learning new tasks that
are very similar to previous ones, no new features will have
to be added and the current network knowledge and a spe-

W Finetune EWC ®m HAT B TFM

50

40

30 ‘

20 ‘

10 ‘
0 \

flowers scenes birds cars aircraft actions

accuracy (%)

Figure S2. Comparison on a sequence of multiple datasets on
AlexNet from scratch.

cific head for the task will be enough. Further research and
analysis on the specific details for each layer expansion and
architecture is left for future work.

E. Tiny ImageNet semantic splits

The semantically similar splits of tiny ImageNet used in
Table 4 experiments are grouped as described in Table S2.

F. Extended results for Tiny ImageNet

We present in Tables S3, S4 and S5 more detailed accu-
racy and forgetting results for the experiment on Tiny Ima-
geNet with random split, semantic split and larger first task,
respectively. Both Tables S3 and S4 have a sequence of 10
tasks with 10 classes each, but with different class order-
ings. Table S5 shows results when starting with a larger
first task, and thus the last column is only averaged over
the smaller tasks (T2-T10). Results show that mask-based
approaches achieve a better overall performance than other
approaches on all splits, with TFM having the best perfor-
mance or tied with the best.

G. Multi-dataset experiment

To further explore the performance of our proposed
method when the tasks have a much different distribution,
we shows results on a sequence of multiple fine-grained
datasets: Oxford Flowers [14], MIT Indoor Scenes [15],
CUB-200-2011 Birds [19], Stanford Cars [0], FGVC Air-
craft [10], and Stanford Actions [20]. We compare TFM
with the Finetuning baseline, EWC and HAT on AlexNet
trained from scratch. Each of the approaches seems to have
a tendency on doing better in different tasks. However,
TFM is never the worse at any task and has a clear bet-
ter average accuracy after learning all tasks. This seems to
indicate that our proposed method can still perform quite
well even when there are larger distribution changes be-
tween tasks.

Table S2. Semantically similar splits for tiny ImageNet.

Task Semantic group Classes

1 Animals scorpion, black widow, tarantula, spider web, centipede,
(flying & insects) trilobite, grasshopper, stick insect, cockroach, mantis,
ladybug, dragonfly, monarch butterfly, sulphur butterfly,
fly, bee, goose, black stork, king penguin, albatross.

[\

Artifacts
(smaller)

abacus, binoculars, candle, chain, chest, dumbbell,
hourglass, lampshade, magnetic compass, pill bottle,
computer keyboard, acorn, plunger, syringe, teddy bear,
torch, comic book, remote control, umbrella, nail.

w

Music, Sport basketball, punching bag, rugby ball, scoreboard,

and Kitchen stopwatch, volleyball, CD player, drumstick, iPod,
oboe, organ, refrigerator, cask, plate, wooden spoon,
teapot, frying pan, beaker, bucket, dining table.

4 Animals brown bear, red panda, koala, pig, ox, bison, bighorn
(land) sheep, gazelle, dromedary, African elephant, orangutan,
chimpanzee, baboon, cougar, lion, European fire
salamander, bullfrog, tailed frog, American alligator,
boa constrictor.

5 Artifacts altar, maypole, bannister, flagpole, fountain, parking
(bigger) meter, pay-phone, pole, cash machine, birdhouse, reel,
bathtub, rocking chair, potter’s wheel, sewing machine,
space heater, turnstile, memorial tablet, desk, vestment.

6 Food water jug, wok, guacamole, ice cream, lollipop, pretzel,
mashed potato, cauliflower, bell pepper, mushroom,
orange, lemon, banana, pomegranate, meat loaf, pizza,

potpie, espresso, soda bottle, beer bottle.

7 Animals dugong, goldfish, jellyfish, brain coral, American
(water & pets) lobster, spiny lobster, sea slug, sea cucumber, guinea
pig, snail, slug, poodle, Chihuahua, Yorkshire terrier,
golden retriever, Labrador retriever, German shepherd,
tabby cat, Persian cat, Egyptian cat.

8 Clothes and academic gown, poncho, apron, backpack, bikini, bow
wearables tie, fur coat, gasmask, kimono, sock, military uniform,
miniskirt, neck brace, Christmas stocking, sombrero,
sunglasses, cardigan, snorkel, sandal, swimming trunks.

9 Transport bullet train, station wagon, freight car, go-kart,
rickshaw, lifeboat, limousine, moving van, police van,
school bus, convertible, crane, trolleybus, sports car,

tractor, gondola, broom, cannon, lawn mower, missile.

10 Buildings barbershop, barn, lighthouse, butcher shop, candy store,

and scenes water tower, triumphal arch, suspension bridge, steel
arch bridge, viaduct, thatched roof, cliff dwelling, dam,
obelisk, picket fence, cliff, coral reef, lakeside,
seacoast, alp.
References

[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,
Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In Proceedings
of the European Conference on Computer Vision (ECCV),
2018. 2

[2] Rahaf Aljundi, Marcus Rohrbach, and Tinne Tuytelaars.
Selfless sequential learning. In Proceedings of the Inter-
national Conference on Learning Representations (ICLR),
2019. 2

[3] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh, and Tinne
Tuytelaars. A continual learning survey: Defying forgetting
in classification tasks. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence (TPAMI), 2021. 1

[4] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim.

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

Less-forgetting learning in deep neural networks. arXiv
preprint arXiv:1607.00122, 2016. 2, 5

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the National Academy of Sci-
ences, 2017. 2,5

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
International Conference on Computer Vision Workshops,
2013. 3

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha,
and Byoung-Tak Zhang. Overcoming catastrophic forgetting
by incremental moment matching. In Advances in Neural
Information Processing Systems, 2017. 1,2, 5

Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 2017. 2, 5

Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Wei-
jer, Antonio M Lopez, and Andrew D Bagdanov. Rotate your
networks: Better weight consolidation and less catastrophic
forgetting. In International Conference on Pattern Recogni-
tion (ICPR), 2018. 2

S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. Technical re-
port, 2013. 3

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-
back: Adapting a single network to multiple tasks by learn-
ing to mask weights. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 2018. 2

Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 2, 5

Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel
Menta, Andrew D Bagdanov, and Joost van de Weijer. Class-
incremental learning: survey and performance evaluation.
arXiv preprint arXiv:2010.15277, 2020. 1

Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In IEEE
Indian Conference on Computer Vision, Graphics & Image
Processing, 2008. 3

Ariadna Quattoni and Antonio Torralba. Recognizing indoor
scenes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009. 3

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 2

Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki,
Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pas-
canu, and Raia Hadsell. Progress & compress: A scalable
framework for continual learning. In International Confer-
ence on Machine Learning (ICML), 2018. 2

Joan Serra, Didac Suris, Marius Miron, and Alexandros
Karatzoglou. Overcoming catastrophic forgetting with hard

(19]

[20]

(21]

attention to the task. In International Conference on Machine
Learning (ICML), 2018. 2, 5

Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. Technical Report CNS-TR-2011-001, California In-
stitute of Technology, 2011. 3

Bangpeng Yao, Xiaoye Jiang, Aditya Khosla, Andy Lai Lin,
Leonidas Guibas, and Li Fei-Fei. Human action recognition
by learning bases of action attributes and parts. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion (ICCV),2011. 3

Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual learning through synaptic intelligence. In International
Conference on Machine Learning (ICML), 2017. 2

Table S3. Comparison with the state-of-the-art. Tiny ImageNet on VGGnet from scratch. Accuracy of each task after learning all tasks.
Number between brackets indicates forgetting. Classes are randomly split and fixed for all approaches.

Tiny ImageNet - classes randomly split

A h Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Avg.
pproac (1-20) (21-40) (41-60) (61-80) 81-100) (101-120) (121-140) (141-160) (161-180) (181-200) all
Finetuning 38.1 (-13.6) 36.0 (-13.7) 43.2(-16.0) 44.1 -18.6) 45.5(-12.6) 54.5(-13.6) 503 (-15.7) 50.5(-13.4) 51.0(-13.1) 61.2(0.0) 47.4
Freezing 517(0.0) 364(0.0) 395(0.0) 41.7(00) 429(0.0) 462(0.0) 457(0.0) 41.1(0.0) 41.2(0.0) 40.9(0.0) 42.7
Joint 58.6 (+6.9) 53.9(+83) 59.1(+#3.7) 61.8 (+7.9) 57.7(+2.9) 66.0 (+2.6) 64.0(+3.1) 602 (+5.9) 57.9(+1.0) 53.8(0.0) 59.3
LfL [4] 32.4 (-18.9) 35.4 (-17.0) 43.4 (-157) 44.1(-202) 45.0 (-15.0) 55.9 (-14.5) 49.4(-16.1) 51.1(-124) 58.6(-8.0) 61.4(0.0) 47.7
LwE [8] 451 (-6.6) 45.5(22) 53.5(4.6) 57.6(2.6) 562(0.0) 657 (+0.4) 63.5(-03) 584(-1.9) 59.6(-03) 58.5(0.0) 56.4
IMM-mode [7] 50.6(-1.1) 385 (+0.3) 44.7(-0.1) 49.2(+0.3) 47.5(+1.1) 51.9(-14) 53.7(-0.6) 47.7(-04) 50.0(-2.2) 48.7(0.0) 483
EWC [5] 339 (-17.4) 354 (-14.4) 43.6(-15.4) 46.7 (-159) 49.5(-9.1) 52.5(-15.8) 47.8(-20.0) 50.2(-13.8) 56.6(-9.9) 61.4(0.0) 47.8
HAT [18] 46.8 (-0.2) 49.1(+0.8) 558 (+02) 58.0(-02) 53.7(+0.3) 61.0(+0.1) 587(0.0) 54.0(-0.1) 54.6(-0.1) 50.3(0.0) 54.2

PackNet [12] 52.5(00) 49.7(0.0) 565(0.0) 59.8(0.0) 55.0(0.0) 647(0.0) 61.7(0.0) 559(0.0) 552(0.0) 52.5(0.0) 56.4

TEM w/o FN (Ours) 49.6 (0.0) 472 (0.0) 54.8(0.0) 582(0.0) 55.0(0.0) 64.0(0.0) 59.3(0.0) 53.6(0.0) 555(0.0) 51.9(0.0) 54.9
TFM (Ours) 482(0.0) 477(0.0) 567(0.0) 582(0.0) 548(0.0) 622(0.0) 61.5(00) 57.3(0.0) 585(0.0) 54.8(0.0) 56.0

Table S4. Comparison with the state-of-the-art. Tiny ImageNet on VGGnet from scratch. Accuracy of each task after learning all tasks.
Number between brackets indicates forgetting. Classes are split by semantic closeness and fixed for all approaches.

Tiny ImageNet - classes semantically split

A h Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Avg.
pproac fly anim. small artif. hobbies land anim. big artif. food pets/aquatic ~ wearables transport scenes all
Finetuning 17.1(-34.2) 19.7 (-17.7) 20.9 (-24.5) 16.7(-30.5) 20.8 (-28.7) 29.2(-22.0) 30.7 (-21.0) 25.2(-17.8) 40.2(-18.9) 59.9(0.0) 28.0
Freezing 51.3(0.0) 285(0.0) 272(0.0) 29.6(0.00 29.0(0.0)0 350(0.0) 31.7(0.0) 23.9(0.0) 37.0(0.0) 34.7(0.0) 32.8
Joint 55.0(+3.7) 419 (+7.9) 46.2(+6.3) 449 (+4.9) 447 (+7.1) 49.0 (+4.8) 46.6 (+4.9) 364 (+4.7) 51.2(+5.7) 51.1(0.0) 46.7
LfL [4] 17.2 (-34.1) 18.4(-21.0) 21.5(-24.0) 18.7(-30.5) 20.2(-28.6) 27.4(-23.9) 28.4(-22.3) 26.0(-18.4) 41.2(-17.6) 59.1(0.0) 27.8
LwF [8] 34.0 (-13.9) 18.4(-14.5) 32.6(-0.8) 36.5(-5.6) 40.1(-0.5) 43.1(-2.5) 41.8(-1.3) 32.7(-1.1) 50.3(-0.5) 48.1(0.0) 37.8
IMM-mode [7] 42.3(-9.0) 288 (+0.1) 26.5(-3.1) 30.7(-3.6) 325(-3.1) 28.8(-13.0) 354(-6.2) 273(-3.7) 43.6(-49) 42.7(0.0) 339
EWC [5] 20.2 (-31.1) 18.5(-19.3) 20.2(-26.3) 20.9(-28.9) 24.7 (-22.8) 25.5(-27.5) 28.7(-23.4) 23.0(-19.6) 39.8(-20.2) 56.8 (0.0) 27.8
HAT [18] 44.6 (+0.4) 348 (+0.2) 40.8(-0.1) 454 (+0.4) 408(-25) 49.8(0.0) 449(-0.2) 33.1(-1.7) 51.9(0.0) 53.8(0.0) 44.0

PackNet [12] 47.0(0.0) 357(0.0) 42.7(0.0) 48.6(0.0) 458(0.0) 48.1(0.0) 459(0.0) 383(0.0)0 51.2(0.0) 49.1(0.0) 452

TFM w/o FN (Ours) 46.4 (0.0) 34.7(0.0) 38.8(0.0) 44.1(0.0) 42.0(0.0) 48.3(0.0) 46.5(0.0) 357(0.0)0 52.0(0.0) 54.8(0.0) 443
TFM (Ours) 46.4(0.0) 37.2(0.0) 404(0.0) 44.1(0.0)0 442(0.0)0 482(0.0) 464(0.0) 37.5(0.0) 535(0.0) 54.7(0.0) 453

Table S5. Comparison with the state-of-the-art. Tiny ImageNet on VGGnet from scratch. Accuracy of each task after learning all tasks.
Numbers between brackets indicates forgetting. LArger first task. Average on the smaller tasks 2 to 10.

Tiny ImageNet - larger first task

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Avg.

Approach (1-110) (111-120) (121-130) (131-140) (141-150) (151-160) (161-170) (171-180) (181-190) (191-200) (111+)

Finetuning 18.4 (-33.2) 39.6(-34.4) 56.6(-21.0) 58.0(-23.8) 44.6(-32.8) 63.0(-21.8) S1.0(-27.2) 51.4(-19.0) 70.4 (-14.0) 80.0(0.0) 57.2

Freezing 516 (0.0) 68.6(0.0) 702(0.0) 77.9(0.0) 68.1(0.0) 78.8(0.0) 729(0.0) 642(0.0) 767(0.0) 70.2(0.0) 69.9
LfL [4] 16.7(-33.9) 583 (-6.6) 59.5(2.9) 64.6(-2.2) 582(-14) 64.7(-0.6) 63.4(+0.5) 544(+0.1) 61.0(0.0) 565(0.0) 60.0
LwF [8] 10.8 (-40.0) 29.5 (-43.5) 44.6(-30.4) 61.2(-21.2) 55.5(-15.1) 733 (-8.8) 71.7(:3.5) 62.3(-1.8) 77.8(-2.2) 743(0.0) 6l.1

IMM-mode [7] 26.1 (-26.3) 50.4 (-13.8) 59.5(-19.3) 61.6(22.8) 54.0(-21.8) 63.2(-22.5) 58.2(-19.9) 56.0(-13.9) 75.0(-6.7) 79.9(0.0) 62.0
EWC [5] 51.8(-0.7) 24.8(-0.1) 433(-12) 61.8(-0.5) 555(-0.3) 70.8(-0.7) 67.6(-0.1) 53.8(-0.6) 70.1(-1.2) 61.7(0.0) 56.6
HAT [18] 46.1(0.0) 60.1(-0.1) 682 (+0.2) 732(+0.1) 632(+0.1) 762 (+0.1) 67.4(0.0) 58.1(-0.1) 73.2(0.0) 59.1(0.0) 66.5

PackNet [12] 47.6(0.0) 74.0(0.0) 742(0.0) 79.0(0.0) 652(0.0) 762(0.0) 69.4(0.0) 61.4(0.0) 734(0.0) 648(0.0) 708

TFM w/o EN (Ours) 49.6 (0.0) 69.8 (0.0) 71.1(0.0) 79.8(0.0) 68.4(0.0) 784(0.0) 72.9(0.0) 64.8(0.0) 759(0.0) 702(0.0) 72.4
TFM (Ours) 49.9(0.0) 70.4(0.0) 71.4(0.0) 80.8(0.0) 70.5(0.0) 79.4(0.0) 739(0.0) 64.4(0.0) 76.5(0.0) 72.1(0.0) 73.3

