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Abstract

Fashion retrieval methods aim at learning a clothing-

specific embedding space where images are ranked based

on their global visual similarity with a given query. How-

ever, global embeddings struggle to capture localized fine-

grained similarities between images, because of aggrega-

tion operations. Our work deals with this problem by learn-

ing localized representations for fashion retrieval based on

local interest points of prominent visual features specified

by a user. We introduce a localized triplet loss function

that compares samples based on corresponding patterns.

We incorporate random local perturbation on the interest

point as a key regularization technique to enforce local

invariance of visual representations. Due to the absence

of existing fashion datasets to train on localized represen-

tations, we introduce FashionLocalTriplets, a new high-

quality dataset annotated by fashion specialists that con-

tains triplets of women’s dresses and interest points. The

proposed model outperforms state-of-the-art global repre-

sentations on FashionLocalTriplets.

1. Introduction

In this work, we explore the task of fashion retrieval, de-

fined as learning of a clothing-specific embedding space.

Existing methods define the concept of similarity at a global

image level [12, 10, 15, 23, 7, 31]. Such methods struggle

when dealing with fine-grained visual differences between

clothes, especially in the case when they are localized. To

deal with this problem, we propose a fine-grained localized

notion of similarity where the similarity is defined on the in-

terest point level of prominent visual features of a garment.

This allows the method to focus on desired localized cues,

such as specific sleeve types, necklines, and design patterns

*This work was done during an internship at Amazon.
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Figure 1. FashionLocalTriplets annotations. Left: prominent at-

tributes. Right: a triplet annotation. Candidate B was marked as

more similar to the reference with respect to the interest point.

(Figure 1, left).

The proposed model consists of a convolutional network

that ingests an image and the location of a prominent cue on

the image. Localized features are extracted from the convo-

lutional map at the provided location in a patch and aligned

via bilinear interpolation. We train the model using a novel

localized triplet loss function in order to be able to retrieve

the most similar images by considering their local similarity

between corresponding points.

Moreover, we introduce random perturbation of interest

points as a key regularization technique for this task.

In order to train our model on localized points of an im-

age, we propose a new dataset of women’s dresses anno-

tated by fashion specialists, named FashionLocalTriplets. It

consists of triples of the form: a reference image with an-

notated interest point location and two candidate images,

as shown in Figure 1. Fashion specialists annotated the in-

terest points of prominent features of the garment (Figure

1, left), and decided which of the two candidates is more

similar to the reference in terms of the local point (Figure

1, right). Our experiments on FashionLocalTriplets show

that our model is able to learn better localized represen-

tations to perform the task of image retrieval compared to

non-localized methods.

1



2. Related Work

Attribute Localization for Fashion. Attributes are used

as supervised signals to describe images of clothing [3, 4,

30, 5, 1, 6, 24, 27]. With the introduction of datasets that

include attribute locations and landmarks [15, 32, 9], there

has been a proliferation of methods that leverage locations

for retrieval [17, 26, 28, 22, 16]. Conversely, our training

algorithm requires a few points provided by fashion experts,

but not attribute names or correspondences on other images.

Fashion Image Retrieval. Most recent works in fashion

image retrieval leverage convolutional neural networks [12,

10, 15, 23, 7, 31] for image representation.

For learning these embeddings, triplet losses [31, 15]

have been shown to provide state-of-the-art performance.

Localized Retrieval. A few methods integrate local in-

formation in the retrieval process. They do through seg-

mentation [19], local/global features aggregation [14] and

re-weighting through attention [8, 2] or saliency [18]. In

our method, the user provides the point of interest, and re-

trieval is based on the localized representation alone.

Fashion Datasets. In the last years, several datasets have

been proposed for fashion-related tasks. DeepFashion [15],

Fashionpedia [13], DeepFashion2 [9] and FashionAI [32]

provide large scale data with rich annotations. Our Fash-

ionLocalTriplets includes relative comparisons between re-

gions of a reference image and two candidates which can be

used as ground-truth to build triplets for training.

3. The FashionLocalTriplets Dataset

We created FashionLocalTriplets, a dataset that contains

locations of prominent visual cues, with the aim of cap-

turing fine-grained local differences in clothing. Following

previous work [15, 32, 29], we relied on shopping websites

and randomly picked 4, 302 women’s dresses images from

amazon.com.

3.1. Annotations

Annotations were created by the specialists in two

passes: 1) labeling of prominent attributes, and 2) labeling

of triplets.

Labeling of prominent attributes. For each image,

fashion specialists marked the coordinates, clothing loca-

tions and attribute names of interesting or unique localized

attributes of the garment, as shown in figure 1 (left).

Labeling of triplets. For each reference image and

each of its annotated attributes from the previous stage, we

randomly selected two candidates with the same attribute.

Fashion specialists judged which of the two candidates was

visually more similar to the reference in terms of the interest

point, and annotated a total of 10, 805 hard triplets. Figure 1

(right) shows an example of an annotated triplet.

3.2. Evaluation Tasks

We design two evaluation tasks for this dataset, namely:

1) Binary Classification and 2) Retrieval.

Binary Classification. For each test triplet, we consider

the binary classification task of correctly selecting the clos-

est candidate within the triplet, and evaluate using accuracy.

Retrieval. Fashion specialists selected a set of 100

query images of women’s dresses from amazon.com. For

each query, we use global image embeddings from a pre-

trained fashion similarity network [31] to retrieve the 20

closest neighbors, and ask fashion specialists to label them

as relevant/non-relevant. With this dataset, we can compute

precision-recall scores by considering ranking results pro-

duced by different algorithms on the retrieval set of each

query.

4. Learning Localized Embeddings

To learn fine-grained representations, our method lever-

ages localized embeddings, a location aware training loss

function and regularization via interest point perturbation.

4.1. Localized Image Encoder

Figure 2 (top) illustrates the proposed localized image

encoder. The input consists of an H × W image and an

(x, y) interest point identifying a prominent local attribute

in the image. We use a ResNet-50 backbone and extract

a feature map of size C × C. To obtain a localized rep-

resentation of the prominent attribute, we map the interest

point (x, y) to the C×C coordinate system and use bilinear

interpolation to get a 3×3 approximation of the feature rep-

resentation at (x, y) in the original coordinate system. The

bilinearly interpolated feature map is then passed through a

convolutional layer and L2 normalized.

When the interest point is not available, we compute lo-

calized features for each point on a grid covering all spatial

locations. These embeddings will be indexed for retrieval

and used in our localized loss function.

4.2. Localized Triplet Loss

The triplet loss [25] is widely used for providing state

of the art performance in image retrieval. It is defined as

follows:

Lglobal =

N
∑

n=1

⌊

‖g(In)−g(I+n )‖22−‖g(In)−g(I−n )‖22+m
⌋

+

(1)

where g(I) denotes the global embedding of an image I .

In, I+n , I−n indicate the n-th reference, positive and negative

images respectively, N is the size of the dataset,
⌊

z
⌋

+

refers

to max(0, z) and m is the margin of the loss.
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Figure 2. Localized feature extraction for a query (top) and a database image (bottom).

Localized Triplet Loss. We extend the triplet loss to

include the location of interest points as follows:

Llocal =
N
∑

n=1

⌊

min
c
+
n

‖f(In, pn)− f(I+n , c+n )‖
2
2

−min
c
−

n

‖f(In, pn)− f(I−n , c−n )‖
2
2 +m

⌋

+

(2)

where pn are the (x, y) coordinates of the interest point re-

lated to the reference image and f(In, pn) is the proposed

localized embedding that we described in the previous sec-

tion (Figure 2, top). For the positive and negative images,

we compute the localized embeddings on the c+n and c−n
locations, spanning all the locations of the convolutional

map. The min operations in Eq. 2 have the effect of tak-

ing the features in the convolutional map which are closest

to the feature of the reference interest point in the embed-

ding space. In this way, the network is encouraged to learn

to discriminate between regions in images that are similar,

e.g., the sleeve regions in all the images in a triplet.

4.3. Random Interest Point Perturbation

During training, we perform data augmentation by ran-

domly moving the location of the interest point on the ref-

erence image within a radius of R% (R=20 in our experi-

ments) of the input image size. The intuition is that the lo-

calized similarity should not drastically change even if the

user specified interest point varies a bit in its exact pixel lo-

cation. This augmentation has a regularization effect which

significantly improves the results, as shown in the experi-

ments.

4.4. Inference

First, we compute and index the localized embeddings

of the database images, as illustrated for a single image in

Figure 2(bottom). At runtime, given an input image and its

interest point, we first compute the localized query embed-

ding using the procedure described in Sec. 4.1. We then

compute L2 distance between the query embedding and all

the database embeddings. The match score of a database

image is taken as the inverse of the smallest distance be-

tween any of its localized embeddings and the query em-

bedding. The database items are then ranked in the order of

decreasing match scores.

5. Experiments

Implementation Details. Of the 10,805 annotated

triplets in the FashionLocalTriplets dataset, we select 9,298

for training via image ID hashing. We then filter the 1,507

remaining triplets for unanimous votes, obtaining 399 an-

notations that we reserve for testing. We used ResNet-50 as

backbone network pre-trained on the fashion retrieval task

of [31]. We resize images to 224×224 and perform random

horizontal flipping, color jittering and random perturbations

of the input interest point. We train the network for 30,000

iterations using SGD. The margin hyperparameter m is set

to 0.05.

Comparisons. We compare the proposed localized

training method with the following approaches. (1) Pre-

trained localized embeddings using the architecture shown

in Figure 2, with the pre-trained weights on either the Im-

ageNet [20] classification task, or the visual fashion re-

trieval task [31]. (2) Global triplet loss (m = 0.05 deter-

mined using cross-validation). (3) Localized Contrastive,

trained by turning each triplet annotation into two pairs of

matching/non-matching images and using a localized ver-

sion of the contrastive loss [11]. All the reported results are

averaged across 3 independent runs.



Method Emb. Scope Acc

1. Pre-trained ImageNet [20] Global 54.34

2. Pre-trained Fashion [31] Global 63.01

3. Pre-trained ImageNet [20] Local 56.89

4. Pre-trained Fashion [31] Local 65.56

5. Triplet [21] Global 69.90

6. Localized Contrastive [11] Local 65.86

7. Localized Triplet Local 73.72
Table 1. Accuracy for different methods on FashionLocalTriplets.

The Emb. Scope column indicates whether features are obtained

by global average pooling (Global) or from our localized image

encoder (Local).

5.1. Results

Binary Classification results. Table 1 shows accuracy

results on the FashionLocalTriplets test set. In the first four

rows, we evaluate global and localized embeddings com-

puted with a ResNet-50 pre-trained on ImageNet [20] and

pre-trained on the fashion retrieval task of [31]. The table

shows that the embeddings from the fashion image retrieval

task work better than the ones from the ImageNet classifi-

cation task, as the former have been pre-trained on fashion

images. Furthermore, localized embeddings improve over

global ones, as the latter fail to precisely capture local fea-

tures of interest.

The last three rows show results of models that are fine-

tuned on the FashionLocalTriplets with the standard triplet

loss (row 5), our localized version of the contrastive loss

(row 6) and our localized triplet loss (row 7). Compar-

ing row 5 with previous rows shows that fine-tuning out-

performs the pre-trained versions, illustrating the value of

curating a training dataset. Adding localized information to

the triplet loss (row 7) improves the results by large mar-

gins over global embeddings (row 5), highlighting the im-

portance of using localized features on this task. The local-

ized version of the contrastive loss (row 6) didn’t perform

well on this task, barely improving over pre-trained embed-

dings.

Retrieval results. As shown in Table 2, the relative com-

parison of precision-recall between different methods fol-

lows the trend in Table 1. Specifically, our Localized Triplet

method outperforms all baselines, with only Recall@1 tied

with the Localized Contrastive and Pre-trained Fashion em-

beddings. The Contrastive model barely improves over the

pre-trained Fashion model in both Precision and Recall.

Method P@1 P@5 P@10 R@1 R@5 R@10

1. Pre-trained ImageNet [20] 0.70 0.62 0.57 0.10 0.40 0.70

2. Pre-trained Fashion [31] 0.73 0.63 0.57 0.11 0.41 0.68

3. Localized Contrastive [11] 0.78 0.64 0.58 0.11 0.41 0.69

4. Localized Triplet 0.81 0.67 0.59 0.11 0.44 0.72

Table 2. Precision/Recall values for different localized methods on

the FashionLocalTriplets retrieval task.

Method IP-Reg Acc

Localized Triplet
71.17

X 73.72
Table 3. Ablation results on interest point regularization (IP-Reg).

Figure 3. Heatmaps visualizations of queries (left) and database

images in top-2 retrievals (right).

5.2. Ablation Study

Table 3 shows the contribution of the interest point reg-

ularization (IP-Reg). This regularization generates embed-

dings robust to small translation invariance, consistently im-

proving accuracy for the localized triplet loss.

5.3. Localization of Interest Points

Our algorithm matches the interest point in a query im-

age to points on the database images by comparing their

localized embeddings. To verify that this matching is hap-

pening as expected, we compute heatmaps of L2 distances

between the localized embeddings of the query and the

database images. In Figure 3, we can observe that the net-

work learned to match corresponding locations (hemline,

v-neck) in images, even though no interest point location

was provided for the candidate images during training.

6. Conclusions

We proposed a localized triplet loss to train localized em-

beddings for fine-grained visual similarity based retrieval of

fashion items. We presented a new dataset of women’s dress

images that contains hard triplets of images. We demon-

strated that our proposed localized embeddings set the state

of the art in the new application of location-based retrieval.

A future direction can be to relax the need of annotations

from fashion specialists by automatically creating negatives

at different level of complexity (relative comparisons).

Acknowledgments. We are very thankful to the fashion
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