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Abstract

We propose a flexible person generation framework

called Dressing in Order (DiOr), which supports 2D pose

transfer, virtual try-on, and several fashion editing tasks.

The key to DiOr is a novel recurrent generation pipeline

to sequentially put garments on a person, so that trying on

the same garments in different orders will result in different

looks. Our system can produce dressing effects not achiev-

able by existing work, including different interactions of

garments (e.g., wearing a top tucked into the bottom or over

it), as well as layering of multiple garments of the same type

(e.g., jacket over shirt over t-shirt). DiOr explicitly encodes

the shape and texture of each garment, enabling these ele-

ments to be edited separately. Extensive evaluations show

that DiOr outperforms other recent methods like ADGAN

[18] in terms of output quality, and handles a wide range of

editing functions for which there is no direct supervision.

1. Introduction

Driven by increasing power of deep generative models

as well as commercial possibilities, person generation re-

search has been growing fast in recent years. Popular ap-

plications include virtual try-on [3, 7, 10, 11, 19, 26, 28],

fashion editing [4, 9], and pose-guided person generation

[5, 6, 14, 15, 17, 21, 22, 23, 24, 25, 30]. Most existing work

addresses only one generation task at a time, despite simi-

larities in overall system designs. Although some systems

[6, 18, 22, 23] have been applied to both pose-guided gen-

eration and virtual try-on, they lack the ability to preserve

details [18, 22] or lack flexible representations of shape

and texture that can be exploited for diverse editing tasks

[6, 18, 22, 23].

We propose a flexible 2D person generation pipeline ap-

plicable not only to pose transfer and virtual try-on, but also

fashion editing, as shown in Fig. 1. The architecture of

our system is shown in Fig. 2. We separately encode pose,

skin, and garments, and the garment encodings are further

Figure 1. Applications supported by our DiOr system: Virtual try-

on supporting different garment interactions (tucking in or not) and

overlay; pose-guided person generation; and fashion editing (tex-

ture insertion and removal, shape change). Note that the arrows

indicate possible editing sequences and relationships between im-

ages, not the flow of our system.

separated into shape and texture. This allows us to freely

play with each element to achieve different looks. In real

life, people put on garments one by one, and can layer them

in different ways (e.g., shirt tucked into pants, or worn on

the outside). However, existing try-on methods start by pro-

ducing a mutually exclusive garment segmentation map and

then generate the whole outfit in a single step. This can only

achieve one look for a given set of garments, and the inter-

action of garments is determined by the model. By contrast,

our system incorporates a novel recurrent generation mod-

ule to produce different looks depending on the order of

putting on garments. This is why we call our system DiOr,

for Dressing in Order.

After a survey of related work in Sec. 2, we describe our

system in Sec. 3 and experimental results in Sec. 4. Sec. 5

will illustrate the editing functionalities enabled by DiOr.
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Figure 2. DiOr generation pipeline (see Section 3 for details). We represent a person as a (pose, body, {garments}) tuple. Generation

starts by encoding the target pose as Zpose and the source body as texture map Tbody . Then the body is generated as Zbody by the generator

module Gbody. Zbody serves as Z0 for the recurrent garment generator Ggar, which receives the garments in order, each encoded by a 2D

texture feature map Tgk and soft shape mask Mgk. In addition to masked source images, the body and garment encoders take in estimated

flow fields f to warp the sources to the target pose. We can decode at any step to get an output showing the garments put on so far.

2. Related Work

Virtual try-on is to generate images of a given person with

a desired garment. The simplest methods are aimed at re-

placing a single garment with a new one [3, 6, 7, 10, 11, 12,

26, 28]. Our work is closer to methods that attempt to model

all the garments worn by a person simultaneously to achieve

multiple garment try-on [18, 19, 20, 23]. However, all above

methods assume a pre-defined set of garment classes (e.g.,

tops, pants, etc.) and allow at most one garment in each

class. This precludes the ability to layer garments from the

same class (e.g., one top over another). Instead, our recur-

rent design lifts the one garment per class constraint and

enables layering. Plus, in all previous work, when there

is overlap between two garments (e.g. top and bottom), it

is the model to decide the interaction of the two garments,

(e.g., whether a top is tucked into the bottom). By contrast,

ours produces different looks for different dressing orders.

Pose transfer requires changing the pose of a given person.

Several of the virtual try-on methods above [6, 18, 20, 22,

23] are explicitly conditioned on pose, making them suit-

able for pose transfer. Our method is of this kind. Most

relevant to us are pose transfer methods that represent poses

using 2D keypoints [5, 6, 17, 21, 24, 25, 30]. GFLA [21]

computes dense 2D flow fields to align source and target

poses. We adopt GFLA’s global flow component as part of

our system, obtaining comparable results on pose transfer

while adding a number of try-on and editing functions.

Fashion editing. Fashion++ [9] learns to minimally edit an

outfit to make it more fashionable, but there is no way for

the user to control the changes. Dong et al. [4] edits outfits

guided by user’s hand sketches. Instead, our model allows

users to edit what they want by making garment selections,

and changing the order of garments in a semantic manner.

Figure 3. System details. (a) Global flow field estimator F adopted

from GFLA [21].(b) Segment encoder Eseg that produces a texture

feature map T and a soft shape mask M . (c) Body encoder Ebody

that broadcasts a mean skin vector to the entire foreground region

and adds the face features to maintain facial details.

3. Method

This section describes our DiOr pipeline (Fig. 2).

Person Representation. We represent a person as a (pose,

body, {garments}) tuple, each element of which can come

from a different source image. Unlike other works (e.g.,

[18, 19]) the number of garments can vary and garment la-

bels are not used in DiOr. This allows us to freely add,

remove, and switch the order of garments.

Consistent with prior work [18, 21], we represent pose P

as the 18 keypoint heatmaps defined in OpenPose [1]. For

body representation (Fig. 3), given a source person image

Is and its segmentation map detected by an off-the-shelf



human parser SCHP [13], the body feature map Tbody is en-

coded by a body encoder Ebody , taking only skin segments

from Is. To encode a garment k cropped from a garment

image, we run a texture encoder Etex to get its texture fea-

ture map Tgk to represent the garment texture, and we fur-

ther run a segmentor S on Tgk to obtain a soft shape mask

Mgk to represent the garment shape. We combine Etex and

S as the segment encoder Eseg (Fig. 3). Note, we compute

a flow field f by a flow field estimator F to transform the

features and masks from the source pose of either the per-

son image or the garment image to the target pose P . We

adopt the global flow field estimator from GFLA [21] as F .

Generation Pipeline. In the main generation pipeline (Fig.

2), we start by encoding the “skeleton” P , next generating

the body from Tbody, and then the garments from encoded

texture and shape (Tg1 ,Mg1), ..., (TgK ,MgK ) in sequence.

To start generation, we encode the desired pose P by the

pose encoder Epose. This results in hidden pose map is writ-

ten as Zpose. Next, we generate the hidden body map Zbody

given Zpose and the body texture map Tbody using the body

generator Gbody, which is a conditional generation block.

Then, we generate the garments, treating Zbody as Z0. For

the kth garment, the garment generator Ggar takes its tex-

ture map Tgk and soft shape mask Mgk , together with the

previous state Zk−1, and produces the next state Zk as

Zk = Φ(Zk−1, Tgk)⊙Mgk + Zk−1 ⊙ (1−Mgk) , (1)

where Φ is a conditional generation block with the same

structure as Gbody. After the encoded person is finished

dressing, we get the final hidden feature map ZK and output

image Igen = Gdec(ZK), where Gdec is the decoder.

Training. Similar to ADGAN [18], we train our model on

pose transfer: given a person image Is in a source pose Ps,

generate that person in a target pose Pt. As long as ref-

erence images It of the same person in the target pose are

available, this is a supervised task. To perform pose trans-

fer, we set the body image and the garment set to be those of

the source person, and render them in the target pose. Also,

training jointly with inpainting, or recovery of a partially

masked-out source image I ′s, can better maintain garment

details. We inherit all the loss terms from GFLA [21] and

add a binary cross-entropy loss to train the shape mask Mg .

4. Experiments

We train our model on the DeepFashion dataset [16] with

the same training/test split used in PATN [30] for pose trans-

fer at 256×176 resolution.

Automatic Evaluations for Pose Transfer. Pose transfer

is the only task that has reference images available. We

compare our results with GFLA [21] and ADGAN [18] in

Tab. 1. When comparing with GFLA, our model is fine-

tuned to 256×256 to match GFLA’s setting. We measure

Figure 4. Pose transfer results compared with ADGAN [18] and

GFLA [21].

Figure 5. Virtual try-on results of ADGAN [18] and our DiOr.

size SSIM↑ FID↓ LPIPS↓ sIoU↑

Def-GAN∗ [24] 82.08M - 18.46 0.233 -

VU-Net∗ [5] 139.4M - 23.67 0.264 -

Pose-Attn∗ [30] 41.36M - 20.74 0.253 -

Intr-Flow∗ [14] 49.58M - 16.31 0.213 -

GFLA∗ [21] 14.04M 0.713 10.57 0.234 57.32

DiOr (ours) 24.84M 0.725 13.10 0.229 58.63

(a) Comparisons at 256×256 resolution

size SSIM↑ FID↓ LPIPS↓ sIoU↑

ADGAN [18] 32.29M 0.772 18.63 0.226 56.54

DiOr (ours) 24.84M 0.806 13.59 0.176 59.99

(b) Comparisons at 256×176 resolution

Table 1. Pose transfer evaluation. (a) Comparison with GFLA

[21] (and other methods reported in [21]) at 256×256 resolu-

tion. Intr-flow [14] is the only method exposed to 3D information.

Methods with * are reproduced from GFLA [21]. (b) Compari-

son with ADGAN [18] at 256×176 resolution. Arrows indicate

whether higher (↑) or lower (↓) values of the metric are better.

Compared method Task Prefer other vs. ours

GFLA [21] pose transfer 47.73% vs. 52.27%

ADGAN [18] pose transfer 42.52% vs. 57.48%

ADGAN [18] virtual try-on 19.36% vs. 80.64%

Table 2. User study results. All outputs are resized to 256×176

before being displayed to users. 22 questions for either pose trans-

fer or try-on are given to each user for each experiment. We col-

lected responses from 53 users for transfer, and 45 for try-on.



Figure 6. Dressing in order applications. (a) Tucking in. Tucking in is achieved by first generating top and then bottom, and vice versa. (b)

Single layering. (c) Double layering.

Figure 7. Editing applications. (a) Content removal. (b) Print insertion. (c) Texture transfer and (d) Reshaping.

the structural, distributional, and perceptual similarity be-

tween real and generated images by SSIM [27], FID [8],

and LPIPS [29] respectively. Besides, we propose a new

metric sIoU, which is the mean IoU of the segmentation

masks produced by the human segmenter [13] for real and

generated images, to measure the shape consistency. There,

our output is qualitatively similar to GFLA (not surprising,

as we adopt part of their flow mechanism), and consistently

better than ADGAN.

User Study. We report the results of a user study compar-

ing our model to ADGAN and GFLA on pose transfer, and

ADGAN on virtual try-on. We show users inputs as well

as outputs from two unlabeled models in random order, and

ask them to choose which output they prefer. As shown

in Tab. 2, for pose transfer, our model is comparable to or

slightly better than GFLA and ADGAN, and we outperform

ADGAN for try-on. Qualitative Results of pose transfer

and virtual try-on are in Fig. 4 and 5 respectively.

5. Editing Applications

Once our DiOr system is trained, a number of fashion

editing tasks are enabled immediately.

Tucking in. DiOr allows users to decide if they want to tuck

a top into a bottom by specifying dressing order (Fig. 6a).

Garment layering. Fig. 6b shows the results of layering

garments from the same category (top or bottom). Fig. 6c

shows that we can also layer more than two garments in the

same category (e.g., jacket over sweater over shirt).

Content removal. To remove an unwanted print/pattern on

a garment, we can mask the corresponding region in the tex-

ture map Tg while keeping the shape mask Mg unchanged,

and the generator will fill in the missing part (Fig. 7a).

Print insertion. To insert an external print, we treat the

masked region from an external source as an additional

“garment”. In this case, the generation module is respon-

sible for the blending and deformation, which limits the re-

alism but produces plausible results as shown in Fig. 7b.

Texture transfer. To transfer textures from other garments

or external texture patches, we simply replace the garment

texture map Tg with the desired feature map encoded by

Etex. Fig. 7c shows the results of transferring textures from

source garments and the Describable Textures Dataset [2].

Reshaping. We can reshape a garment by replacing its

shape mask with that of another garment (Fig. 7d).
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