
Scalable and Explainable Outfit Generation

Alexander Lorbert, David Neiman, Arik Poznanski, Eduard Oks, Larry Davis

Amazon

{lorbert, neimand, arikp, oksed, lrrydav}@amazon.com

Abstract

We present an end-to-end system for learning outfit rec-

ommendations. The core problem we address is how a

customer can receive clothing/accessory recommendations

based on a current outfit and what type of item the customer

wishes to add to the outfit. Using a repository of coher-

ent and stylish outfits, we leverage self-attention to learn a

mapping from the current outfit and the customer-requested

category to a visual descriptor output. This output is then

fed into nearest-neighbor-based visual search, which, dur-

ing training, is learned via triplet loss and mini-batch re-

trievals. At inference time, we use a beam search with a de-

sired outfit composition to generate outfits at scale. More-

over, the attention networks provide a diagnostic look into

the recommendation process, serving as a fashion-based

sanity check.

1. Introduction

The advances in both machine learning and deep learn-

ing have extended well beyond the academic and scientific

communities, and have found their way into the fashion in-

dustry in recent years. The AI challenges faced by those in

the fashion industry are quite complex due to the subjective,

individual, seasonal, cultural, and dynamic nature of fash-

ion and style. In light of the many challenges relating to

fashion, we focus on a particular problem of outfit recom-

mendation.

The customer-centric problem we address is: “Given my

current outfit, what <category> do you recommend?” For

example, a customer may want to be recommended a pair of

shoes to go with the blouse and pants she is already wearing.

By providing recommendations in this format, customers

can plan or “grow” an outfit from one or more initial cloth-

ing items. In this way, items can be added to (or removed

from) an outfit, allowing customers to go from an outfit’s

initial draft to its final draft.

We aim to automate this process of building an outfit

from a single seed item that is both scalable and explain-

ble. Typically, outfitting solutions involve a composition

template and/or use fill-in-the-blank (FITB) approaches for

refining and evaluating. Recurrent units are also employed,

which may lead to different recommendations for the same

partial outfit due to the ordering of the items. We argue

that outfit compositions should be dynamic and that using a

FITB approach of selecting a single item from a small set

of, say, 5 items is not scalable. Furthermore, outfits are in-

herently sets and providing recommendations for a partial

outfit should not depend on item ordering. Additionally, we

would prefer an algorithm that can provide some kind of

signal that may provide insight as to how the recommenda-

tions are being generated.

We address outfit generation in a two step process. First,

we train a neural network that learns a visual descriptor and

produces an outfit vector for nearest neighbor visual search

(using inner products). Each input into this network is a

partial outfit and requested, next category. We use atten-

tion [6] for combining this variably-sized input in an ap-

proach similar to a masked language model [1], yielding

an order-invariant function. Next, during inference, for a

given seed item we propose an outfit composition and then

employ a beam search to conduct the outfit building. Our

use of inner-products for nearest neighbor search allows us

to scale and recommend items from large image reposito-

ries. During training, we mimic the retrieval process via

minibatch retrievals with a triplet loss [3, 5]. By internally

leveraging attention, we achieve the desirable properties of

order-invariance and explainability.

2. Related Work

In [2], Han et al. leveraged data from Polyvore to address

outfits. The authors used Polyvore’s ordering to train a bidi-

rectional LSTM for fashion compatibility. They also incor-

porate the text associated with each item by adding a con-

trastive loss that compares the visual with the textual. Lin et

al. [4] take a similar approach to our work, but only pro-

vide single recommendations and not entire outfits. They

also make use of attention, but only at the paired category

level thereby discarding, for example, valuable visual in-

formation (e.g., some colors/patterns may effectuate more

attention).

3. Outfit Recommendation

Let R = {(Ij , cj)}Nj=1
denote our repository of N

image-category pairs. The j-th item in the repository is as-

sociated with image Ij and label cj ∈ {1, 2, . . . ,K}, where

K is the number of different clothing/accessory categories.

With training in mind, we shall denote an outfit as an or-

dered set of unique indices, where each element is an index

into our repository. Two outfits are equivalent if one is a

permutation of the other. Thus, an outfit of r items has r!
different, equivalent representations.

Let f denote a visual feature extractor. The function f
receives an image and outputs a feature vector of length

M . Here, f can be fixed, learned, or fine tuned. In prac-

tice, we use a convolutional neural network. Our visual

search mechanism takes in a vector of length M and finds

the repository images closest to it by computing the simi-

larity/distance between the input vector and {f(Ij)}Nj=1
. If

the search is restricted to a particular category, c, then we

consider the subset {f(Ij)}cj=c
.

For training purposes, we are given a set of outfits, de-

noted Z . Outfit z ∈ Z is a vector of integers: it has |z|
items, where the j-th element, zj , is an index in to the repos-

itory R. Here, z has a particular order, but in training we

will scramble the order repeatedly to ensure the model is

order-robust.

We can formulate our problem as follows: for outfit

z, given items (Iz1 , cz1), . . . , (Izt , czt), produce a visual

feature vector for category czt+1 , denoted xt+1, so that

f(Izt+1) ≈ xt+1. If training is successful, inputting xt+1

into the visual search will result in a top retrieval spot

for Izt+1 . For a given [scrambled] outfit we consider the

|z|−1 recommendations (t = 1, 2, . . . , |z| − 1, i.e., 1→ 2,

1&2→3, 1&2&3→4, etc.).

We consider the architecture shown in Figure 1 for a

partial outfit of zi. Each supplied image passes through

the function f to generate an unnormalized visual de-

scriptor. Each supplied category is mapped to an embed-

ding and concatenated with the associated visual descrip-

tor, which is then passed through the function g to give

uj
i = g(f(I

z
j

i

) ; embed(c
z
j

i

)). For the requested next cat-

egory, the image is masked and a learned “missing” im-

age descriptor replaces the associated value of f , yielding a

value for u that is strictly dependent on its category. Never-

theless, we will abuse notation and simply use uj
i , which is

a latent representation of the category and available visual

information.

The latent u vectors are now passed through a self at-

tention block, where they are mapped to a context-aware

version of themselves, denoted ū. For recommendation, we

concern ourselves with the output vector corresponding to

the visually-masked item. Thus, using a single attention

head, for the j-th item we obtain ūj
i =

∑t+1

r=1
αrvr for

α1:t+1 = softmax
(

〈q1, k1〉/
√
dk, . . . , 〈qt+1, kt+1〉/

√
dk

)

,

where qr, kr and vr are the respective query, key and value

associated with ur
i , dk is the key dimension, and the soft-

max ensures that the α weights sum to 1. The context-aware

ūt+1

i is then passed through the function h to give the out-

put, xt+1

i . Reordering items 1 through t does not change

the value of the output, making this a set operation.

Our training objective is a triplet loss that mimics re-

trieval at the batch level.We encourage the output visual de-

scriptor, xt+1

i , to be closer to the actual visual descriptor,

f(Izt+1

i
), when compared with all other visual descriptors

belonging to the same category. This truncated retrieval is

done at the batch level, so if we have a batch of B outfits,

B = {z1, . . . , zB}, then we seek to minimize the triplet loss

B
∑

i=1

|zi|
∑

j=2

∑

ı̃ 6=i

|zı̃|
∑

̃=1

(

✶[c
z
j

i

= c
z
̃

ı̃

]

×
[

D
(

xj
i , f(Izj

i

)
)

+ γ −D
(

xj
i , f(Iz̃

ı̃

)
)]

+

)

, (1)

where D is a distance function, γ is a margin parameter,

and [·]+ is the positive part function. The first two sum-

mations traverse all image descriptors in all of the outfits

from the second item onward. The subsequent two summa-

tions extract all image descriptors from the other outfits in

the batch, and the indicator function (✶) ensures we only

compare items of the same category. For speed and scala-

bility, we employ a Euclidean distance function of the ℓ2-

normalized vectors. This allows us to use an inner product

(cosine similarity) for fast nearest neighbor search.

Missing category prediction In addition to next-item

recommendations, we also need to know what kind of items

we could potentially add to the outfit. This is especially rel-

evant when the partial outfit is a single item. It can also

serve as guidance in an interactive setting, when a customer

assembles an outfit incrementally, adding one item at a time.

As mentioned above, for [scrambled] outfit zi we gen-

erate the |zi|−1 recommendation outputs. For each rec-

ommendation we consider the first t items and focus on

item t + 1. Thus, for t items present in the current, partial

outfit, there are |zi|−t absent items. For missing category

prediction we use a bank of K binary classifiers–one for

each category–to predict the remaining |zi|−t categories.

Summing K binary cross-entropy loss functions, we form

a multi-task objective by combining it with the triplet loss

of (1).

We again employ the latent u vectors for missing cate-

gory prediction. These vectors serve as input into a separate

attention module, which outputs a single vector. Next, we

feed this vector into a multilayer perceptron with output di-

mension equal to K for the missing category classifications.

These values will be used as preliminary step for outfit gen-

eration discussed below.

I
z
1
i

c
z
1
i

I
z
2
i

c
z
2
i

I
z
3
i

c
z
3
i

c
z
4
i

“Missing”

Feature

Self

Attention

f

f

g

f

g

g

g h

embed

embed

embed

embed

h

h

h

≈

I
z
4
i

f

Figure 1. Core network architecure. For a partial outfit of length

4, we mask out the visual component of the fourth item and learn

to estimate it via the first 3 items and the fourth category.

4. Outfit Generation

Generating an outfit for a given seed item is accom-

plished in a two-step process. First, we propose an outfit

composition, i.e., a set of categories. A single item can lead

to several potential compositions and, in practice, we can

choose one or more of these. In the next step, we build

the outfit incrementally via a beam search according to the

composition order. The composition order is significant -

ancillary items such as jewelry and accessories will typi-

cally appear later on in the composition while central items

such as tops, bottms and shoes are featured in the beginning.

Notwithstanding, our approach does not require ordering a

composition in a particular way.

Composition generation For a given seed item number

of sensible compositions is relatively limited. We adopt a

simple approach of relying on the compositions present in

the training data. First, we collect the frequent compositions

containing the seed item category, recording their curation

order. This provides a set of binary vectors, where each

binary vector is a vector of length K with item j equal to 1
if category j is present in the outfit.

We now use the output of the missing category classi-

fiers after inputting the seed item, which is also a vector

of length K. Calculating the inner product of this vector

with the above binary vectors produces a score with which

to rank the compositions. This provides a set of candidate

compositions for our beam search.

Beam search Provided with a seed item and composition

we execute a beam search to assemble the outfit. Repeated

calls to the model requesting the next category provides

lists of items with their cosine similarities. Summing these

similarities provides an overall score for the outfit. For a

moderately-sized beam width (20-200), we are able to gen-

erate hundreds of thousands of outfits per day on a single

host. To provide a diverse set of outfits for the same seed,

the beam search can be modified to generate multiple out-

fits in parallel with the constraint that no item is duplicated

across outfits (except for the seed item).

5. Results

We used 240K women’s outfits and 265K men’s outfits

for training (curated in-house). Typical outfit lengths ranged

from 4 to 8 items, with an average of 5.8. For each network,

f was a fixed, Imagenet-pretrained ResNet50 with an addi-

tional trainable fully connected layer with output dimension

256. The learned category embedded had dimension 8, and

g produced latent vectors of 256 as well. We used 4 atten-

tion heads for both recommendation and missing category

prediction. Our batch size was 256, and we trained for 200
epochs.

Sample Outfits We present some examples of generated

outfits using our approach in Figure 3. Our trained models–

one for women, one for men–generated outfits using the

repositories featured in Table 1. Some items in the repos-

itories were also present in the training data, as listed in

the table. We observed that training items appear in outfits

twice as often as test items.

Explainability The attention block embedded in the net-

work may provide insight into the recommendation proce-

dure. Intuitively, the visual content and category of some

items should matter more than others when building an out-

fit. We demonstrate this via 2 fashion “rules” using 2 test

outfits.

The first “rule” concerns matching jewelry, e.g., a gold

necklace should be worn with a gold bracelet and earrings.

In Figure 2 (left), we see that the fourth attention head

indeed emphasizes the earrings and bracelet when recom-

mending a necklace, and the top search results do indeed

yield necklaces that match the present jewelry. The second

“rule” involves matching a belt to the shoes one is wear-

ing. In Figure 2 (right), we see that attention heads 3 and 4
emphasize the shoes for recommending a belt, and the top

search results yield brown belts, matching the brown shoes.

References

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Earrings Dresses Handbags Bracelets Shoes

Requesting:

Necklaces

0.027 0.025 0.033 0.011 0.018 0.886

0.076 0.125 0.139 0.043 0.262 0.354

0.236 0.307 0.173 0.180 0.071 0.033

0.599 0.051 0.032 0.241 0.033 0.043

Search Results:

Shirts Jeans Shoes Jackets

Requesting:

Belts

0.000 0.000 0.000 0.000 1.000

0.042 0.055 0.069 0.020 0.815

0.079 0.125 0.439 0.082 0.275

0.127 0.124 0.322 0.091 0.336

Search Results:

Figure 2. Attention-based recommendations. In the two featured recommendations, we start with a partial outfit and a requested next

category. Beneath each item/category are the attention weights for the 4 attention heads (each row adds to 1). The top search results are

shown in the bottom row.

Category Train Test Total %-Train

W
o

m
en

Accessories 12,634 10,341 22,975 55.0%
Active 9,524 18,057 27,581 34.5%
Coats, Jackets & Vests 6,307 19,393 25,700 24.5%
Dresses 19,513 72,795 92,308 21.1%
Fashion Hoodies 1,148 7,832 8,980 12.8%
Handbags 21,669 34,519 56,188 38.6%
Jeans 9,551 12,503 22,054 43.3%
Jewelry 26,582 46,970 73,552 36.1%
Jumpsuits 4,236 4,185 8,421 50.3%
Leggings 720 4,397 5,117 14.1%
Pants 6,344 15,025 21,369 29.7%
Shoes 49,477 176,273 225,750 21.9%
Shorts 2,017 5,292 7,309 27.6%
Skirts 4,797 5,359 10,156 47.2%
Suiting & Blazers 3,855 3,417 7,272 53.0%
Sweaters 4,236 22,566 26,802 15.8%
Swimsuits & Cover Ups 6,101 36,368 42,469 14.4%
Tops, Tees & Blouses 23,820 77,319 101,139 23.6%
Watches 7,485 8,456 15,941 47.0%
Total 220,016 581,067 801,083 27.5%

M
en

Accessories 22,956 39,904 62,860 36.5%
Active 8,638 12,519 21,157 40.8%
Fashion Hoodies 1,370 6,036 7,406 18.5%
Jackets & Coats 9,194 12,557 21,751 42.3%
Jeans 13,067 3,628 16,695 78.3%
Jewelry 985 2,321 3,306 29.8%
Pants 7,794 4,085 11,879 65.6%
Shirts 30,892 57,107 87,999 35.1%
Shoes 34,337 66,226 100,563 34.1%
Shorts 4,583 4,195 8,778 52.2%
Suits & Sport Coats 4,549 1,306 5,855 77.7%
Sweaters 4,125 4,502 8,627 47.8%
Swim 2,218 5,804 8,022 27.6%
Watches 14,087 12,389 26,476 53.2%
Total 158,795 232,579 391,374 40.6%

Table 1. Item repository. Outfit items are selected from 19

women’s categories and 14 men’s top-level categories. For the

women’s [men’s] repository, 72.5% [59.4%] of the items did not

appear in a training outfit.

[2] Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S Davis.
Learning fashion compatibility with bidirectional lstms. In
Proceedings of the 25th ACM international conference on
Multimedia, pages 1078–1086, 2017.

[3] Elad Hoffer and Nir Ailon. Deep metric learning using triplet
network. In International Workshop on Similarity-Based Pat-
tern Recognition, pages 84–92. Springer, 2015.

[4] Yen-Liang Lin, Son Tran, and Larry S. Davis. Fashion outfit
complementary item retrieval. In Computer Vision and Pat-
tern Recognition (CVPR). IEEE, June 2020.

Necklaces Jeans Suiting Tops Shoes Handbags

Sweaters Jeans Shoes Handbags Earrings Watches Sunglasses

Tops Shoes Pants Handbags Earrings Necklaces Sunglasses

Pants Suiting Tops Shoes Handbags

Active Shoes Active Sunglasses Watches Hats

Pants Shoes Sweaters Jackets Shirts

Shoes Active Active Active Watches Hats

Shirts Pants Shoes Sweaters Belts

Figure 3. Sample outfits. There are 5 featured women’s outfits and

5 featured mens’s outfits. Each outfit was assembled according to

the seed item (left-most) and ordered composition presented. The

seed items were not part of the training set.

[5] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
Savarese. Deep metric learning via lifted structured feature
embedding. In Computer Vision and Pattern Recognition
(CVPR), pages 4004–4012. IEEE, 2016.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

