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Abstract

Existing computer vision research in artwork struggles

with artwork’s fine-grained attributes recognition and lack

of curated annotated datasets due to their costly creation.

In this work, we use CLIP (Contrastive Language-Image

Pre-Training) [12] for training a neural network on a va-

riety of art images and text pairs, being able to learn di-

rectly from raw descriptions about images, or if available,

curated labels. Model’s zero-shot capability allows pre-

dicting the most relevant natural language description for

a given image, without directly optimizing for the task. Our

approach aims to solve 2 challenges: instance retrieval and

fine-grained artwork attribute recognition. We use the iMet

Dataset [20], which we consider the largest annotated art-

work dataset. Our code and models will be available at

https://github.com/KeremTurgutlu/clip_art

1. Introduction

How to tell in which culture a sculpture was made?

There are hundreds of possibilities: Greek, Roman, Arabic,

and more. Fine-Grained Visual Classification (FGVC) aims

to classify the sub-categories under coarse-grained large

categories, such as the author of a painting, material of a

sculpture, country of origin of an instrument. FGVC is chal-

lenging because objects that belong to different categories

might have similar characteristics, but differences between

subcategories might be remarkable (small interclass varia-

tions and large intra-class variations). Because of these rea-

sons, it is hard to obtain accurate classification results using

classical Convolutional Neural Networks [8, 4, 14, 13].

Recent work [9, 2, 21] shows the key step of FGVC

is identifying and extracting more informative regions and

features in an image. However, labeling fine-grained cate-

gories is an expensive and time-consuming process which

often requires expertise in a specialized domain, thus,

FGVC datasets [7, 17, 11] have limited training data.

For this reason, research focuses on weakly-supervised

learning using noisy labels, and unsupervised learning

scheme to recognize informative regions [6, 18, 23].

Figure 1. The artworks in iMet [20] include paintings, instruments,

prints, clothing, sculpture, furniture, metalwork, etc.

Our main contributions are:

• A general Contrastive Pre-training [12] framework for

fine-grained visual-textual representation learning [5]

by using natural language free-form descriptions of

artwork and images.

• A solution based on interpretable Visual Transformers

and self-attention [3].

• Our task-agnostic model performs zero-shot fine-

grained classification, and achieves better results than

few-shot supervised SOTA models [4, 15].

• A multimodal representation learning for classification

and image-text retrieval.

1.1. Dataset and Benchmark

The iMet Collection Dataset [20] from The Metropolitan

Museum of Art in New York (The Met), presents the largest

fine-grained artwork collection. Some samples are shown in

Figure 1. Each image is labeled with its associated artistic

attributes. The attributes can relate to what one “sees” in

the work or what one infers as the object’s “utility”.

https://github.com/KeremTurgutlu/clip_art


Figure 2. Image and noisy fine-grained categories.

Figure 2 shows images and their attributes description.

These are grouped into 5 parent classes: country, culture,

dimension, medium, tags. In total, there are 3471 unique at-

tributes. Research-grade Museum experts curated and ver-

ified attribute labels to ensure high quality. However, each

object is annotated by a single annotator without a verifica-

tion step, and sometimes they added free-form text descrip-

tions. For this reason, the authors recommend considering

attributes as noisy labels. iMet hosts a yearly competition

since 2019, providing a public benchmark based on more

than 40.000 unknown test images.

2. Approach

Our approach consists of multiple stages which can be

seen in Figure 3; free-form text generation, contrastive pre-

training and finally fine-tuning on the downstream fine-

grained art recognition task.

First, we convert noisy fine-grained categorical anno-

tations into natural language text for a given image. We

achieve this by using natural language templates and using

different permutations. This process is similar to data aug-

mentation but for text descriptions.

We use different combinations of attribute values when

there might be an image with multiple attribute values for

a given category, such as multiple tags which can describe

different things in an art object. At the end of this data gen-

eration process, we end up having more than 15 text de-

scriptions per image in the iMet dataset.

Second, we fine-tune ViT-B/32 CLIP model which is

open-sourced by OpenAI. This model uses 2 transformer

encoders for jointly embedding the text and image pairs; a

ViT-B/32 for image encoding and another 12-layer trans-

former for text encoding. Similar to the original CLIP

model [12] we minimize InfoNCE loss [16] during con-

trastive pre-training. In a given batch, each image-text

pair or text-image pair forms a positive sample and every

other image or text is considered negative. Having this

symmetry we calculate pairwise cosine similarity between

L2-normalized image-text embeddings and calculate cross-

entropy loss with a learnable temperature parameter. In our

synthetic dataset, a given image has multiple text descrip-

tions, for that reason we randomly sample one text with

equal probability during training. This can be viewed as

data augmentation. Additionally, we apply dropout to at-

tribute values if there are multiple values for a given cate-

gory to further diversify these augmentations. For the re-

mainder of this paper, we refer to OpenAI Vit-B/32 model

as CLIPbase and our fine-tuned version as CLIPart.

Finally, we use the domain adapted CLIPart for further

fine-tuning on the downstream fine-grained art recognition

task.

2.1. Contrastive Pre­training

In our experiments, contrastive pre-training shows the

following advantages: it can leverage free-form text to learn

more generalized and robust visual features even in the pres-
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Figure 3. Summary of our approach based on CLIP from OpenAI [12]. We show (a) Contrastive pre-training using unlabeled images (or

noisy annotated). We process noisy or scrapped annotations into natural language free-form descriptions as explained in Section 2. Using

a task-agnostic image encoder and text encoder, we learn a visual-textual representation, discovering discriminative visual-textual pairwise

information [5]. Further supervised fine-tuning (b) can be done using small labeled datasets.



ence of noise, it allows faster and better convergence for the

downstream task at hand, it can be used for retrieval with

any natural language query at inference time beyond the

closed set of predefined labels and different loss functions

from any state-of-the-art self-supervised learning method

can be used [1, 19] during training.

We fine-tuned models using Ranger optimizer, a combi-

nation of Lookehead and RAdam [10, 22].

No image data augmentation is used besides random

resized cropping and horizontal flip. All contrastive pre-

training models are trained for 20 epochs. To test our hy-

pothesis that free-form text descriptions help to learn good

fine-grained representations, we fine-tuned CLIPart model

with 2 different versions of text pairs; one which is gener-

ated using all 5 categories and another which does not in-

clude tags category. Later retrieval performance for these 2

versions are reported in Table 2.

2.2. Fine­tuning

For all downstream fine-tuning experiments same setup;

image size, data augmentation, MLP layers, and learning

rate schedulers are used for a fair comparison. We treated

the downstream fine-grained art attribute recognition as a

multilabel classification task where each attribute is as-

sumed to be independent and an image can be assigned mul-

tiple attributes as can be seen from Figure 3. For the first 5

epochs encoder weights are frozen and for the remaining 15

epochs all model weights are updated.

3. Experiments

In this section, we describe our experimental setup and

results at fine-grained classification and artwork retrieval.

All CLIP-based models have as backbone a Visual Trans-

former (ViT) [3]. We conducted experiments for assessing

the zero-shot, few-shot and fully supervised performance of

variety of models including CLIPbase and CLIPart.

3.1. Zero­Shot Experiments

Using visual encoder, ViT-B/32, of CLIPbase and

CLIPart models we extracted image representations of 512-

dimension for the full iMet 2020 training set, which consists

of a total of 142,119 images. Later, we predicted on a 20K

hold-out set using a query image and assigning the labels

from the nearest neighbor in the training set.

3.2. Multimodal Retrieval Experiments

In order to test our hypothesis that rich free-form text

helps with learning better representations we train 2 ver-

sions of CLIPart using 2 different datasets with different

text descriptions. We evaluate different versions of CLIPart

with several retrieval metrics after encoding all the 20k val-

idation images and their corresponding text descriptions.

Once embedded we calculate normalized pairwise cosine

similarity between all the image and text embeddings. Us-

ing this similarity matrix we report results in Table 2 on

retrieval percentage at 5, retrieval percentage at 20, mean

retrieval rank, and median retrieval rank.

3.3. Few­Shot and Fully Supervised

In few-shot experiments, we trained models with a frac-

tion of data to compare against the zero-shot performance.

In fully supervised experiments we used full training data

and compared a variety of models including ViT-B/32 from

CLIPart, ViT-B/32 from CLIPbase, ViT-B/32 pre-trained on

ImageNet. As well as a variety of ResNets and Efficient-

Nets for benchmarking.

3.4. Results

We report results for zero-shot, few-shot and fully su-

pervised training using the iMet dataset [20]. We calculate

F2-score metric to provide some robustness against noisy

labels, favoring recall over precision. We use the validation

consisting of 20K images.

Figure 4. Attention map samples. For each sample we show (left) image, (middle) attention map from CLIP-Art (right) attention map from

CLIP-Base. Our contrastive learning of visual-text features helps to discriminate better the most discriminative regions in the image.
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Figure 5. Multimodal Retrieval results. Each row is the result of the following text queries: (a) “italian, rome artwork with portraits,

profiles, men, popes made from bronze”, (b) “art from greek, attic made of terracotta” and (c) “small japan artwork made from matsugatani

type with dishes”. Note that these images are completely unknown for our model. We obtain these results as explained at Section 3.2.

In zero-shot benchmarks we used the KNN approach ex-

plained in Section 3.1. For few-shot benchmarks, only 10%

and 20% random subset of the training data is used for train-

ing classification SOTA CNNs.

Table 1 shows that CLIPart, a task-agnostic model,

without any supervision outperforms ResNet-50 [4] and

EfficientNet-B0 [15], both SOTA classification models

trained with a fraction of the complete dataset and opti-

mized for the task. Moreover, at a complicated fine-grained

categorization task. We show that a simple fine-tuned vision

transformer can achieve results as full-supervised CNNs.

Furthermore, our CLIPart ViT achieves better results than

ViT pre-trained on ImageNet, and in half number of epochs.

Note that the idea of this work is to explore multi-modality

and image-text representations, for this reason, we do not

use complex models, ensembles, aggressive augmentations,

etc, as many solutions for this benchmark propose.

More information at the supplemental material.

Method Backbone Data (%) F2 score

CLIPbase [12] ViT [3] 0 0.5161

CLIPart (ours) ViT [3] 0 0.5507

ResNet [4] ResNet-50 10 0.5210

ResNet [4] ResNet-50 20 0.541

EfficientNet [15] EffNet-B0 10 0.511

EfficientNet [15] EffNet-B0 20 0.550

CLIPart (ours) ViT [3] 100 0.60

ResNet [4] ResNet-50 100 0.615

ViTimet [3] ViT [3] 100 0.58

Table 1. Ablation study of the proposed methods. Data 0% corre-

sponds to zero-shot experiments, 10-20% corresponds to few-shot

and 100% corresponds to completely supervised.

Dataset ret5 ret20 mean ret median ret

All Categories 0.3052 0.5467 175.84 16

All (no “Tags”) 0.1658 0.3578 353.99 48

Table 2. Retrieval Results. We tested that removing a highly de-

scriptive category such as tags hurts retrieval performance and

supports that representations when learned conditionally on de-

scriptive text help with fine-grained retrieval.

We show our multi-modality capability at Table 2. Our

model is able to get the correct complete text pair for a given

query image within the first 20 ranked predictions out of

20,000 candidates for the 54% of the time. Table 2 shows

that removing such descriptive text hurt the retrieval per-

formance significantly. Qualitative results using images as

queries can be found at the supplemental material.

4. Conclusion

To solve art-related computer vision main challenges, re-

trieval and fine-grained attribute recognition, we have pre-

sented an approach based on Contrastive Language-Image

Pre-Training (CLIP) [12] using a wide variety of artwork

images and natural language supervision. By its design, the

network can be instructed in natural language to perform

fine grained artwork retrieval and recognition in a zero-shot

manner without directly optimizing for the iMet benchmark

[20]. We also proposed a way for constructing natural lan-

guage text from the available closed set of attribute labels by

augmenting them. Future work can focus on building an art-

work dataset consisting of more than 1 million image-text

pairs scrapped from iMet’s database, which, together with

this work, will represent a breakthrough in artwork classifi-

cation and retrieval.
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