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Abstract

In online shopping applications, the daily insertion of

new products requires an overwhelming annotation effort.

Usually done by humans, it comes at a huge cost and yet

generates high rates of noisy/missing labels that seriously

hinder the effectiveness of CNNs in multi-label classifica-

tion. We propose SELF-ML, a classification framework that

exploits the relation between visual attributes and appear-

ance together with the “low-rank” nature of the feature

space. It learns a sparse reconstruction of image features as

a convex combination of very few images - a basis - that are

correctly annotated. Building on this representation, SELF-

ML has a module that relabels noisy annotations from the

derived combination of the clean data. Due to such struc-

tured reconstruction, SELF-ML gives an explanation of its

label-flipping decisions. Experiments on a real-world shop-

ping dataset show that SELF-ML significantly increases the

number of correct labels even with few clean annotations.

1. Introduction

Deep Convolutional Neural Networks (DCNNs) are the

premier technique for supervised visual learning, especially

for multi-class/multi-label classification. However, as ap-

plication scenarios scale up, obtaining accurate supervisory

data for inflated label spaces is simply not feasible in prac-

tice. For example, public multi-label fashion datasets [2, 8]

have label spaces on the order of 103. Since most data is

provided through human labeling, errors mount and some

labels are highly mislabeled. This is recurrent in fashion e-

commerce platforms where relevant attributes are not anno-

tated since they are seldom queried. For e.g., it is infrequent

to search for jackets using the label Long Sleeved, conse-

quently, this attribute is consistently mislabeled. This issue

has a severe negative impact both in retrieval (product vari-

ability and discoverability) and in recommendations [16].

Against this backdrop, we propose SELF-ML, a DCNN

classification framework that handles highly mislabeled

training. By exploring the relation between visual attributes
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Figure 1: Example of a sparse and explainable reconstruc-

tion of a noisy labeled image (with the red frame) obtained

by our SELF-ML from a few clean labeled images (in blue).

and appearance, SELF-ML infers new labels from the visual

reconstruction of similarly-looking well-annotated images.

SELF-ML selects a small set of images forming a “basis”

that reconstructs the whole dataset through convex combi-

nations. As illustrated in Fig. 1, SELF-ML learns the “best”

reconstruction of a noisy labeled image (in red) from a se-

lection of correctly annotated basis images (in blue), propa-

gating via a flipping model the correct labels (in green). As

shown in the example, SELF-ML finds true positives of la-

bels suffering from systematic mislabeling, as Long Sleeved

and V-Neck for jackets. The underlying assumption (empir-

ically verified) is that the feature space learned by DCNNs

is “low rank” and approximated by linear subspaces [17],

enabling a sparse reconstruction by few points that create

the convex hull of meaningful subsets of image features.

The existence of a set of images from which SELF-ML

can select a small set to be cleanly annotated is common

in real applications [6, 15]. This setting arises when im-

ages are collected from the web or in e-commerce plat-

forms, where only a small subset of product images is as-

signed to be labeled by experts (possibly limited by a la-

beling budget). The sizes of the two subsets comprising

the total dataset T are usually significantly different, with

|N | ≫ |C|, where N and C denote the noisy and the clean

set, respectively. Training a robust classifier in this set-

ting is challenging as, on the one hand, the large set N has

noisy/missing labels and, on the other hand, the clean set C
is too small to train DCNNs. A common practice is to use



Figure 2: Overview of the proposed SELF-ML framework. SELF-ML has a feature extractor module trained for classification,

an explainable reconstruction module that infers a sparse convex combination ci of features of visually similar images from

a basis of cleanly labeled images XB, and a label flipping module that uses the combination ci and the verified labels from

the clean set YB to learn to correct the noisy labels. Finally, these corrected labels are used as supervision to the classifier.

transfer learning by (pre-)training the model on set N and

then fine-tuning it on C to improve performance. However,

this approach is prone to overfitting the small set [4, 14, 15].

Our contributions are 3-fold: 1) We propose the SELF-

ML framework that integrates 4 modules: feature extrac-

tion, classifier, self-explainable reconstruction, and noisy

label flipping. The explainable reconstruction module

learns to reconstruct image features, previously learned by

the feature extractor and classifier, from a sparse “basis”. If

the attributes of the images of this basis are “cleaned”, the

noisy label flipping module learns to correct the noisy la-

bels during model training, leading to remarkable classifica-

tion gains. SELF-ML is also much less prone to overfitting

than fine-tuning. 2) By training SELF-ML to obtain a re-

construction of the input image features based on the set of

basis images, our flipping mechanism will be interpretable

and explainable. 3) We show SELF-ML effectiveness on a

multi-label fashion dataset with label imbalance and noise.

2. Proposed Approach: Self Explainable Label

Flipping for Multi-Label Classification

The overview of SELF-ML is shown in Fig. 2. For each

image i, we seek to represent the visual embeddings as xi =
XBci where XB ∈ Rd×nB is a subset of the data and ci ∈
R

nB is a sparse vector. This representation is derived in

the explainable reconstruction model by enforcing x̃i ≈ xi.

Classical and deep subspace clustering approaches [1, 5, 9,

17] robustly encode images in a similar way however, they

must solve large global optimization problems that require

the entire dataset. Consequently, these approaches are not

scalable and cannot represent unseen examples.

Admitting that visual similarity implies similar at-

tributes, the labels of a given image xi could be straightfor-

wardly regressed from the convex combination of the corre-

sponding clean labels of basis XB, i.e. YBci. We observed

the adequacy of this assumption. However, provided there

is enough training, results can be significantly improved by

a learned “flipping” model that infers the new labels from

the explicit image representation and the noisy labels.

In summary, for a dataset of nT images T =

{(I1,y1), ..., (InT
,ynT

)}, where Ii is the i-th image and

yi ∈ {0, 1}nattr is a vector with the attribute labels (1 in-

dicates attribute presence and 0 its absence) associated to

Ii (if i ∈ C then labels in yi are correct, but if i ∈ N
they were not verified and may be noisy), we train a clas-

sification pipeline (comprising the feature extractor module

and the classifier) so that meaningful features (xi ∈ R
d)

are learned for each image i. This is trained only on the

noisy labeled set N . Features xi are the input to the ex-

plainable reconstruction module that learns to reconstruct

features xi of each training image based on a sparse de-

composition (given by the learned ci) of the image features

that belong to the basis XB. As this model deals only with

visual information it is trained solely on noisy data (set N ).

The label flipping module builds on what is learned by

the reconstruction module since it learns to flip the noisy la-

bels conditioned on the sparse decomposition coefficients.

To predict the correct labels for each image this module

takes as input the original noisy labels, the cleaned labels

of the features learned in XB weighted by the ci vector,

and the image features xi. This is the only component of

SELF-ML that trains on images with cleaned labels (set C).

We remark that, as a result of its design, SELF-ML does

not make any assumption on the noisy label distribution.

Selecting a Basis of clean labeled images We implement

the explainable reconstruction module using two linear lay-

ers: CX that regresses coefficients ci, and XB, whose

learned weights will form a basis of image features. To

ensure the learned explainable reconstruction x̃i = XBci
contains meaningful information about the input image fea-



Method (# clean samples) Precision@k* Recall@k* F1@k* APall MAP Jaccard Similarity 0-1 exact match

Baseline 0 - only noisy (0) 68.16 57.74 56.30 75.02 65.69 29.62 1.60

Baseline 1 - fine-tuned with clean (500) 83.83 83.89 83.76 87.28 70.91 74.86 41.73

SELF-ML - jointly trained (500) 86.30 86.75 86.33 89.54 74.99 78.77 50.00
*metrics at top-k, where k is the number of ground-truth labels of each image

Table 1: Multi-label classification performance (in %) for compared methods. SELF-ML outperforms the other methods.

tures, we include the reconstruction error between the ex-

tracted feature xi and the reconstructed feature x̃i, using the

Huber function [3] (that further induces sparsity). We also

apply a basis regularizer Reg(XB) = ‖XB − Xsample‖2
so that the learned basis is close to a set of image features

Xsample. We let the dimension of XB be large (nB=1000)

and since coefficients ci will only select very few of these

features (ci is very sparse, only ≈ 40 out of 1000 elements

are nonzero) this regularization is only providing an initial-

ization (the model chooses which images go to the basis).

Labeling the Basis We can follow one of two strategies to

obtain the correct labels for the clean basis: 1) we can have

an oracle that correctly annotates the images learned to be

on the basis XB that are associated with nonzero elements

of ci, or 2) we find, for each of the selected images in XB,

the nearest neighbor in the learned feature space from the

images in the clean set, in case we have a previously defined

clean set C, and hence use the clean labels already gathered.

If we follow 1) we may not collect enough annotations to

train the label flipping model, so we can apply a direct rule

that flips the labels of the images in the noisy set N based on

the coefficients ci and correct annotations for the selected

basis images. Such an explicit rule can be applied because

the obtained ci coefficients are intelligible, demonstrating

the explainable nature of SELF-ML. Contrarily, if a subset

C is available we can train and use the label flipping model,

which provides improved label flipping performance.

Explaining Label Flips The coefficients ci, learned by

the reconstruction module, together with the correct labels

YB ∈ {0, 1}nattr×nB (collected by one of the two previous

annotation strategies) for the images in basis XB help the

label flipping module to correct each noisy labeled training

image. This model learns a shared space that combines the

original noisy labels, the features xi, and YBci ∈ Rnattr

(which provides a label score for each image i based on the

correct labels from its reconstruction). The flipping model

is trained on clean set C, for which we also have the orig-

inal noisy labels. This model loss is the absolute distance

between flipped labels f̂i and clean ground-truth labels yi.

Note that f̂i will serve as new corrected supervision for the

classifier, replacing the original noisy labels yi from N .

Model Training According to Fig. 2, SELF-ML is trained

by minimizing Ltotal which combines the classification loss

LClass (we use the Focal Loss [7]), the Basis Selection loss

LBS , and the Explainable Flipping loss LEF . λClass, λBS

and λEF denote hyperparameters to control the contribution

of each loss. Batches are sampled so that 9/10 images are

from N and 1/10 from C (to train the label flipping module).

3. Experiments

Dataset It is easy to spot mislabeling in widely used

datasets as the Deepfashion [8], which undermines its use

for benchmarks. Thus, similar to the approach followed in

other works [4, 14], we test SELF-ML on an e-commerce

fashion dataset, previously used in [10, 11], for which a

sampled subset was verified and curated by experts. In near

future work, we plan to experiment on public datasets.

This real-world dataset has approx. 60200 images be-

longing to the 4 most frequent clothing categories (dresses,

jackets, knitwear and tops), and each image has 17 possible

attributes associated to it. Examples of these attributes are:

Round Neck, Short Sleeved, Dress Length Long, Dress Sil-

houette Flared or Occasion Formal. The average number of

attribute annotations per image in the noisy set N is 1.28,

and 3.40 in C, revealing the noise present. The clean set has

|C| = 3000 images, which is ≈ 5% of the total dataset size,

a fraction similar to the verification labels used in [6, 15].

Training Details and Experimental Setup All models

are implemented with Tensorflow/Keras, with VGG-16 [12]

as CNN backbone, and run under the same conditions:

stopped training after 2 × 104 batches of size 64 (when we

pre-train the CNN we train for 104 batches and when we

fine-tune we train for additional 104), optimized by Adam

(with lr 10−4 and decay 10−5). Images are resized to

224×224 and random rotations, translations and horizontal

flips are applied to 1/3 of the images. We use the focal loss

standard parameters (γ = 2, α = 0.6) and train SELF-ML

with the following hyperparameters: λc = 10, λClass = 1,

λBS = 1, λEF = 10, d = 512, and nB = 1000.

We applied a 75%|25% train|test split ratio for both

the noisy and the clean sets, named Ntrain|Ntest and

Ctrain|Ctest, respectively. Therefore, when we train a

model only on noisy labels we train it on Ntrain, and when

we use clean samples for training we sample them from

Ctrain. Evaluation is performed on the clean test set Ctest.

Compared Methods Baseline 0: train the feature extrac-

tor and classifier on Ntrain and on original noisy labels of

Ctrain. This is the lower-bound of the following methods.

Baseline 1: pre-train the feature extractor and the classifier

on Ntrain and fine-tune the last layers (Conv2D + GAP and

the classifier) with clean labels (sampled from Ctrain).

SELF-ML- jointly trained: pre-train the feature extractor,

the classifier, and then the explainable reconstruction on

Ntrain, and pre-train the label flipping model on Ctrain.

Then jointly train the explainable reconstruction, the clas-

sifier, and the noisy label flipping modules, initializing the

flipping model with the pre-training weights.



(a) Left: t-SNE of ci vectors for a random

sample of dresses images. The images Bi, for

which ciBi
≈ 1 (in magenta) are selected to

be on basis XB, approximately form the con-

vex hull of the data points and cover all possi-

ble attributes for dresses.

(b) Above: Images selected for the basis XB

are mainly reconstructed by themselves and

by few other images (with much lower cik ).

Figure 3: Examples of what is learned by XB and ci

Figure 4: Average Precision gain per label of SELF-ML

over Baseline 1. SELF-ML can improve more rare and dif-

ficult labels that lead the fine-tuning approach to overfitting.

Figure 5: Labels flipped to 1 and to 0 by SELF-ML.

Classification Results Table 1 reports the multi-label

classification performance for the compared methods. As

anticipated, training only on noisy labels has very poor per-

formance, and Baseline 0 is indeed a lower bound of the

remaining methods. In Baseline 1, we observe a clear boost

in all metrics. However, fine-tuning the last layers on clean

samples is prone to overfitting more rare labels (due to the

limited samples available for these labels in the clean set),

as pointed out by [4, 14]. This behavior is indicated by

a small increase of the MAP. Contrarily, SELF-ML shows

special improvement over the fine-tuning approach for the

less frequent labels. This is shown in Fig. 4, where we plot

the improvement in AP for each label sorted by label fre-

quency. Particularly, the most significant improvements of

AP (≈ 5% to 20%) occurred for labels that are more difficult

to capture (as they are visually more ambiguous) like dress

silhouettes. Using the same 500 clean samples, SELF-ML

beats all baselines for all metrics by a considerable margin,

demonstrating that it is more effective than fine-tuning.

Label Flipping Fig. 5 shows the relabeling (to 1 or to 0)

obtained by our flipping model for each attribute, on Ctest.

We observe that it is able to flip a massive number of false

negatives for the noisiest attributes (for example, none of the

jackets images had positive annotations for Round Neck or

for Long Sleeved), but at the same time, also relabels false

positives that are distributed among all attributes.

What is Learned by XB and ci? Considering only the

subset of dresses images, for clarity, Fig.3a shows the t-

SNE [13] of the ci vectors learned for this subset. We ob-

serve that the ci for the few images Bi selected for the basis

XB (with ciBi
≈ 1) indeed approximate well the convex

hull of the ci vectors for images in this class. We also no-

tice smoothness in the space as nearby images share most

of the labels. Additionally, we saw that obtained ci vectors

are very sparse, and thus only ≈ 40 image features from the

columns of basis XB are used to reconstruct the entire noisy

training set (considerably less than the basis size nB=1000).

Although very few, we found that the selected basis images

belong to the 4 possible classes and, if correctly annotated,

cover all nattr=17 possible labels. Finally, we verified that

the images learned for basis XB are mainly reconstructed

by themselves and by few other similar images with a much

lower cik coefficient (examples are presented in Fig. 3b).

4. Conclusions

Creating complete and consistent multi-label fashion

datasets requires tremendous effort and is extremely costly.

We introduce SELF-ML, a DCNN classification framework

that selects a set of images that should be cleanly annotated

allowing to correct all noisy labels. Besides providing a

flipping explanation, it outperforms compared approaches.
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