
Deep Graphics Encoder for Real-Time Video Makeup Synthesis from Example

Robin Kips1,2, Ruowei Jiang3, Sileye Ba1, Edmund Phung3, Parham Aarabi3, Pietro Gori2

Matthieu Perrot1, Isabelle Bloch4,

1 L’Oréal Research and Innovation, France
2 LTCI, Télécom Paris, Institut Polytechnique de Paris, France, 3 Modiface, Canada

4 Sorbonne Université, CNRS, LIP6, Paris, France

{robin.kips, sileye.ba, matthieu.perrot}@loreal.com, {irene,edmund,parham}@modiface.com

pietro.gori@telecom-paris.fr, isabelle.bloch@sorbonne-universite.fr

Abstract

While makeup virtual-try-on is now widespread,

parametrizing a computer graphics rendering engine for

synthesizing images of a given cosmetics product remains

a challenging task. In this paper, we introduce an inverse

computer graphics method for automatic makeup synthesis

from a reference image, by learning a model that maps an

example portrait image with makeup to the space of render-

ing parameters. This method can be used by artists to auto-

matically create realistic virtual cosmetics image samples,

or by consumers, to virtually try-on a makeup extracted

from their favorite reference image.

1. Introduction

Virtual-try-on technologies are now largely spread

across online retail platforms and social media. In par-

ticular, for makeup, consumers are able to virtually try-

on cosmetics in augmented reality before purchase. While

creating virtual makeup for entertaining purposes is easy,

parametrizing a rendering engine for synthesizing realistic

images of a given cosmetics remains a tedious task, and

requires expert knowledge in computer graphics. Further-

more, consumers are often prompted to select among a set

of predefined makeup shades, but they cannot try makeup

look from a reference inspirational images on social media.

In the past few years, the field of computer vision at-

tempted to provide a solution to this problem through ad-

vances in the makeup style transfer task. This task consists

in extracting a makeup style from a reference portrait im-

age, and synthesizing it on the target image of a different

person. State-of-the-art methods for this task [9, 10] are

based on a similar principle. First, makeup attributes are

extracted using a neural network and represented in a latent

space. Then, this neural makeup representation is decoded

Figure 1. Examples of lipstick transfer from example images using

our proposed method.

and rendered on the source image using a generative model,

such as GAN [4] or VAE [8].

The use of generative model for addressing rendering-

based problem, also denoted as neural rendering [14], al-

lows producing realistic results but suffers from various lim-

itations in practice. First, such approaches are currently im-

possible to use for real-time inference on portable devices.

Furthermore, training generative models for video data is

an emerging field, and even state-of-the-art models produce

sequences of frames with noticeable temporal inconsisten-

cies [2, 15]. Finally, generative methods are highly depen-

dent on the training data distribution and might fail in the

case of extreme examples, such as unusual makeup colors.

These drawbacks make the use of current makeup transfer

methods unusable in practice for consumer virtual try-on

applications.

On the other hand, computer graphics methods offer

symmetric advantages. Even though the most advanced

rendering techniques require intensive computations, many



Figure 2. Left: training procedure of our model. We sample a graphics parameters vector gi and render a corresponding image using a

renderer R and a random source image Xi. Then, the inverse graphics encoder E is trained to map the image to the space of graphics

parameters with minimum error. Right: inference pipeline. A reference image Xref is passed to the inverse graphics encoder to estimate

the corresponding makeup graphics parameters. Then this code can be used as input to the rendering engine, to render the reference makeup

on videos in real-time. To facilitate training and increase the proportion of relevant pixels in the image, E is trained on crops of eyes and

lips.

graphics-based methods can be used to produce realistic im-

ages in real-time, even on portable devices. As opposed

to generative methods, graphics-based methods do not rely

on training data, and can render videos without time in-

consistency issues. However, they need to be carefully

parametrized to render a given cosmetic product in a realis-

tic manner. In practice, this is a tedious work that requires

expert knowledge in computer graphics.

Recent works on inverse rendering introduced methods

for estimating graphics attributes using differentiable ren-

dering [7]. Such methods [3] propose to estimate parame-

ters such as shape or BRDF by computing a forward ren-

dering using an engine with differentiable operations, as-

sociated with gradient descent to optimize the graphics at-

tributes with respect to one or multiple example images.

However, this class of problem is often ill-posed, attempt-

ing to compute high-dimensional BRDF from RGB images.

Furthermore, most real-time renderers are not differentiable

in practice, and would require costly changes in computer

graphics methods or implementation choices. To the best of

our knowledge, there is no previous work in inverse com-

puter graphics for makeup.

In this paper, we introduce a novel method based on deep

inverse computer graphics for automatically extracting the

makeup appearance from an example image, and render it in

real-time, for a realistic virtual try-on on portable devices.

Examples of our results are illustrated in Figure 1. Our con-

tributions can be summarized as follows:

• We introduce a simple but powerful framework for

learning an inverse graphics encoder network that

learns to map an image into the parameter space of a

rendering engine, as described in Figure 2. This is a

more efficient and compact approach than inverse ren-

dering, and does not require the use of a differentiable

renderer.

• We demonstrate the effectiveness of this framework for

the task of makeup transfer, outperforming state-of-

the-art results, and achieving high resolution real-time

inference on portable devices.

2. Method

2.1. Computer graphics makeup renderer

To achieve a realistic makeup rendering, we use a

graphics-based system, that considers rendering parameters

of color and texture features of any given cosmetics, such

as described in [11]. Figure 3 illustrates the complete ren-

dering pipeline for lipstick simulation.

Table 1. Descriptions of rendering parameters used in our graph-

ics parameters vector representing the makeup material. The com-

plete rendering engine includes a total of 17 parameters.

Description Range

Makeup opacity [0, 1]

R,G,B J0, 255K
Amount of gloss on the makeup [0,+∞)

Gloss Roughness [0, 1]

Reflection intensity [0, 1]

To obtain real-time inference, we first estimate a 3D lips

mesh from estimated 3D facial landmarks. The rendering

is then completed in two parts: 1) lips recoloring; 2) a two-

step texture rendering based on environment reflection es-

timation and other controlled parameters. A similar ren-

dering pipeline also applies to other makeup products. Ta-

ble 1 describes the major rendering parameters used for rep-

resenting a makeup product.

2.2. Inverse Graphics Encoder

We introduce a simple yet powerful framework to train

an inverse graphics encoder that learns to project an exam-

ple image to the parameter space of a rendering engine. In

the case of makeup image synthesis, this allows us to auto-

matically compute the renderer parametrization in order to

synthesize a makeup similar to that of a reference example

image.



Figure 3. Our computer graphics rendering pipeline. While the makeup parameters are fixed prior to rendering, some parameters such as

the lip mesh and the illuminant are estimated on each frame to render.

The training procedure of our framework is described in

Figure 2. We denote by R the computer graphics rendering

engine, taking as input a portrait image X and parametrized

by g, the vector of parameters representing the makeup ma-

terial that we name the graphics parameters. Each com-

ponent of g is described in Table 1. Our objective is to

train an encoder E, so that given an example makeup image

Xref , we can estimate the corresponding graphics parame-

ters ĝ = E(Xref ) to render images with the same makeup

appearance.

Since the renderer R is not differentiable, we do not

use the inverse rendering approach and propose to learn E

through optimization in the space of graphics parameters.

This is a more compact problem than inverse rendering or

material appearance extraction, and does not require a time-

consuming gradient descent step for inference. Instead, we

train a special-purpose machine learning model that learns

an accurate solution for a given renderer and graphics pa-

rameters choice. Mathematically, we denote by gi a ran-

domly sampled graphics parameters vector, and Xi a ran-

dom portrait image. Thus, our model E is trained to mini-

mize the following objective function :

Lgraphics =
1

n

n∑

i=1

‖gi − E(R(Xi, gi))‖
2

Our approach does not depend on a training dataset of

natural images, but only on a sampling of graphics param-

eters that we control entirely at training time. Therefore,

in comparison to existing methods, our model is not sensi-

tive to bias in available training datasets. Instead, we can

select a graphics parameters distribution that samples the

entire space of rendering parameters, which leads to better

performance specially in cases of rare and extreme makeup

examples. In our experiments, we used an EfficientNet B4

architecture [12] to represent E, replacing the classifica-

tion layer by a dense ReLU layer of the same dimension

as g. This light architecture is chosen in order to obtain a

portable model with real-time inference. We construct two

synthetic datasets by sampling n = 15000 graphics param-

eters vectors for eyes and lips makeup, and rendering them

on random portrait images from the ffhq dataset [6], using

the renderer described in Section 2.1. To obtain a realis-

tic data distribution, the graphics parameters are sampled

using a multivariate normal distribution fitted on real ren-

dering parameters set by makeup experts to simulate real

cosmetics. Furthermore, we also sample graphics parame-

ters using a uniform distribution, in order to reinforce data

diversity and improve our model performance on extreme

makeup examples. Finally, our model is trained on crops of

lips and eyes in order to increase the proportion of relevant

pixels in the training image.

At the inference time, an example makeup image is

passed to our inverse graphics encoder to estimate a corre-

sponding graphics parameters vector. These parameters can

then be used to render the extracted makeup attributes on

any source video in real-time using R. Since the graphics

parameters are fixed for each makeup, the inverse graphics

encoder only needs to be run once per reference makeup

image, and can then be used to render later video for any

consumer. The inference pipeline is illustrated in Figure 2.

3. Experiments and Results

3.1. Qualitative experiments

In order to obtain a qualitative evaluation of our frame-

work, we compare our approach to two state-of-the-art

methods of makeup transfer: BeautyGAN [10] and CA-

GAN [9]. We extract makeup from multiple reference im-

ages with various colors and glossiness levels, and synthe-

size makeup on the same source image, as illustrated in Fig-

ure 4. Our method produces more realistic results than ex-

isting makeup transfer methods, and is capable of accurately

rendering the appearance of lipsticks and eye-shadow with

various colors and textures, without any loss of image reso-

lution. Furthermore, since our method is not dependent on

the distribution of a training dataset, it largely outperforms

other methods on extreme makeups such as blue lipstick or

yellow eye-shadow, as shown in Figure 4.

In our problem formulation, the eye-shadow application

zone and intensity are not part of the estimated graphics pa-



Figure 4. Qualitative comparison on lipstick and eye-shadow synthesis against state of the art makeup transfer methods. Our method is

capable of reproducing realistic rendering in high resolution for makeup with various colors and textures. The eye-shadow application zone

and intensity are not part of the estimated graphics parameters, but set by the user at rendering time according to their preferences.

Table 2. Quantitative evaluation of the makeup transfer perfor-

mance using a dataset of groundtruth triplet images.

Model L1 1-MSSIM [16] LPIPS [17]

BeautyGAN [10] 0.123 0.371 0.093

CA-GAN [9] 0.085 0.304 0.077

Ours 0.083 0.283 0.060

rameters, but set by the user at rendering time according to

their preferences. This choice allows for an increased user

control on the makeup style, at the cost of not reproducing

automatically the entire eye makeup style of the reference

image. Finally, to give the reader more insight about our

model, we provide example videos as supplementary mate-

rials, as well as an interactive demo application for lipstick

transfer.

3.2. Quantitative experiments

In order to compare our results with existing methods,

we reproduce the quantitative evaluation of makeup transfer

performance on lipstick, introduced in [9]. More precisely,

we use the dataset provided by the authors with 300 triplets

of reference portraits with lipstick, source portraits without

makeup, and associated ground-truth images of the same

person with the reference lipstick. We compute the accuracy

of our model over various perceptual metrics and report the

results in Table 2. These results confirm that our framework

outperforms the existing makeup transfer methods.

3.3. Inference Speed

An important limitation of generative-based methods for

makeup transfer is their inference speed with limited re-

sources, especially on mobile platforms. For instance, the

StarGAN [1] architecture used in CA-GAN takes 18 sec-

onds to synthesize a 256x256 image on an Ipad Pro with

a A10X CPU. Even though some optimization is possible

using GPU or neural inference special-purpose chips, this

makes the use of generative models currently prohibitive for

real-time consumer applications.

In comparison, our method uses a neural network not on

every frame of the source video, but only once to compute

the graphics parameters vector sent to the renderer. Fur-

thermore, our graphics encoder is based on EfficientNet-

lite-4 [12], an architecture adapted to mobile inference, re-

portedly reaching an inference time of 30ms per image on

a Pixel 4 CPU [5]. Thus, the additional computational time

introduced by our graphics encoder can be considered neg-

ligible when generating a video. To illustrate the inference

time of our video solution, we profile our computer graph-

ics pipeline on different mobile devices. We use the land-

marks detection model described in [11] and convert it to

NCNN [13] to make it runnable on mobile platforms. To

get accurate profiling results, we skip the first 100 frames

and average the results of the next 500 frames for each de-

vice. As shown in Table 3, our system is able to achieve

excellent performance even on old devices such as Galaxy

S7.

Table 3. Profiling of our graphics rendering pipeline on 3 different

devices. Since our graphics encoder is only used once before the

rendering and not at each frame, we consider its time is negligible

in the video synthesis.

Device Detection Rendering Display Time

Galaxy S21 11.97ms 14.95ms 2.12ms

Pixel 4 18.32ms 19.54ms 2.23ms

Galaxy S7 27.89ms 58.55ms 10.68ms

4. Conclusion

We introduced a method for learning a special-purpose

inverse graphics encoder that maps an example image to the

space of a renderer parameters, even in the absence of a dif-

ferentiable renderer. We showed that our framework can be

applied to the task of makeup transfer, allowing non-expert

users to automatically parametrize a renderer to reproduce

an example makeup. In the future, we intend to improve our

framework with a larger definition of the graphics parame-

ters, such as including the estimation of the eye makeup

application region.



References

[1] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,

Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-

tive adversarial networks for multi-domain image-to-image

translation. In CVPR, 2018. 4

[2] Mengyu Chu, You Xie, Jonas Mayer, Laura Leal-Taixé,

and Nils Thuerey. Learning temporal coherence via self-

supervision for gan-based video generation. TOG, 2020. 1

[3] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and

Xin Tong. Deep inverse rendering for high-resolution svbrdf

estimation from an arbitrary number of images. TOG, 2019.

2

[4] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial networks. arXiv

preprint arXiv:1406.2661, 2014. 1

[5] Google. Tensorflow blog : higher accuracy on vision models

with efficientnet-lite. https://blog.tensorflow.

org/2020/03/higher-accuracy-on-vision-

models-with-efficientnet-lite.html, Last

accessed on 2021-04-15. 4

[6] T. Karras, S. Laine, and T. Aila. A style-based generator

architecture for generative adversarial networks. In CVPR,

2019. 3

[7] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro

Ando, Toru Matsuoka, Wadim Kehl, and Adrien Gaidon.

Differentiable rendering: A survey. arXiv preprint

arXiv:2006.12057, 2020. 2

[8] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional Bayes. ICLR, 2014. 1

[9] R. Kips, M. Perrot, P. Gori, and I. Bloch. CA-GAN: Weakly

supervised color aware GAN for controllable makeup trans-

fer. In ECCV Workshop AIM, 2020. 1, 3, 4

[10] T. Li, R. Qian, C. Dong, S. Liu, Q. Yan, W. Zhu, and L. Lin.

BeautyGAN: Instance-level facial makeup transfer with deep

generative adversarial network. In ACM Multimedia, 2018.

1, 3, 4

[11] T. Li, Z. Yu, E. Phung, B. Duke, I. Kezele, and P. Aarabi.

Lightweight real-time makeup try-on in mobile browsers

with tiny CNN models for facial tracking. CVPR Workshop

on CV for AR/VR, 2019. 2, 4

[12] M. Tan and Q. Le. Efficientnet: Rethinking model scaling

for convolutional neural networks. In ICML, 2019. 3, 4

[13] Tencent. NCNN, high-performance neural network inference

framework optimized for the mobile platform. https://

github.com/Tencent/ncnn, 2018. 4

[14] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann,

Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-

Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,

et al. State of the art on neural rendering. In Computer

Graphics Forum, 2020. 1

[15] H. Thimonier, J. Despois, R. Kips, and Perrot. Learning long

term style preserving blind video temporal consistency. In

ICME, 2021. 1

[16] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Mul-

tiscale structural similarity for image quality assessment.

In Asilomar Conference on Signals, Systems & Computers,

2003. 4

[17] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In CVPR, 2018. 4

https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html
https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html
https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn

