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Abstract

In this paper we present an extensive evaluation of in-

stance segmentation in the context of images containing

clothes. We propose a multi level evaluation that completes

the classical overlapping criteria given by IoU. In partic-

ular, we quantify both the contour and color content accu-

racy of the the predicted segmentation masks. We demon-

strate that the proposed evaluation framework is relevant to

obtain meaningful insights on models performance through

experiments conducted on five state of the art instance seg-

mentation methods.

1. Introduction

Clothes segmentation is the cornerstone of many image

processing tasks in the fashion industry. Although segmen-

tation is already useful by itself to isolate a garment from an

outfit for display purposes, it is predominantly used as a pre-

processing step for numerous applications: virtual try on for

obtaining a source apparel [14], visual semantic embedding

to obtain the products from an outfit [1], color applications

such as color harmony [9].

In addition to these applications where segmentation is

already well grounded, other use cases that solely rely on

detection as a pre-processing step could be improved with

segmentation. For example, clothes retrieval is traditionally

performed with detection [12] but segmentation has proven

a viable alternative [2].

Over the years, a wide range of deep segmentation mod-

els have been proposed [10, 11, 4, 5, 3]. Selecting the best

one for a specific use case can end up being a daunting

task. The current de facto standard approach for evaluating

a segmentation architecture is the mean average precision

(mAP ) which is based on the intersection over the union

(IoU ) also known as the Jaccard index. Its main strength

lies in its ability to sum up the performance with a unique

metric. However this approach suffers from two major lim-

itations. It does not capture well the quality of the contour

and does not take into account the content associated with

the identified masks.

These drawbacks raise the need for a broader evaluation

method including different aspects that are crucial in the

fashion context. An evaluation protocol giving insights on

the quality of predicted masks would be of great interest to

benchmark methods, finding applications in machine learn-

ing model training, model selection and model drift analysis

in production. Therefore, for evaluating segmentation ar-

chitectures, we propose in this paper a multi-level approach

that relies on three levels: global, contour and content.

The remainder of the paper is organized as follow. In

Section 2 we present in details the limitations of the main-

stream approach for evaluating the performance of segmen-

tation architectures. We offer an alternative by introducing

in Section 3 our multi-level evaluation approach. Finally

in Section 4 we use the proposed approach to compare and

evaluate the performance of existing state-of-the-art deep

segmentation architectures on fashion images.

2. mAP for instance segmentation evaluation

The dominant approach for evaluating instance segmen-

tation methods is the mAP . The mAP is the mean of the

average precision APc computed per class (c) over all the

possible classes (C):

mAPα =
∑

c∈C

APc,α

|C|
, (1)

where α is a threshold used to discriminate true and false

predictions needed to compute the precision-recall curve.

We recall that the average precision (AP ) is the area under

the precision-recall curve.

In order to compute APα an underlying metric is used.

For object detection or instance segmentation, the metric
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Figure 1: Hand generated T-shirt masks (Gi) that all have a IoU score of approximately 0.61 with ground truth (GT ).

Each Gi contains the computed IoU , BJ , sEMD with the ground truth.

used to fill this role is the intersection over the union (IoU )

between a predicted mask Ŷ and a ground truth mask Y

IoU (Y, Ŷ ) =
|Y ∩ Ŷ |

|Y ∪ Ŷ |
. (2)

Then, if the IoU is greater than α, the predicted instance is

considered a true detection and a false one otherwise.

While the exclusive use of IoU in a coarse localization

problem such as detection is clear, several limitations arise

from its use on the finer localization obtained by instance

segmentation. For example, in Fig. 1, all the masks Gi

have the same IoU with the ground truth even if they are

relatively different (shifted mask, over-infra segmentation,

coarse mask). They would be equally viable as a true pre-

diction in mAP0.5 for example. Though, we clearly see that

IoU fails to assess both contour detection errors (e.g. coarse

mask in G4) and content errors (e.g. mask G3 obtained by

enlarging GT ).

The main limit of the mAP based on IoU in instance

segmentation problems is that it only relies on pixel inclu-

sion in a mask. This is a known issue and authors such as

Csurka et al. [6] recommend the use of multiple metrics to

capture different aspects of semantic segmentation. In [6],

IoU and a contour discrepancy metric are for instance con-

sidered. This paper builds upon previous works and intro-

duces in the next section an evaluation protocol for instance

segmentation in the fashion context.

3. Multi level evaluation

In order to deeply analyze the impact of an inaccurate

predicted mask, we propose in this section a multi level

evaluation in the context of clothes instance segmentation

in the fashion industry. The proposed multi level evalua-

tion exploits all the information available at the pixel level:

mask membership (global), location (contour) and color

(content). In the following subsections, we introduce dif-

ferent metrics and select one candidate metric for each level

of evaluation. Their application to segmentation instances

is illustrated in Fig. 1.

3.1. Global level

Segmentation is a pixel classification task that predicts a

class label for each pixel. Hence, standard evaluation proto-

cols focus on the evaluation of the accuracy of the mask re-

gion estimated during the classification. Clustering evalua-

tion (e.g. rand index) or information theoretic based metrics

(e.g. mutual information) can be used to evaluate pixel clas-

sification. In this work, we consider overlap coefficients,

which are popular metrics for segmentation. Overlap coef-

ficients include the Dice index and the IoU .

We propose to rely on IoU , defined in (2), as an efficient

reading of global mask quality. Well established in the lit-

erature, it benefits an ease of use for comparison purposes.

Moreover, the IoU is independent from pixels content and

localization and evaluates the segmentation in itself.

3.2. Contour level

Segmentation can be formulated as a contour detection

task, where the boundary of a mask is a closed contour to

be detected. Evaluation of segmentation can thus be done

with contour discrepancy metrics, in order to have an in-

formation on the accuracy of the boundary of segmented

objects. The Hausdorff distance (HD) and the boundary f1-

measure (BF) [13, 6] are examples of such metrics. These

approaches are nevertheless either too expensive to compute

(HD) or difficult to analyze (lack of expressiveness for BF).

Hence we propose to use the boundary Jaccard [7],

which improves boundary f1-measure [13, 6]. Boundary

Jaccard (BJ) compares the contours ∂Ŷ of the predicted

mask Ŷ with the ground truth ones ∂Y . To express BJ,

we define d as the distance from a pixel x to a mask B:

d(x,B) = infy∈B ||x − y|| and the metric D between a

contour ∂A and a mask B, for an accuracy threshold θ > 0

D(∂A,B) =
∑

x∈∂A, d(x,B)<θ

(

1− (d(x,B)/θ)2
)

, (3)

We finally obtain the Boundary Jaccard as

BJ(Y, Ŷ ) =
D(∂Ŷ , Y ) +D(∂Y, Ŷ )

|Y |+ |Ŷ |
. (4)
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Notice that all contour pixels that are at a distance greater

than θ to the mask have a zero contribution to the BJ index.

For the threshold θ, the authors of [7] proposed a value of

0.75% of the image diagonal. In our experiment we set θ to

a fixed value of 5, according to the images size.

For fashion related tasks it is crucial that the masks pre-

serve clothes shape and localization. BJ gives insight on the

model ability to match ground truth contours (see Fig. 1).

3.3. Content level

In order to evaluate the quality of the segmented content,

we now propose to analyze the color distribution within the

segmented masks. In practice, we consider the color distri-

bution of the pixels in a mask as a discrete 3D histogram

of n bins defined in the L*a*b* CIE76 color space [21].

The evaluation then consists of a comparison between color

histograms of ground truth and estimated masks. Discrete

histogram comparison tools can be divided into four main

categories [18]: heuristic histogram distance, statistical test,

information theoretic divergence and ground distances.

We here propose to rely on the Earth Mover’s Distance

(EMD) [22]. This ground distance has indeed proven to be

a robust metric for image retrieval [16], color transfer [17]

or image segmentation [15]. Contrary to classical bin-to-

bin measures such as Kullback-Leibler divergence, EMD

is naturally designed to take into account empty bins. On

the other hand, there exists no explicit formula to compute

EMD between histograms defined on spaces of dimension

greater than one. As we deal with 3D histograms, we need

to solve a linear optimization problem to compute EMD.

We denote as hŶ and hY the color histograms of the

pixels respectively contained in estimated and ground truth

masks Ŷ and Y . EMD is obtained from a flow f that gives

the minimal cost for transporting hŶ to hY , given a n × n
matrix which components ci,j represents a cost between

bins i and j. The optimal value fij , that indicates the por-

tion of mass in the histogram bin hŶ (i) transported to the

histogram bin hY (j), is estimated by solving

EMD(hY , hŶ ) = inf
f

n
∑

i

n
∑

j

fi,jci,j (5)

subject to the constraints: (i)
∑n

i fi,j = hŶ (j), j : 1 · · ·n,

(ii)
∑n

j fi,j = hY (i), j : 1 · · ·n and (iii) fi,j ≥ 0,

i, j = 1 · · ·n. We use as cost matrix ci,j = ||bi − bj ||,
with {bi}

n
i=1 the centers of histogram bins, and we solve

(5) with a linear solver. In order to define a similarity from

EMD, we propose the following nonlinear transform:

sEMD(hY , hŶ ) = e(−β.EMD(hY ,h
Ŷ
)). (6)

Numerical experiments suggest that taking β = 5 and 16-

bins histograms is a relevant choice for discriminating ac-

ceptable color histograms h
Ŷ

from those that are visually

too different from hY .

With this content evaluation, we are able to estimate the

color accuracy of the estimated masks. For certain fash-

ion applications, extracting clothes fabrics can be as im-

portant as the clothes themselves. Being able to quan-

tify errors based on over-segmentation (e.g. including back-

ground, other garment, etc.) and under-segmentation (e.g.

missing clothing parts made up with different fabrics) is ex-

tremely valuable (see e.g. sEMD in Figure 1).

3.4. Corpus evaluation

The three previous levels of evaluation concern individ-

ual masks. In order to realize an analysis of the results on a

whole corpus, the information has to be aggregated.

First, we evaluate the distribution of values for each met-

ric by selecting their means mIoU , mBJ , msEMD. Second,

we propose to use the mean average precision (mAP ) pre-

sented in Section 2 where IoU , BJ , sEMD will be em-

ployed as the underlying true positive discrimination met-

rics with an associated α threshold. Each are named re-

spectively: mAPIoUα, mAPBJα, mAPsEMDα.

4. Experiment

The dataset Deepfashion2 [8] was assembled to answer

multiple fashion related tasks: detection, landmark de-

tection, pose estimation, segmentation, product retrieval.

Deepfashion2 is currently the largest dataset containing

mask annotations. The dataset was originally presented

with the results of Mask R-CNN [10] method and a seg-

mentation evaluation in terms of mAPIoU .

For our experiments we consider the same data split-

ting as in [8] for training and evaluation (i.e. 52,490 in-

stances in 32,153 images isolated for evaluation). The ma-

chine used to conduct the experiments was equipped with

a Tesla P100 GPU. As the evaluated methods require non-

negligible computation time for training, the final evalua-

tion is realized after 5 epochs.

4.1. Evaluated methods

There exist two main categories of detection methods

using CNN. The first one, popularized by Faster R-CNN

[20], have two steps: a region proposal step and a region

classification-refining step. The second category contains

single shot approaches (e.g. YOLO [19]). Fixed grids are

considered to reduce the complexity of the region proposal

step, but theoretically at the expanse of prediction quality.

When it was proposed, the two steps method Mask R-

CNN [10] achieved state-of-the-art results, by adding a seg-

mentation step to the bounding box predicted by Faster R-

CNN architecture. Many improvements have then been in-

troduced concerning different aspects of the pipeline. MS

R-CNN [11] focuses on improving the mask score and train-

ing loss. In particular it adds a prediction by regression of
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Figure 2: Box plot of the applied metrics, on the paired ground truth and first prediction ordered by score, distributions

without outliers, green dashed line is the distribution mean, the yellow line is median.

Architecture mIoU

mAPIoU
mBJ

mAPBJ
msEMD

mAPsEMD

[0.5, 0.95] 0.5 0.75 [0.5, 0.95] 0.5 0.75 [0.5, 0.95] 0.5 0.75

Mask R-CNN 0.820 0.399 0.567 0.464 0.690 0.226 0.568 0.081 0.932 0.522 0.580 0.560

Mask scoring R-CNN 0.832 0.421 0.567 0.490 0.717 0.264 0.569 0.174 0.936 0.530 0.577 0.563

Cascade Mask R-CNN 0.836 0.424 0.577 0.493 0.713 0.257 0.578 0.145 0.935 0.533 0.589 0.568

Hybrid Task Cascade 0.838 0.440 0.594 0.508 0.725 0.283 0.600 0.187 0.934 0.547 0.608 0.584

Yolact 0.854 0.516 0.687 0.601 0.737 0.341 0.689 0.265 0.943 0.642 0.699 0.679

Table 1: Evaluation after 5 training epochs, mIoU , mBJ and msEMD are computed with the distributions presented in Figure

2, regarding the mAP the second line correspond to the α’s interval, values

the IoU to the predicted mask score. Cascade R-CNN [4]

is a multi-stage detection architecture composed of multi-

ple detector. Each detectors are trained sequentially with

increasing rigorousness in predictions. Hybrid Task Cas-

cade (HTC) [5] improves on Cascade R-CNN by putting

forward a intertwined detection and segmentation chain in-

stead of the two task being cascaded separately and adding

a context branch in the architecture.

Yolact [3] is a single shot methodology for real-time

instance segmentation. The architecture mimics Mask R-

CNN approach but on the single shot detector YOLO [19].

The mask predicted results from a linear combination of

mask prototypes and instance coefficient generated in two

different branches. Boyla et al. [3] claim that this approach

could be adapted to almost any detection architectures.

To sum up, we trained 5 different segmentation architec-

tures for the evaluation : Mask R-CNN [10], Mask Scoring

R-CNN (MS R-CNN) [11], Cascade Mask R-CNN [4], Hy-

brid Task Cascade (HTC) [5], Yolact [3]. Note that all these

architectures are built on top of a ResNet-50 backbone.

4.2. Analysis of results

As reported on Table 1, Yolact gives the best results af-

ter 5 training epochs. Moreover, its training time is almost

three time faster than Mask R-CNN (Table 2). HTC, is the

runner-up in term of mask quality and the best of two steps

approaches. However, the architecture complexity increases

training time by approximately 50% compared to Mask R-

CNN and a factor four with Yolact. MS R-CNN has the

second best mEMD (Table 1). Its worst predictions are bet-

ter than the ones of others two steps methods (see boxplot

lower bounds in Fig. 2). It can also be noticed that MS

R-CNN is better than Cascade R-CNN in terms of contour

accuracy, even if this latter model performs better for the

global level evaluation. The mAPIouα, the mAPBJα, and

the mAPsEMDα, decreases slightly faster with increasing

α, for both Mask R-CNN and Cascade R-CNN when com-

pared to other models. This suggests that the two methods

produce much more false predictions.

5. Conclusion and future work

In this paper, we propose a three levels evaluation frame-

work for instance segmentation. We applied our method-

ology to clothes segmentation obtained from five state-of-

the-art segmentation models. The framework proves to give

useful insights on models inference, adding interpretabil-

ity to results. We show that Yolact obtains the best perfor-

mances after an early stopping of 5 epochs. Notice that the

evaluation trends were reinforced during training and we

postulate that more epochs will only accentuate the current

gaps between the five models. We plan to evaluate other

single shot instance segmentation methods in the future.

Finally, possible improvements of the evaluation frame-

work include a better normalization for the sEMD, the re-

duction of EMD computational cost, and a texture evalua-

tion for the content level.

Mask MS Cascade
HTC YolactR-CNN R-CNN R-CNN

inference time
0.11 0.11 0.13 0.22 0.07s/image

training time
10.94 11.20 14.68 16.87 3.89

h/epoch

Table 2: Time complexity of the 5 evaluated methods.
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