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Abstract

Conditional human image generation, or generation of

human images with specified pose based on one or more ref-

erence images, is an inherently ill-defined problem, as there

can be multiple plausible appearance for parts that are oc-

cluded in the reference. Using multiple images can mitigate

this problem while boosting the performance. In this work,

we introduce a differentiable vertex and edge renderer for

incorporating the pose information to realize human image

generation conditioned on multiple reference images. The

differentiable renderer has parameters that can be jointly

optimized with other parts of the system to obtain better

results by learning more meaningful shape representation

of human pose. We evaluate our method on the Market-

1501 and DeepFashion datasets and comparison with exist-

ing approaches validates the effectiveness of our approach.

1. Introduction

Generation of novel human images from a reference im-

age has many different applications such as virtual try-

on, virtual/augmented reality, art, video manipulation, etc.

However, there can be large ambiguities in the output from

occlusions in the reference image. In order to minimize the

uncertainty and to focus on real world applications, here we

focus on conditioning the image generation on multiple ref-

erence images.

Most existing approaches for conditional human image

generation from another pose rely on heatmaps that encode

the pose information [5, 6, 7]. In general, this heatmap is

generated from sparse points by fitting Gaussians or other

simple structures, often significantly impacting the perfor-

mance. In this work, we propose to use a differentiable ren-

dering engine that can learn the optimal way to generate the

heatmaps from the data itself, instead of using the various

heuristics.

We build our approach upon Multiple-Source De-

formableGAN (MS-DefGAN) [7], which is applicable to

multiple reference images, and we modify it to use a differ-
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Figure 1. Overview of our method. From the input pose keypoints,

our differentiable renderer generates a pose condition heatmaps

that represent both keypoints and edges.

entiable heatmap renderer that takes the pose inputs. Un-

like previous approaches, the input heatmap represent the

pose not only through keypoints, but also through edges,

so that better conditional dependence can be learned from

the rendering of heatmaps such as arms and legs as well as

elbows and knees. This richer representation is able to en-

code more details of the human body. The differentiable

renderer is parametrized and designed so it can learn funda-

mental parameters of the human body shape through back-

propagation, improving the accuracy of the human image

generation using multiple reference images. An overview

of our approach is shown in Fig. 1.

We evaluate our approach on the Market-1501 and Deep-

fashion datasets and demonstrate the effectiveness of our

approach.

2. Related Work

Conditional human image generation, otherwise known

as the pose conversion, is a task to generate an image of a

person in given reference images but with a specified alter-

native pose [5]. Existing approaches differ in how the pose

is specified, and are roughly divided into ones that use an

image of another person to specify the pose and the ones

that use a 2D skeleton. In the former, procuring the image

of a person with the desired pose can be cumbersome or
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even impossible. Also, the generated image tend to be in-

fluenced by the pose-specifying image’s appearance, from

which we only want the pose. On the other hand, using the

skeleton to specify the pose makes the task more difficult

and, as a result, the quality of the generated image can suf-

fer, though it is easier to use and more convenient from the

user’s point of view. There also exist methods that utilize

optical flow, which require moving images as the input, as

well as ones that perform texture mapping on a 3D model of

the person prepared in advance. In this paper, we choose the

more difficult approach, which is the use of skeleton input,

for versatility’s sake.

DefGAN [6] is known as a skeleton-based method. It

realizes high-performance pose conversion without using

optical flow or 3D model through cut-and-paste of fea-

ture maps to transform the original pose to the target pose,

through a clever use of skip connection in the U-Net struc-

ture. Its variant SA-DefGAN [3] realizes higher-quality

transformation that considers the entire image by the use

of Global Self-Attention in DefGAN. However, since the

computation cost of SA-DefGAN increases as the square of

the number of pixels, its use generalizes poorly to higher-

resolution images required in practical use. MS-DefGAN

[7] is a more practical extension of DefGAN. It can use

single or multiple reference images. Using multiple im-

ages can help reduce ambiguities and increase performance.

However, MS-DefGAN has been reported to have a lower

SSIM score than VUnet [2, 7], which uses Variational Auto

Encoder to generate looks and poses. The VUnet, in turn,

has the disadvantage of not generating very diverse outputs

relative to GAN-based methods, nor is it easily extended

to the multi-source context, as it largely abandons spatial

information, making it hard to correlate multiple input im-

ages.

In this paper, we propose a higher-performance condi-

tional human image generation framework based on MS-

DefGAN, in which we emphasize the importance of learn-

ing to generate the shape more precisely. Our proposed

method can help in any of the DefGAN variations to provide

a better shape-generation ability. In existing research, the

pose is given to the image-generating network as a pseudo-

image, or a heatmap, depicting the shape of desired human

pose. This shape generation is often unsuccessful, as is the

case of [6], leading to the preference of texture cut-and-

paste. It has been expressed in terms of dots, the fixed size

of which is determined by a hyperparameter search. Our

method represents the human pose as dots for important

points such as the hand, elbows, knees, and feet, as well

as the edges that connect these points. It also automatically

learns the size of the dots and the lengths and the thick-

nesses of the edges to create an appropriate pose heatmap.

Since this method only learns a small number of parameters,

it can be used in any of the above methods without adding

much overhead after learning.

3. Our Approach

Our method is based on MS-DefGAN [7], extended to

have a pose keypoint rendering module (Vertex Renderer)

and pose skeleton rendering module (Edge Renderer).

The pose information P for conditioning is a tuple of a

fixed number of two-dimensional points:

P = (p1,p2, . . . ,pk), (1)

where pi ∈ R
2. In the experiments we set k = 18.

Based on this pose information P , a vertex heatmap

HVi
∈ R

H×W is rendered for each vertex Vi, and an edge

heatmap HEi
∈ R

H×W is rendered for each edge Ei, where

H and W are the height and the width of the output image,

respectively.

3.1. Vertex Renderer

In the DefGAN [6], each keypoint heatmap is given as:

HVi
(p) = exp

(

−∥p− pi∥ /σ
2
)

(2)

for each pixel coordinate p. The conditioning pose informa-

tion is fed to the network as concatenation of the heat maps

in the channel direction for each pixel/node:

HV = VertexRender(P ) (3)

= Concat(HV1
, HV2

, . . . , HVk
) (4)

In DefGAN, σ = 6.0 was set as a hyperparameter from

the results obtained by cross-validation, and pose informa-

tion was calculated using this. However, setting hyperpa-

rameters is very troublesome, and the optimal value can

change depending on the size of the image and the nature

of the data set. Therefore, in our approach, the value of σ is

learned for each vertex. This is implemented by preparing

and calculating a tensor with a sequence of numbers. Note

that it will be 0 if the keypoint is not detected.

3.2. Edge Renderer

There is predetermined keypoint connection information

E = (e1, e2, . . . , e19), where each element ei = (ji, ki) is

a pair of vertex indices, meaning pji
and pki

are the end-

points of the edge. The edge is extended by the learnable

parameters αsi and αei , and the end points of the edge are

given as follows:

pstarti
= pji

+ αsi

(

pki
− pji

)

(5)

pendi
= pki

+ αei

(

pki
− pji

)

. (6)

Using the vertices, we determine the vector in the edge and

the orthogonal directions. The norm of the vector is ad-
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Figure 2. Visualization of the Edge Rendering Algorithm. The

blue arrow indicates the direction of the vector used to calculate

the inner products. The inner product of the vector from the start

point of the arrow to each position and the blue arrow is shown in

changing colors. Black pixels represent values of 0 or less, and

white pixels represent values of 1 or more. In this method, the part

containing the value from 0 to 1 is drawn.

justed so that it is the reciprocal of the original length.

vstraight =
pend − pstart

∥pend − pstart∥
2
+ ϵ

(7)

v
′

normal =

(

0 1
−1 0

)

vstraight (8)

vnormal = β
v
′

normal

∥v′

normal∥
2
+ ϵ

(9)

A rectangular heat map is created as the inner products of

each positions and these vectors. We then employ a ramped

rectangular function (rrect) [4] to allow back-propagation

for the sloped part:

HEi
(p) =rrect ((p− pstart) · vstraight)

· rrect ((p− pstart) · vnormal + 0.5) . (10)

The complete edge heatmap tensor is then created by con-

catenating the individual heatmaps as:

HE = EdgeRenderer(P ) (11)

= Concat(HE1
, HE2

, . . . , HEk
) (12)

The rrect function is defined as follows:

rrect(x) =































0 (x < −γ)
1
2γ
(x+ γ) (−γ ≤ x < γ)

1 (γ ≤ x < 1−γ)

− 1
2γ
(x−1−γ) (1−γ ≤ x<1+γ)

0 (1+γ ≤ x)

(13)

=min

(

max

(

1+γ − x

2γ
, 0

)

, 1

)

+min

(

max

(

γ + x

2γ
, 0

)

, 1

)

− 1 (14)

Table 1. Comparison with other pose transfer methods on the

Market-1501 for different number of reference images n. Since

[2, 6] are methods that supports only a single source, these are

evaluated only on input 1. MS-DefGAN [7] and our methods sup-

port multiple sources, these are evaluated even if there are multi-

ple inputs. mSSIM and mIS indicate masked SSIM and masked

Inception Score, respectively.

Model n SSIM IS mSSIM mIS

VUnet [2] 1 0.312 3.283 0.862 2.544

DefGAN [6] 1 0.225 2.994 0.828 2.745

MS-DefGAN [7] 1 0.318 3.256 0.863 2.593

Ours 1 0.324 3.316 0.860 2.538

MS-DefGAN [7] 3 0.362 3.173 0.877 2.541

Ours 3 0.364 3.220 0.873 2.494

MS-DefGAN [7] 10 0.384 3.082 0.885 2.510

Ours 10 0.384 3.083 0.881 2.471

Our EdgeRenderer is thus able to automatically adjust the

length in the edge direction and the edge thickness in the

perpendicular direction. A visualization of this method is

shown in Fig. 2.

The edge elongation factor α’s and the edge thickening

factor β’s are learned with back-propagation. The slope of

the edge γ is fixed to 0.2 in this study.

4. Experiments

4.1. Datasets

We compare our method and pre-existing methods

(VUnet, DefGAN, and MS-DefGAN) using the Market-

1501 and DeepFashion datasets. The poses of the persons

in the images in the datasets are estimated and annotated by

using OpenPose [1] . We create input-output pairs from im-

ages of the same person. For the Market-1501 dataset we

only use images of people with at least 13 instances, while

for the DeepFashion dataset we only use images of people

with at least 4 instances.

As a result, we created 215,750 training, 23,913 vali-

dation, and 23,491 evaluation pairs from the Market-1501

dataset, and 26,014 training, 2,900 validation, and 6,708

evaluation pairs from the DeepFashion dataset. Note that

VUnet is a VAE, so it is trained on a single image rather

than paired training data. VUnet is trained with 8,803 Mar-

ket1501 mages and 20,902 DeepFashion images.

4.2. Training

The structure of the neural network and the loss func-

tion follow those of MS-DefGAN. Note that the MS-

DefGAN [7] model is pre-trained with two reference im-

ages and then re-trained before the testing using the same

number of input images as the test data. Here, for fairness,
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Figure 3. A qualitative comparison on the Market-1501 dataset. The first column shows the source images. [6] and [2] use only the first

source image. The target poses are given by the ground truth images in column 2. In column 4, we show the results obtained by our model

from increasing numbers (Mn) of source images. The source from the first column are added while increasing Mn from left to right. We

can see that the overall shapes of the persons look better in our results, such as the pants.

we train the models from the beginning to the end with a

fixed number of inputs and evaluate using the same model

without re-training. The Market-1501 dataset model is

trained with 12 input images, and the DeepFashion dataset

model is trained with 3 inputs.

The training is terminated when the highest SSIM score

for the validation dataset is reached. The SSIM score is

calculated with the window size of 11 and in 8bit color.

4.3. Quantitative Comparison

We quantitatively evaluate the output image quality of

the models trained as in 4.2 in each input image number

setting.

As evaluation metrics, SSIM, masked SSIM, Inception

Score (IS), and masked Inception Score are used. The result

is shown in Tables 1 and 2. The higher SSIM represents

the higher degree of shape matching. The Inception Score

evaluates the diversity of generated images. VUnet [2], with

its use of VAE, significantly sacrifices the IS to enhance the

SSIM. Since our method uses the renderer to generate the

shape, it can enhance the SSIM without sacrificing the IS.

Our results have the best SSIM, albeit slightly.

4.4. Qualitative Comparison

The outputs by the methods can be compared in Fig. 3 for

the Market-1501 dataset and in Fig. 4 for the DeepFashion

dataset. We can see that the overall shapes of the persons

look better in our results.

5. Conclusion

We have presented an approach for pose-conditioned hu-

man image generation based on using a differentiable ren-

xi, i ∈ [1..3] ground truth [7] Ours

Figure 4. Qualitative results on DeepFashion Dataset.

Table 2. Quantitative comparison on DeepFashion dataset.

Model n SSIM IS

VUnet [2] 1 0.763 3.025

DefGAN [6] 1 0.695 3.139

MS-DefGAN [7] 1 0.764 2.916

Ours 1 0.767 2.770

MS-DefGAN [7] 3 0.779 2.811

Ours 3 0.779 2.670

dering engine. Our approach encodes the human pose more

accurately by representing it with both vertices and edges.

Furthermore, instead of relying on heuristics to generate the

pose heatmaps, our approach is able to determine the gen-

eration parameters directly from the training data through

back-propagation. Experiments on the Market-1501 and

DeepFashion datasets corroborate the effectiveness of our

approach.

6. Acknowledgements

This work was partially supported by JSPS Grant-in-Aid

for Scientific Research (A) grant number 20H00615.

4



References

[1] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.

Realtime multi-person 2d pose estimation using part affinity

fields. In IEEE Conf. Comput. Vis. Pattern Recog., pages

7291–7299, 2017. 3

[2] Patrick Esser, Ekaterina Sutter, and Björn Ommer. A varia-

tional u-net for conditional appearance and shape generation.

In IEEE Conf. Comput. Vis. Pattern Recog., 2018. 2, 3, 4

[3] Yusuke Horiuchi, Satoshi Iizuka, Edgar Simo-Serra, and Hi-

roshi Ishikawa. Spectral normalization and relativistic ad-

versarial training for conditional pose generation with self-

attention. In 2019 16th International Conference on Machine

Vision Applications (MVA), pages 1–5, 2019. 2

[4] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-

ral 3d mesh renderer. In IEEE Conf. Comput. Vis. Pattern

Recog., pages 3907–3916, 2018. 3

[5] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuyte-

laars, and Luc Van Gool. Pose guided person image genera-

tion. In Adv. Neural Inform. Process. Syst., pages 405–415,

2017. 1

[6] Aliaksandr Siarohin, Enver Sangineto, Stéphane Lathuilière,
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