
Supplementary Material:
Class-Incremental Learning with Generative Classifiers

Gido M. van de Ven1,2,*, Zhe Li1 & Andreas S. Tolias1,3
1Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas, USA
2Computational and Biological Learning Lab, University of Cambridge, Cambridge, United Kingdom

3Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA

A. Experimental details

Documented PyTorch code to perform and build
upon the experiments described in this paper is avail-
able online: https://github.com/GMvandeVen/
class-incremental-learning.

A.1. Technical details of the compared methods

This section provides the technical details of the meth-
ods compared against in Table 2 in the main text. Most
of the compared methods use deep neural networks that
are trained by minimizing the multi-class cross-entropy loss
(although some methods have additional terms in the loss
function, see below) given by:

LCE (θ;x, y) = − log pθ (Y = y|x) (1)

whereby pθ (Y = y|x) is the probability that input x be-
longs to class y as predicted by the neural network with
parameters θ. These probabilities are computed by per-
forming a softmax normalization on the activations of the
final output layer of the network. It is important to note that
this softmax normalization is only performed over the out-
put units of the classes that have been seen by the network
up to that point in time. In other words, the networks are
trained with an “expanding head” [13] or only the classes
seen so far are set as “active” [17]. In this Appendix, this
way of training a deep neural network is referred to as the
“standard way”.

In addition to the methods discussed below, the perfor-
mance of the following two baselines is reported in Table 2
in the main text:

- None: The base neural network is sequentially trained on
all tasks in the standard way. This baseline suffers
from severe catastrophic forgetting, and is included as
a lower bound.

*Corresponding author: ven@bcm.edu

- Joint: The base neural network is trained on all classes at
the same time. For this baseline the same total num-
ber of iterations is used as for the incremental train-
ing protocols, with the difference that in each iteration
the training data is randomly sampled from all classes
rather than just from the classes in the current task.
This baseline can be seen as an upper bound.

A.1.1 Deep generative replay

With deep generative replay [DGR], following [14], a sepa-
rate generative model is trained to generate input samples to
be replayed. We use a variational autoencoder [VAE; 8] as
generator. The encoder network of the VAE is always sim-
ilar to the base network (except for the final softmax layer)
and the decoder network is the mirror image of the encoder
network; see Section A.3 for the exact VAE architectures
used for each benchmark. The classifier, or main model, is
simply the base neural network.

Except on the first task, both the classifier and the gener-
ator are trained with replay. The replay is generated by sam-
pling inputs from a copy of the generator, after which those
inputs are labelled as the most likely class as predicted by a
copy the classifier. The versions of the generator and classi-
fier used to produce the replay are temporarily stored copies
of both models after finishing training on the previous task.

Following [16], for both the classifier and the generator,
the total loss is a weighted sum of the loss on the data from
the current task and the loss on the replayed data: L =

1
Ntasks so far

Lcurrent + (1− 1
Ntasks so far

)Lreplay. For the main model,
Lcurrent and Lreplay are the cross-entropy loss (see Eq. 1).
For the generator, Lcurrent and Lreplay are the VAE loss (see
Eq. 13). In each iteration, the number of replayed samples
is equal to the number of samples from the current task.

A.1.2 Brain-inspired replay

For brain-inspired replay [BI-R] we follow the exact proto-
col as described in [15], using the code released by the au-

thors. We use all five of the proposed modifications (distil-
lation, replay-through-feedback, conditional replay, gating
based on internal context and internal replay). Because the
internal replay component of BI-R relies on the availabil-
ity of a pre-trained feature extractor, we do not use BI-R
on the MNIST and CIFAR-10 benchmarks. Note that BI-R
has a hyperparameter X , which controls the percentage of
hidden units in the decoder that is masked per class (see
Section A.5).

A.1.3 EWC & SI

For elastic weight consolidation [EWC; 9] and synaptic in-
telligence [SI; 18], the base neural network is trained in the
standard way, except that a regularization term is added to
the cross-entropy loss: L = LCE + λLREG, whereby hyper-
parameter λ controls the regularization strength (see Sec-
tion A.5). This regularization term penalizes changes to pa-
rameters important for previously learned tasks.

EWC The regularization term for EWC is given by:

LREG (θ) =

K−1∑
k=1

1

2

Nparams∑
i=1

F
(k)
ii

(
θi − θ̂(k)i

)2 (2)

wherebyK is the current task, θ̂(k)i are the parameters of the
network after training on task k and F (k)

ii is the estimated
importance of parameter i for task k. This last one is calcu-
lated as the ith diagonal element of the Fisher Information
matrix of task k:

F
(k)
ii =

Ex∼S(k)

[
Nclasses∑
c=1

ỹ(x)
c

(
δ log pθ (Y = c|x)

δθi

∣∣∣∣
θ̂
(k)

)2
]

(3)

whereby S(k) is the training data of task k and ỹ
(x)
c =

p
θ̂
(k) (Y = c|x).

SI The regularization term for SI is given by:

LREG (θ) =

Nparams∑
i=1

Ω
(K−1)
i

(
θi − θ̂(K−1)i

)2
(4)

whereby K is the current task, θ̂(K−1)i are the parameters
of the network after training on task K − 1 and Ω

(K−1)
i is

the estimated importance of parameter i for the first K − 1

tasks. To calculate these Ω
(K−1)
i , after each task k, a per-

parameter contribution to the change in loss is computed:

ω
(k)
i =

Nk
iters∑
t=1

(
θ̂i[t

(k)]− θ̂i[(t− 1)
(k)

]
) −δLtotal[t

(k)]

δθi
(5)

whereby Nk
iters is the number of iterations for task k, θ̂i[t(k)]

is the value of the ith parameter after the tth training itera-
tion on task k and δLtotal[t

(k)]
δθi

is the gradient of the loss with
respect to the ith parameter during the tth training iteration
on task k. The Ω

(K−1)
i are then calculated as:

Ω
(K−1)
i =

K−1∑
k=1

ω
(k)
i(

∆
(k)
i

)2
+ ξ

(6)

whereby ξ is a dampening term that was set to 0.1 and
∆

(k)
i = θ̂i[N

k
iters

(k)
]− θ̂i[0(k)], where θ̂i[0(k)] is the value of

parameter i when training on task k started.

A.1.4 CWR, CWR+ & AR1

CWR For the method ‘CopyWeights with Re-init’
[CWR; 10], the base neural network is trained on the first
task in the standard way. After the first task, all parame-
ters of the network are frozen except for the parameters of
the output layer. For the parameters of the output layer, two
copies are maintained: a temporary version denoted tw, and
a ‘consolidated’ version denoted cw. Training is done with
tw. Before starting training on each task, tw is randomly
re-initialized. After finishing training on each task, the pa-
rameters in tw corresponding to the classes of that task are
copied over into cw. For testing, cw is used.

CWR+ An improved version of CWR, called CWR+, was
proposed in [13]. CWR+ has two differences compared to
CWR. First, before each task, the parameters in tw are set
to zero rather than randomly (re-)initialized. Second, af-
ter each task, the parameters in tw are first standardized by
subtracting their mean (with the mean taken over all classes
seen up to that point, and with a separate mean for the
weights and the biases), and then the standardized param-
eters corresponding to the classes of that task are copied
over into cw.

AR1 Building upon CWR+, Maltoni & Lomonaco [13]
also proposed AR1. This method is similar to CWR+, ex-
cept that the parameters of the hidden layers are not frozen
after the first task. Instead, a modified version of SI is used.
The first modification is that SI is only used for the param-
eters of the hidden layers and not for the parameters of the
output layer. The second modification is that Ω

(K−1)
i in

Eq. 4 is replaced by Ω̃
(K−1)
i = max

{
Ω

(K−1)
i ,Ωmax

}
, with

Ωmax a newly introduced hyperparameter that limits the ex-
tent to which each parameter could be regularized (see Sec-
tion A.5).

A.1.5 Labels trick

For the ‘labels trick’ [19], the base network is trained in the
standard way, except that always only the classes from the
current task are set as ‘active’ (see first paragraph of Sec-
tion A.1). This means that the softmax normalization is only
performed over the output units of those classes, and that
the network is therefore only trained on the classes from the
current task. Another way to phrase this is that the network
is trained as if it is trained on a task-incremental learning
problem [17]. A fundamental limitation of this trick is that
the network is never trained to learn to distinguish between
classes from different tasks.

A.1.6 SLDA

The method streaming linear discriminant analysis
[SLDA; 4] learns a linear classifier of the form:

ŷ = argmax
c∈Y

{
wT
cx+ bc

}
(7)

whereby wc is the cth row of weight matrix W, bc is the cth

element of bias vector b and ŷ is the predicted class label.
To learn W and b, SLDA computes for each class y a

mean vector µy and associated count ny , as well as a single
covariance matrix Σ that is shared between all classes. Up-
dates to µy and ny are done in a “pure streaming” manner:
they are initialized at zero and for each new training sample
(x, y) that arrived at time t, they are updated as:

µ(t+1)
y =

n
(t)
y µ

(t)
y + x

n
(t)
y + 1

(8)

n(t+1)
y = n(t)y + 1 (9)

with µ(t)
y and n(t)y the versions of µy and ny at time t. The

covariance matrix is initialized on the first task using the
Oracle Approximating Shrinkage estimator [2], which is a
batch-wise computation. On subsequent tasks, updates to
Σ are done in a streaming manner: for each new training
sample (x, y) that arrives at time t, the following update is
done:

Σ(t+1) =
tΣ(t) + ∆(t)

t+ 1
(10)

with ∆(t) = t
t+1

(
x− µ(t)

y

)(
x− µ(t)

y

)T
and Σ(t) the

version of Σ at time t.
To perform classification, the rows of W and the ele-

ments of b are then computed as:

wc = Λµc (11)

bc = µT
cΛµc (12)

where Λ = [(1− ε)Σ + εI]−1 and ε = 0.0001.

With SLDA it is not possible to train the parameters of
a deep neural network. However, as pointed out in [4],
it is possible to use a pre-trained deep neural network as
feature extractor. On the CIFAR-100 and CORe50 bench-
marks, we use the pre-trained networks that are available for
those benchmarks as feature extractor. On the MNIST and
CIFAR-10 benchmarks, for which no pre-trained networks
are available, we apply SLDA directly on the raw inputs.

A.2. VAE training

VAE models are trained both for the generative classifier
and for the generative replay variants. In both cases, the set-
up of the VAE models and their training is similar, except
that the VAE models of the generative classifier are smaller
than those used for generative replay (see Section A.3).

Each VAE model consists of two deep neural networks:
(1) an encoder network, parameterized by φ, mapping an
input x to the mean µ(x)

φ and standard deviation σ(x)
φ of

the posterior distribution qφ(z|x) = N
(
z
∣∣∣µ(x)
φ ,σ

(x)
φ

2
I
)

over the latent variables z; and (2) a decoder network, pa-
rameterized by φ, mapping a latent variable vector z to a
reconstructed input µ(z)

θ , which is used as the mean of a

Gaussian observer model pθ(x|z) = N
(
x
∣∣∣µ(z)
θ , I

)
. The

prior distribution over the latent variables z is the standard
normal distribution: pprior(z) = N (z |0, I).

The parameters of these two networks are trained by
maximizing a variational lower bound to the likelihood, or
ELBO (see Eq. 4 in the main text), which is equivalent to
minimizing the following loss function:

LVAE (θ,φ;x) = Eqφ(z|x)

[
− log

pθ(x, z)

qφ(z|x)

]
= Eqφ(z|x)[− log pθ(x|z)] +DKL(qφ(z|x)||pprior(z))

= Lrecon (θ,φ;x) + Llatent (φ;x)

(13)

whereby DKL is the Kullback-Leibler divergence. The first
term in this loss function can be simplified to:

Lrecon (θ,φ;x) = Eε∼N (0,I)

Ninputs∑
i=1

(
xi − µz̃θ,i

)2 (14)

whereby xi is the ith element of the original input x and
µz̃θ,i is the ith element of the decoded input µz̃θ , with z̃ =

µ
(x)
φ + σ

(x)
φ � ε. We estimate Eq. 14 with a single sample

of ε for each datapoint.

The second term in Eq. 13 is calculated analytically1:

Llatent(φ;x) =
1

2

Nlatent∑
j=1

(
1 + log(σ

(x)
φ,j

2
)− µ(x)

φ,j

2
− σ(x)

φ,j

2)
(15)

where µ(x)
φ,j and σ(x)

φ,j are the jth elements of µ(x)
φ and σ(x)

φ ,
and Nlatent is the dimension of the latent space.

A.3. Architectures & training settings

Neural network training is always done using the Adam-
optimizer [7] with default settings (i.e. β1 = 0.9, β2 =
0.999). Depending on the benchmark, the learning rate is
0.001 (MNIST and CIFAR-10) or 0.0001 (CIFAR-100 and
CORe50).

A.3.1 MNIST

For the MNIST benchmark, the base neural network has two
fully-connected hidden layers with 400 ReLU units each,
followed by a softmax output layer.

For DGR, the generative model is a symmetric VAE with
both the encoder network and the decoder network similar
to the base network (i.e. two fully-connected layers with
400 units each). The dimension of the latent space is 100.
The same architecture was used in previous studies [6, 17].

For our generative classifier implementation, we use
VAE models with both the encoder network and the decoder
network consisting of two fully-connected layers with 85
units. The dimension of the latent space is 5.

A.3.2 CIFAR-10

For the CIFAR-10 benchmark, following several previous
studies [1, 3, 12], the base neural network is a slimmed
down version of ResNet18 [5]. In each layer, this version
has approximately three times less channels than the the
standard ResNet18: it has 20, 20, 40, 80 and 160 channels
in the subsequent layers (instead of 64, 64, 128, 256 and
512). After the final residual block, global average pooling
is applied, which is followed by the softmax output layer.

For DGR, the generative model is a VAE whereby the
encoder network is similar to the base neural network (ex-
cept that no pooling is used and there is no softmax output
layer) and the decoder network is the mirror image of the
encoder network. The dimension of the latent space is 100.

The VAE models that are used for the generative classi-
fier have an encoder network that consists of three standard
convolutional layers (with 15, 30 and 60 channels; each
layer used batchnorm, ReLU non-linearities, a 3x3 kernel,
a padding of 1 and a stride of 2), a decoder network that is
the mirror image of the encoder network and a latent space
of dimension 100.

1See Appendix B in [8] for the full derivation.

A.3.3 CIFAR-100

For the CIFAR-100 benchmark, following [15], the base
neural network has five pre-trained convolutional layers (16,
32, 64, 128 and 254 channels) followed by two randomly-
initialized fully-connected layers with 2000 ReLU units and
a softmax output layer. The convolutional layers are the
same ones as in [15]: they use batch-norm, ReLU non-
linearities, a 3x3 kernel, a padding of 1, and a stride of 1
(first layer) or 2 (all other layers). They have been pre-
trained on CIFAR-10 for 100 epochs using the ADAM-
optimizer (β1 = 0.9, β2 = 0.999), a learning rate of 0.0001
and a mini-batch size of 256. On this benchmark, all meth-
ods are run twice: once with the pre-trained convolutional
layers frozen and once with those layers plastic. Reported
for each method in Table 2 in the main text is the variant that
performed best. For all methods this is the variant with the
convolutional layers frozen, except for AR1 and the joint
training baseline.

The generative model for DGR is a symmetric VAE with
as encoder network the base neural network, as decoder
network a mirror image of the encoder network and latent
space dimension of 100. For BI-R, the combined classi-
fier/generator model is the same as the VAE for DGR, ex-
cept that the deconvolutional layers are removed from the
decoder network and that a softmax output layer is ap-
pended to the top layer of the encoder network.

For the generative classifier, reminiscent of the approach
of BI-R, we train the VAE models on the features extracted
by the pre-trained convolutional layers rather than on the
raw inputs. That means that the reconstruction loss of the
VAE models is in the feature space instead of at the pixel
level. The VAE models that we use have an encoder net-
work and a decoder network both consisting of one fully-
connected hidden layer with 85 ReLU units and a latent
space with dimension 20.

A.3.4 CORe50

For the CORe50 benchmark, the base neural network is
a standard ResNet18 that has been pre-trained on Ima-
geNet (downloaded from PyTorch), followed by one fully-
connected layer with 1024 ReLU units and a softmax output
layer. For all methods, the parameters of the ResNet18 are
frozen, and only the fully-connected layer and the output
layer are trained.

On this benchmark we do not perform DGR, because we
do not believe that training a pixel-level generative model
in a pure streaming manner on CORe50 stands any chance
of success (except perhaps if the full generative model has
been pre-trained). For BI-R, the reconstruction objective
is placed at the level of the features extracted by the pre-
trained ResNet18. The model used for BI-R has an en-
coder network and a decoder network that both consist of

Table A.1. Overview of the explored and selected hyperparameter values.

Method Param Explored range Selected values
MNIST CIFAR-10 CIFAR-100 CORe50

BI-R X [0, 10, 20, ..., 80, 90] - - 70 0

BI-R + SI
X [0, 20, 40, 60, 80] - - 60 60
λ [0, 0.001, 0.01, ..., 108, 109] - - 108 0.01

SI λ [0, 0.001, 0.01, ..., 108, 109] 103 1 1 10

EWC λ [0, 0.1, 1, ..., 106, 107] 106 10 100 10

AR1
λ [0, 0.001, 0.01, ..., 108, 109] 10 100 100 1

Ωmax [0.0001, 0.001, ..., 10, 100] 0.01 0.1 10 0.1

one fully-connected hidden layer with 1024 ReLU units, it
has a softmax output layer on top of the encoder network
and the dimension of the latent space is 200.

The VAE models of the generative classifier are trained
on the features extracted by the pre-trained ResNet18.
These VAE models have no hidden layers (i.e. there is only
a fully-connected layer from the ResNet embeddings to the
latent space) and a latent space of dimension 110.

A.4. Direct comparison between generative classifi-
cation and generative replay

For the experiments described in Section 5.3 in the main
text, a softmax-based classifier is trained in an i.i.d. manner
on samples generated by the VAE models of the genera-
tive classifier. The classifier used for these experiments is
the base neural network of each benchmark. This network
is trained for the same number of iterations (and using the
same mini-batch size and training settings) as for the joint
training baseline. The only difference with the joint training
baseline is that each mini-batch is made up of samples gen-
erated by the VAE models rather than by samples from the
original training data. The samples are generated by first
randomly sampling a class from all possible classes, after
which a sample is drawn from the VAE model of that class.

A.5. Hyperparameter searches

Several of the methods we compare against have one
or more hyperparameters. Hyperparameters in continual
learning can be problematic, because typically they are set
by running a method on the full benchmark with a range
of different hyperparameter-values. This means that these
parameters are ‘learned’ in a non-continual way, see also
the discussion in the Appendix of [17]. Nevertheless, to
give the methods we compare against the best chance, we
select their hyperparameters based on gridsearches (see Ta-
ble A.1). These gridsearches are performed with a single
random seed. The results in Table 2 in the main text are
then obtained with ten different random seeds.

B. A further distinction: batch-wise vs.
streaming

Within task-based class-incremental learning, a further
distinction can be made depending on whether within each
task the algorithm is given free access to all data at once
(“task-based batch-wise”) or whether the task’s data is fed
to the algorithm according to a fixed stream outside of the
control of the algorithm (“task-based streaming”). This dis-
tinction is important because some continual learning meth-
ods perform at each task boundary a consolidation opera-
tion that requires cycling over the training data of that task
(e.g. estimating the Fisher Information matrix in EWC), so
those methods are only suitable for task-based batch-wise
learning. Another difference is that with batch-wise learn-
ing, training settings such as number of iterations and mini-
batch size can be decided on by the algorithm itself, while
in streaming learning these are part of the benchmark.

Table B.1 provides an overview of which methods can
be applied in different class-incremental learning settings:

• The generative replay methods (DGR and BI-R) re-
quire task boundaries in order to decide when to update
the copy of the models used to generate the replay. The
current version of these methods are therefore not suit-
able for task-free continual learning. Neither DGR or
BI-R makes assumptions about the way the data within
each task is encountered, so both methods can be used
for task-based streaming learning.

• The regularization-based methods (EWC and SI) re-
quire task boundaries in order to decide when to update
their regularization term, and the standard version of
these methods are therefore not suitable for task-free
continual learning (although see [19] for a possible
work around). EWC additionally makes the assump-
tion that at each task boundary it is possible to make
another pass over the training data of that task to esti-
mate the Fisher Information matrix. EWC can there-

Table B.1. Overview of class-incremental learning variants to which the methods that are compared in this paper can be applied to. The
symbols (+) and (∗) indicate nuances that are discussed in Section B.

Strategy Method Task-based Task-based Task-free
batch-wise streaming streaming

Generative Replay
DGR v v -
BI-R v v -

Regularization
EWC v - -
SI v v -

Bias-correction
CWR / CWR+ v v v(+)

AR1 v v v(+)

Labels Trick v v -

Other SLDA v v(∗) v(∗)

Generative Classifier v v v

fore only be applied to task-based batch-wise learn-
ing, while SI can also be used for task-based streaming
learning.

• The bias correction methods (CWR, CWR+, AR1 and
the labels trick) do not make any assumptions about
how the data within each task is encountered, and all
of them are applicable to both variants of task-based
learning. The labels trick relies on specified tasks for
the task-specific training, so this approach is not suit-
able for the task-free setting. The original versions of
CWR, CWR+ and AR1 are also not compatible with
task-free continual learning because they rely on the
task boundaries for consolidating the (task-specific)
weights of the output layer, but recently an adaption of
these methods has been proposed to make them suit-
able for the task-free setting [11].

• In principle, SLDA is a streaming method that is gener-
ally applicable to both task-based and task-free class-
incremental learning. However, SLDA does make the
assumption that its covariance matrix can be initialized
on the first task (or in a separate ‘base initialization
phase’) in a batch-wise operation.

• The generative classifier strategy proposed in this pa-
per can be applied to both task-based and task-free
class-incremental learning, as it does not make any as-
sumptions about task boundaries or about being able
to access larger amounts of data at the same time. In
fact, for the specific implementation of the generative
classifier that was considered in this paper — with a
separate VAE model for each class to be learned —
the specific sequence in which the different classes are
presented does not matter at all, because the model for
each class is trained only on data from its own class.

References
[1] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Lau-

rent Charlin, Massimo Caccia, Min Lin, and Lucas Page-
Caccia. Online continual learning with maximal interfered
retrieval. In Advances in Neural Information Processing Sys-
tems, pages 11849–11860, 2019.

[2] Yilun Chen, Ami Wiesel, Yonina C Eldar, and Alfred O
Hero. Shrinkage algorithms for mmse covariance estima-
tion. IEEE Transactions on Signal Processing, 58(10):5016–
5029, 2010.

[3] Matthias De Lange and Tinne Tuytelaars. Continual pro-
totype evolution: Learning online from non-stationary data
streams. arXiv preprint arXiv:2009.00919, 2020.

[4] Tyler L Hayes and Christopher Kanan. Lifelong machine
learning with deep streaming linear discriminant analysis.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 220–221,
2020.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
conference on computer vision, pages 630–645. Springer,
2016.

[6] Yen-Chang Hsu, Yen-Cheng Liu, and Zsolt Kira. Re-
evaluating continual learning scenarios: A categoriza-
tion and case for strong baselines. arXiv preprint
arXiv:1810.12488, 2018.

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[8] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[9] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the National Academy of Sci-
ences, page 201611835, 2017.

[10] Vincenzo Lomonaco and Davide Maltoni. Core50: a new

dataset and benchmark for continuous object recognition. In
Conference on Robot Learning, pages 17–26. PMLR, 2017.

[11] Vincenzo Lomonaco, Davide Maltoni, and Lorenzo Pelle-
grini. Rehearsal-free continual learning over small non-iid
batches. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages
989–998, 2020.

[12] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
episodic memory for continual learning. In Proceedings
of the 31st International Conference on Neural Information
Processing Systems, pages 6470–6479, 2017.

[13] Davide Maltoni and Vincenzo Lomonaco. Continuous learn-
ing in single-incremental-task scenarios. Neural Networks,
116:56–73, 2019.

[14] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. Continual learning with deep generative replay. In
Advances in Neural Information Processing Systems, pages
2994–3003, 2017.

[15] Gido M van de Ven, Hava T Siegelmann, and Andreas S To-
lias. Brain-inspired replay for continual learning with ar-
tificial neural networks. Nature Communications, 11:4069,
2020.

[16] Gido M van de Ven and Andreas S Tolias. Generative replay
with feedback connections as a general strategy for continual
learning. arXiv preprint arXiv:1809.10635, 2018.

[17] Gido M van de Ven and Andreas S Tolias. Three scenar-
ios for continual learning. arXiv preprint arXiv:1904.07734,
2019.

[18] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual learning through synaptic intelligence. In Proceedings
of the 34th International Conference on Machine Learning,
pages 3987–3995, 2017.

[19] Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry.
Task agnostic continual learning using online variational
bayes. arXiv preprint arXiv:1803.10123v3, 2019.

