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A. Experiment Details
This section includes details concerning experiments in-

cluded in the paper: Adapting weighting (AW) details, hy-
perparameter details and standard deviation for all the re-
sults. We report all the evaluation metrics averaged over 3
run trials (unless mentioned otherwise) to capture the vari-
ance in the class-IL training process.

A.1. Adaptive Weighting (AW)

In each incremental step, training a network comprises a
classification loss and a distillation loss to preserve knowl-
edge about previous classes. Our baseline contains an
adaptive weighting function λ (similar to [1]) between two
losses:

λ = λbase

(
Cn + Co
Cn

)2/3

(1)

,where Cn denotes number of new classes, Co denotes
number of old classes, λbase is fixed constant for each
method. It dynamically increases weightage on preserv-
ing old knowledge as incremental training continues. It
improves the baseline model by 0.45% for 5 task exper-
iment on CIFAR-100. λbase = 5 is set for CIFAR-100,
λbase = 20 for ImageNet-100 and λbase = 600 for Ima-
geNet.

A.2. Experiment Details

Dataset: CIFAR-100 classes are shuffled using a fixed
seed (Numpy [2] seed:1993) across all methods for fair
comparison. The ImageNet-100 dataset has 100 randomly
sampled classes (using Numpy seed:1993) from ImageNet
and further shuffled (using Numpy seed:1993). It contains
around 128K images of size 224× 224 for training and 5K
images for evaluation. ImageNet-1k classes are also shuf-
fled using a Numpy seed:1993.

Optimizer: On CIFAR-100, the base network is trained
for 120 epochs using a cosine learning rate schedule, where
the base learning rate is 1e-1. Subsequent N tasks are
trained for 240 epochs with a base learning rate of 1e-2.

The learning rate is decayed until 1e-4. We use a batch size
of 100 for CIFAR-100 experiments. Networks for CIFAR-
100 dataset is optimized using the SGD optimizer with a
momentum of 0.9 and weight decay of 5e-4.

For ImageNet-100, the network is trained for 70 epochs
using a step learning rate schedule, where the base learning
rate is 1e-1 for the base task and 1e-2 for the subsequent N
tasks. The base learning rate is divided by 10 at {30, 60}
epochs.

For ImageNet, base task is trained for 70 epochs follow-
ing a step learning rate, where the base learning is 1e-1.
The base learning rate is divided by 10 at {30, 60} epochs.
The incremental task is trained for 40 epochs following a
step learning rate, where the base learning rate starts from
1e-2. The base learning rate is divided by 10 at {25, 35}
epochs. Networks for ImageNet datasets are optimized us-
ing the SGD optimizer with a momentum of 0.9 and weight
decay of 1e-4. We use a batch size of 128 for both ImageNet
datasets.

A.3. Overfitting Experiment

Results with standard deviation Table 1 shows class-
IL performance using average accuracy and forgetting rate,
and quality of secondary information using SS-NLL and
SS-Acc for each class-IL runs using increasingly overfitted
model snapshots. Average incremental accuracy and forget-
ting rate is computed for class-IL model trained over differ-
ent snapshots (every 100th) from the above run. Table 2
shows expected calibration error (ECE) with standard de-
viation for different snapshots of the overfitted model. It
shows that ECE monotonically increases with the number
of training epochs. Tables includes values averaged over 5
runs with respective standard deviation.

A.4. Regularization

All the regularizers are applied at base and all incremen-
tal steps, however major improvement is observed due its
usage in the initial base task.

Self-distillation In the experiments, self-distillation is
conducted over 4 generations (optimized using validation



Epoch SS-NLL ↓ SS-Acc ↑ Avg Acc ↑ F ↓ Rφ↓
100 2.54 ± 0.04 38.68 ± 0.89 65.42 ± 0.06 16.03 ± 0.36 9.04 ± 0.24
200 2.89 ± 0.06 32.88 ± 0.59 65.05 ± 0.08 16.04 ± 0.26 9.27 ± 0.42
300 3.03 ± 0.06 30.09 ± 0.53 64.72 ± 0.07 16.94 ± 0.61 9.51 ± 0.23
400 3.09 ± 0.07 29.04 ± 0.68 64.3 ± 0.12 18.38 ± 0.19 9.68 ± 0.17
500 3.11 ± 0.03 27.97 ± 0.54 62.92 ± 0.11 18.57 ± 0.39 10.00 ± 0.20

Table 1: The effect of overfitting on class-IL performance and its correlation with secondary information. Table shows the performance
of the network snapshots taken at every 100th epoch. Accuracy decreases and SS-NLL increases, both monotonically, as more severely
overfitted models are evaluated. Forgetting rate F also correlates with overfitting. Results are computed over 5 runs.

Epoch ECE
100 0.093±0.003
200 0.118±0.003
300 0.126±0.004
400 0.131±0.005
500 0.137±0.002

Table 2: Expected Calibration Error for different snapshots (every
100th epoch) of the overfitted model.

performance) for CIFAR-100 and ImageNet-100 dataset,
and over 2 generations for ImageNet dataset. In the begin-
ning of each self-distillation generation, the network snap-
shot (student) becomes the teacher network and the student
continues to train (fine-tuned) with a combination of classi-
fication and distillation loss.

For CIFAR-100 experiments, the first base model is
trained for 120 epochs following a cosine learning rate
schedule, decaying from a learning rate 1e-1 to 1e-4. For
self-distillation generations, the model is trained for 70
epochs with a decaying (cosine) learning rate from 1e-1 to
1e-3. All other optimizer settings are the same as the base-
line model.

For ImageNet-100 experiments, first base model is

Model SS Metrics (5 tasks)

SS-NLL ↓ SS-Acc. ↑
CCIL 2.784 ± 0.014 34.83 ± 0.654
CCIL + SD 2.675 ± 0.037 37.26 ± 0.251
CCIL + H-Aug 2.051 ± 0.013 47.69 ± 0.590
CCIL + LS 3.103 ± 0.013 24.25 ± 0.278
CCIL + Mixup 2.791 ± 0.006 31.57 ± 0.256

Table 3: Effect of regularization on secondary information. All
the metrics are evaluated on the network trained on the first task.
Values that are better than the baseline CCIL method are marked
in green whereas the worse ones are marked in red. SD:self-
distillation, LS:label-smoothing.

trained for 70 epochs following a step learning rate sched-
ule. For self-distillation generations, the model is trained
for 30 epochs each where base learning rate is 1e-2 and it is
divided by 10 at 10, 20 epochs.

For ImageNet experiments, the first base model is trained
for 70 epochs following a step learning rate schedule. For
self-distillation generations, the model is trained for 15
epochs each where base learning rate is 1e-2 and it is di-
vided by 10 at 8, 12 epochs.

Results with standard deviations Table 3 shows the ef-
fect of different regularization on the quality of secondary
class information. Table 4 shows the effect of different reg-
ularization on class-IL performance in terms of average in-
cremental accuracy and forgetting rate. All experiments are
conducted on CIFAR-100 dataset.

B. Representations: Qualitative Analysis
This section provides a qualitative analysis on the ef-

fect of different regularizers on the feature representations
(penultimate-layer activations). We analyze the represen-
tations of the network trained on 50 classes (first task) of
CIFAR-100 dataset using ResNet-32 network.

B.1. Class-mean Representations

We argue that the classes which are semantically similar
must be closer in the representation space as compared to
the dissimilar classes since they share more features. Based
on this argument we analyze the effect of different regu-
larization methods on the relative distances between class-
mean representations. We utilize the fine- and coarse-label
structure of the CIFAR-100 dataset to compare the effect
on the distance between semantically similar and dissimilar
classes relative to the default baseline model. Classes as-
sociated with the same coarse label or superclass are con-
sidered as similar classes, whereas dissimilar classes are
picked from different superclasses. L2 distance is used as
the distance metric.

Figure 1 show this qualitative analysis for two classes:
cup and tulip. For example cup and can are semantically



Model Avg. Acc. ↑ Forgetting (5 tasks) Retention

5 tasks 10 tasks F ↓ Rφ↓
CCIL 66.44 ± 0.31 64.86 ± 0.40 17.13 ± 1.12 9.70 ± 0.15
CCIL + SD 67.17 ± 0.14 65.86 ± 0.29 16.81 ± 0.25 8.88 ± 0.35
CCIL + H-Aug 71.66 ± 0.23 69.88 ± 0.36 13.37 ± 0.60 6.73 ± 0.45
CCIL + LS 63.08 ± 0.21 61.99 ± 0.30 18.79 ± 0.29 12.83 ± 0.41
CCIL + Mixup 62.31 ± 0.46 57.75 ± 1.64 24.56 ± 2.52 16.01 ± 0.16

Table 4: Effect of regularization on class-IL performance. All the metrics are evaluated on the network trained on the first task. ↓ and ↑ in
the column headings indicate that lower and higher values are better respectively. Values that are better than our baseline method (CCIL )
are marked in green whereas the worse ones are marked in red. SD:self-distillation, LS:label-smoothing.
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Figure 1: Effect of regularizers on the distance between mean class representations. The numbers shown in the plot are the ratios between
the class means distances of each method and of the default CCIL model. Similar classes are marked in bold. Dotted circle at 1.0 depicts
distances between classes in the baseline CCIL model and other distances are depicted relative to the baseline model. Positive and negative
cases indicate similar and dissimilar classes respectively.

similar classes. When self-distillation and augmentation are
used as regularizers, the relative distance reduces to 0.9 and
0.8 respectively, whereas when label-smoothing and mixup
are applied, the relative distance increases to 1.2 and 1.1
respectively. Other similar classes follow a similar trend,
whereas dissimilar pairs show an opposite behavior. Over-
all we find that regularizers: self-distillation and heavy data-
augmentation reduce the relative distance between the sim-
ilar classes (marked in bold) while not affecting or increas-
ing distance between dissimilar classes. Whereas mixup
and label smoothing increase the relative distance between
similar classes and reduce the relative distance between dis-
similar classes. We notice that these observations agree with
the findings on secondary class information presented in the
main paper.

Earlier in the main paper, we argued that label-
smoothing and mixup regularization deteriorate secondary
class information since they dismantle the natural output
distribution. This qualitative analysis supports our argu-

ment showing how they conversely hamper the distances
between similar and dissimilar classes.
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