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1. Training convergence
We compare ViT-B/32 [2] fine-tuning for fine-grained

art classification using the weights from three different pre-
training strategies:

1. base contrastive pretraining CLIP [6] on 400 million
images, open-sourced by OpenAI.

2. our CLIPArt contrastive pretraining using artwork im-
ages and their natural language descriptions,

3. ImageNet pretraining [5].

Figure 1. Convergence plot for the first stage of training. Our
CLIPArt improves convergence and performance (F2-score). For
fair comparisons, we train to convergence using the same training
setup (loss, optimizer, etc.) and images in all experiments.

2. Large Scale Art Dataset
Supervised CNNs: We train more complex models for

fine-grained art classification using 384 image size and ex-
haustive augmentations (random crops, horizontal and ver-
tical flips, random erasing, mixup, etc.). These models rep-
resent our set of teachers, their results on iMet [9] are shown
at Table 1. Each teacher model trained with labeled data
will infer pseudo-labels on unlabeled artwork data, which
can be scrapped from the internet. This serves as dataset for

Network F2-score
SEResNext-50 [4] 0.701
EfficientNet-b7 [7] 0.712
ViT-L-16 [2] 0.707

Table 1. Supervised SOTA CNNs trained on iMet dataset [9] and
evaluated on 2020 Benchmark https://www.kaggle.com/c/imet-2020-fgvc7

self-training / distillation of task predictions using smaller
versions of these models as noisy students [8, 1].

Scrapped images as Figure 2 include an extensive free-
form description from an expert, these are involuntary trans-
ferences from human visual attention to textual attention,
which implies that textual attention can help to discriminate
significant parts or features for categorization [3].

Figure 2. Scrapped image and its natural language description.

Using the teacher’s predicted pseudo-labels and
scrapped free-form descriptions from experts, we conform
(image, text) pairs for learned visual attention from natural
language supervision using CLIP [6]. In this way, we
aim to build an artwork dataset consisting of more than 1
million (image-text) pairs, which, together with this work,
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artwork from Japan,
made of paper,
big size.
related with woman,
party, party, edo

country::Japan,
medium::paper,
dimension::big,
tags::women, party,...

natural language description + fine-grained pseudo-labels
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(a) Contrastive pre-training
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culture::roma

dimension::small

(b) Supervised fine-tuning

Figure 3. Summary of our semi-supervised approach based on CLIP from OpenAI [6]. We show our teacher networks trained on iMet [9]
labeled data as explained in Section 2 and Table 1. Scrapped text and pseudo-labels inferred from unlabeled images are processed into
free-form descriptions. We also show (a) Contrastive pre-training using unlabeled images and their noisy generated descriptions. Using a
task-agnostic image encoder and text encoder, we learn a visual-textual representation, discovering discriminative visual-textual pairwise
information [3]. Further supervised fine-tuning (b) can be done using labeled images.

will represent a breakthrough in artwork classification and
retrieval. Figure 3 shows the explained approach.
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(a)

Figure 4. Results for artwork retrieval. We highlighted query images in column (a). For each query image we rank 20.000 validation
candidates based on cosine similarity, resultant top-9 are shown in each row.
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