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Abstract

Material and biological sciences frequently generate

large amounts of microscope data that require 3D object-

level segmentation. Often, the objects of interest have a

common geometry, for example spherical, ellipsoidal, or

cylindrical shapes. Neural networks have became a pop-

ular approach for object detection but they are often lim-

ited by their training dataset and have difficulties adapt-

ing to new data. In this paper, we propose a volumet-

ric object detection approach for microscopy volumes com-

prised of fibrous structures by using deep centroid re-

gression and geometric regularization. To this end, we

train encoder-decoder networks for segmentation and cen-

troid regression. We use the regression information com-

bined with prior system knowledge to propose cylindri-

cal objects and enforce geometric regularization in the

segmentation. We train our networks on synthetic data

and then test the trained networks in several experimental

datasets. Our approach shows competitive results against

other 3D segmentation methods when tested on the syn-

thetic data and outperforms those other methods across dif-

ferent datasets. The reference codes and pytorch dictionar-

ies are available at https://github.com/camilo-aguilar/3D-

Fiber-Segmentation.

1. Introduction

Experiments in material and biological sciences often

use non-invasive image modalities that generate gray-scale

point clouds representing the system’s microstructure. One

example of these experiments is the development of fiber

reinforced composites shown in Fig. 1(a). Performance im-

provement of these materials relies on an accurate struc-

tural characterization in order to predict the material’s re-

sponse to external forces and to prevent material failures.

This structural characterization requires of instance-level

segmentation in order to extract information such as object

location, dimensions, interactions, and orientation[3].

During recent years, the area of instance segmentation

(a) Cross section (b) Inference cross section

(c) 3D Pre-segmentation (d) 3D inference

Figure 1. Sample results of our method displayed with Fiji[18]

software. Each color represents a different instance of an object.

Image courtesy of the ACME Lab at Purdue University.

experienced a rapid growth manifested in popular object

proposal techniques such as Mask-RCNN[7], PANet [14],

Box2Pix[19]. While these approaches have proven success-

ful in popular benchmark datasets, the instance segmenta-

tion paradigm becomes challenging when transitioning to

microscopy volumetric datasets: microscopy images tend to

have large numbers of clustered objects, the jump in dimen-

sions represents a significant increase in memory require-

ments, and thin 3D geometries oriented in arbitrary orienta-

tions pose challenges for bounding box characterizations.

Another popular technique for approaching instance seg-

mentation is based on proposal-free methods that rely on

instance grouping learning. These methods learn to group



instance pixels into clusters living in an embedded space.

Same-instance pixels are grouped near each other and

different-instance pixels are discriminated from each other.

Subsequently, a clustering algorithm assigns a label to each

cluster to finally map each label to an instance in the initial

image space. The drawbacks of this method are that it needs

prior background/foreground pixel classification, the choice

of the clustering algorithm including parameter settings, is

of paramount importance in obtaining a correct segmenta-

tion, and the clustering algorithm is normally independent

of the object’s geometry.

Numerous 3D instance segmentation techniques bor-

rowed the embedding learning concept to segment 3D point

clouds of natural images and microscopy images. Never-

theless, their clustering algorithm is applied in an abstract

embedded space and is generally independent of geometric

constraints of the original image space. This issue results

in time consuming parameter tuning, faulty segmentations,

and difficulties adapting to unseen datasets. Microscopy im-

ages tend to have repeated geometries that can provide use-

ful information when clustering pixels. For example, Fig.

1(c) shows a sample microscopy system that is comprised

mainly of cylindrical geometries.

In this paper, we propose an instance segmentation ap-

proach based on centroid regression and regularized clus-

tering. Our method detects foreground pixels and learns to

regress the foreground pixels to their instance centroid. In

addition, we propose a clustering algorithm that considers

both the network output as well as the system’s geometric

constraints in order to ensure the recovered instances pre-

serve a consistent shape.

This paper is organized as follows: in Section 2 we

present popular neural network approaches used for 3D

object detection. We discuss the details of our proposed

method in Section 3. We show experiments on 3 different

datasets and compare our approach to other methods in Sec-

tion 4 and we provide insights and a conclusion in Section

5.

2. Related Work

Our literature review focuses on approaches that have

been successful or that can be adapted without significant

changes to perform instance segmentation on 3D systems

comprised of nearby thin structures such as 3D fibers.

2.1. Instance Embedded Learning

These methods consist of segmenting and grouping fore-

ground pixels into clusters in abstract high dimensional

embedded spaces. These networks learn to group same-

instance pixels into clusters, while separating the cluster

centers from each other. Sequentally, an unsupervised

clustering algorithm such as DBSCAN[5] assigns labels

to pixels in each cluster. This work was proposed by [4]

but has been borrowed to extract fibers in 3D microscopy

volumes[11].

The embedded learning concept has been shown to be

memory efficient and promising; however, this method re-

lies on finding an arbitrary embedded space that does not

have a direct interpretation in the image space and the

choice of both the clustering algorithm and its parameters

influence greatly the segmentation results. For example, a

large eps parameter in the DBSCAN clustering algorithm

merges nearby clusters and a small eps parameter splits

clusters or does not detect them.

2.2. JointTask Learning

Several papers (for both 2D and 3D) have proposed joint-

task approaches. These methods rely on single encoder-

multiple decoder networks. For example, Neven et al.[15]

trained an encoder-double decoder network to jointly learn

instance centers and the cluster bandwidth. However, this

method uses a loss function that relies on a weighted sum of

the center regression and bandwidth loss. This issue could

result in time-consuming parameter tuning when training

the networks for several days. Kendall et al. proposed an

efficient ensemble training for both tasks[9]. This approach

estimates the weight uncertainties for each task to find the

optimal weight parameter. These approaches are promis-

ing; however, the combination of two decoders and one en-

coder can worsen the results of each decoder. In fact, in our

experiments, the implementation of two separate networks

obtained better results across all the tests.

3. Method

We propose a two-network approach, one for segmen-

tation, one for centroid regression. In addition, we pro-

pose to use the regression vectors to obtain information

about the original properties of each instance, such as the

instance’s orientation and length. We use a modification

of the architecture presented in [17] due to its effective-

ness in microscopy volumes and robustness to scarce train-

ing data. The two networks are the semantic segmentation

network, which has two outputs denoting the probability of

each class, and the regression network, which has three out-

puts denoting a 3D vector pointing to the instance center.

Fig. 2 denotes the detailed architecture of our networks.

The regression network uses the output of the semantic seg-

mentation to regress to regress only the foreground pixels.

3.0.1 Pixel Classification

For semantic segmentation, we use the dice loss with two

classes, foreground to represent fibers and background to

represent the non-fiber pixels. The dice loss function is ex-



(a)

Figure 2. Architecture: we used a variation of the architecture pro-

posed in [17] where each encoder and each decoder consist of 4

components.

pressed as:

LSeg(X,Y ) = 1−
2|X ∩ Y |

|X|+ |Y |
, (1)

where X and Y are the input and training vectors respec-

tively. The output of this network is depicted in Fig. 3(c).

(a) Input volume (b) Ground truth

(c) Semantic segmentation (d) Centroid regression

Figure 3. Network Outputs: The networks detect the fiber pixels

and the fiber centers. Each color represents an instance, and pix-

els are clustered around their centers. Gray fibers are for display

purposes. Figures generated with Fiji Software.

3.0.2 Centroid Regression

The second network receives the semantic segmentation re-

sults and learns to cluster foreground pixels around their

instance centroid µc. The network outputs a vector vi ∈ R
3

for each foreground pixel’s coordinate si ∈ Sf such that

vi = si − µc. The loss function for centroid regression is

defined as:

LInst(Sf ) =

C
∑

c=1

∑

si∈Sc

(||si − µc|| − δv)
2
+, (2)

where Sf is the set of foreground pixels coordinates, Sc ⊂
Sf is the subset of pixel coordinates belonging to fiber c and

C is the total number of fibers (obtained from the ground

truth). The term (a)+ = max(a, 0) is inspired by the Hinge

Loss function, with δv as a hyper-parameter represents the

maximum distance between neighboring points. In all our

experiments, we set this hyperparameter δv = 1. We use the

result from this clustering network to guide our geometric

clustering. The results of applying the offset output by this

network are depicted in Fig. 3(d). Note that both networks

are trained separately using the ground truth labels.

3.1. Geometric Constrained Clustering

Common instance segmentation approaches perform

clustering on the output of the regression network[1, 11,

15]. However, these approaches do not impose shape con-

strains on the resulting segmentation and can merge nearby

fibers. Therefore, we impose a geometric regularization

on the clustering approach by finding a set of clusters

w = {ω1, ω2, . . . , ωĈ
} that represent a set of cylinders in

the volumetric space, where Ĉ is the final estimate of the

number of cylinders. We follow the convention used in

the connected tube marked point process[13] to describe

objects with marks describing their properties. We use

cylindrical clusters with the marks mc = (µc, rc, lc, θc, φc)
where µc denotes the center coordinate of the cylinder, rc ∈
[rmin, rmax] denotes the cylinder radius and rmin, rmax

denote the minimum and maximum possible radii respec-

tively. The parameter lc ∈ [lmin, lmax] denotes the fiber

length, and lmin, lmax denote the minimum and maximum

possible fiber lengths. The parameters θc ∈ [θmin, θmax]
and φc ∈ [φmin, φmax] denote the cylinder orientation with

respect to the positive xy axis and with respect to the pos-

itive z axis, with their respective possible minimum and

maximum values.

3.1.1 Birthmap Computation

We use the centroid regression vectors vi to shift all the

foreground pixels si ∈ Sf to their estimated instance cen-

ter oi i.e., oi = si − vi, hence generating a set of offset

pixels Of . The offset pixels tend to be concentrated around



a fiber’s estimated center, µ̂c, thus, generating a heat-map

near the true instance center µc. This map is shown in

Fig 4(b), where brighter pixels represent a higher count of

regressed pixels to that location. This map is used as a

“birthmap” to propose clusters in section 3.1.2.

(a) Original volume (b) Birthmap

Figure 4. Cropped original image and its birthmap.

3.1.2 Cluster Proposal

We propose an estimated cluster center µ̂c at the location

with the highest count of unlabeled offset pixels oi in the

birthmap (brightest spots in Fig. 4(b)). We then gather those

offset pixels that are within a distance of rmin from the es-

timated center, ŵc = {oi ∈ Of : ||oi − µ̂c|| < rmin}.
These pixels contain their original coordinate information

and hence, generate a cloud of points that can be fitted with

a cylinder. We use a GPU adaptation of [16] to estimate the

marks m̂c: radius r̂c, length l̂c, and orientation θ̂c, φ̂c of the

cloud of points to propose a cylindrical cluster. Finally we

add to the proposed cluster set ω̂c all the offset pixels that

lie inside the proposed cylinder. Fig. 5(b) shows a sample

cluster proposal result.

(a) Regressed ground truth pixels (b) Cluster proposals

Figure 5. Sample cluster proposal and ground truth labels.

3.1.3 Cluster Evaluation

Finally, we evaluate the proposed cylinder in the original

volume space by calculating the volume percent of seg-

mented pixels covered by the cylinder Vd and the volume

percent of overlap with other cylinders Vp. We set two

threshold parameters for volume percent of segmented pix-

els Td and for volume percent of overlap, Tp. If Vd > Td

and Vp < Tp, we accept the cylinder, otherwise we leave

the set of pixels as unlabeled. We choose Td = 0.5 to keep

consistent with the IoU metrics explained in Section 4 and

Tp = 0.2 to allow the proposed cluster 20% of overlap with

other clusters. The volume percent Vp ensures the proposed

object fits the semantic segmentation and the overlap per-

cent Vp prevents from proposing multiple clusters for the

same fiber. These evaluations were inspired by the success

of the overlap prior from the marked point process model

[13]. The detailed procedure of the clustering algorithm is

listed in Algorithm 1.

(a) Ground truth (b) Sample inference

Figure 6. Sample ground truth labels and sample inference.

3.2. Volume Tiling and Merging

We tile the initial volumetric data into overlapping sub-

volumes of size 64× 64 in order to circumvent large mem-

ory demands from some datasets. We detect fibers locally

and we implement a merging procedure to detect fibers

in the full volume. We extend the approach presented by

Konopczynski[11], which consists of merging nearby fibers

in overlapping tiles. However, this procedure does not con-

sider the fiber properties and can merge nearby local fibers

even if they are perpendicular to each other. We implement

an additional constraint based on the orientation informa-

tion provided by the cluster properties. If two fibers in over-

lapping tiles are nearby, we merge them if the angle between

between them is less than a threshold T∆θ,∆φ. The value of

this threshold is set based on prior knowledge of the system,

such as the fiber expected curvature. The detailed merging

procedure is included in Algorithm 2.



Algorithm 1: Geometric Constrained Clustering

Result: Set of clusters w = {ω1, ω2, . . . , ωĈ
}

initialization;

w = {};
Sf ← original foreground pixels coordinates;

Of ← center regressed foreground pixels

coordinates;

k ← 1 ;

Birthmap Computation;

counts← histogram of Of ;

birthmap← sorted elements of Of by decreasing

order of counts;

for each pixel s in birthmap do

if s ∈ wi : wi ∈ w then

continue (pixel has a label);

end

Cluster Proposal;

µ̂k ← s ;

ŵk ← {sk ⊂ Of : ||sf − µ̂k|| < rmin} ;

m̂k ← marks(ŵk, Sf , Of ) ;

Evaluate Cluster;

Vd ← percent of segmented pixels inside

cylinder with marks m̂k ;

Vp ← percent of overlapping pixels between

the cylinder with marks m̂k and other cylinders

;

if Vd > Td and Vp < Tp then

w← w ∪ wk;

k ← k + 1;

end

end

4. Experiments

We use two metrics to evaluate the instance segmentation

results. First, we follow the guideline provided in [12] and

use the Adjusted Rand Index[8] (Ra) metric for evaluation.

This metric evaluates the agreement between two sets of

clusters C = {c1, c2, . . . , ck}, and C ′ = {c′1, c
′
2, . . . c

′
l} and

ranges from 0 to 1 depending on the degree of similarity

between C and C ′. The Ra criteria is given by:

Ra(C,C
′) =

∑k

i

∑l

j

(

mij

2

)

− t3
1
2 (t1 + t2)− t3

(3)

Where mij = |ci∩cj |, t1 =
∑i=k

i=1

(

|ci|
2

)

, t2 =
∑j=l

j=1

(

|cj |
2

)

,

and t3 = 2t1t2
n(n−1) .

In addition, we use the intersection over union evalua-

tion (IoU) where we say a fiber is detected correctly if its

IoU with a ground truth fiber is greater than 0.50. We la-

bel fibers whose IoU is less than 0.5 as false positives (bro-

ken fiber segments) and we label as false negatives all the

Algorithm 2: Merging Algorithm with orientation

constrains

Result: wV clusters for volume V

Initialization;

Sor ← set of partitions for volume V with

overlapping ratio or;

wV = { };
Volume Merging;

for partition s in Sor do

ws← clusters at partition s (using Algorithm 1);

for cluster ωi in ws do
if Overlap(ωi, ωj) > 0, ωj ∈ wV and

AngleDiff(ωi, ωj) < Tφ,θ then

ωj ←Merge Clusters(ωj , ωi);

else

wV ← wV ∪ ωi;

end

end

end

ground truth fibers that were not captured by fibers that had

an IoU more than 0.5.

We average the results obtained from multiple tiles of

size 64× 64× 64 voxels and compare our method with our

implementation of the method proposed by Kendall et. al[9]

, with the method proposed by Aguilar et al [1], and with

using center regression and DBSCAN for clustering. We do

not use the angle criteria for fiber merging when we use the

DBSCAN algorithm since we do not have fiber orientation

information.

We implemented all the networks and trained with the

same training parameters as described in Section 4. We

followed the parameters denoted in each work and chose

δv = 0.2 and eps = 0.4 for the embedding learning param-

eters shown in [1].

4.1. Training Information: Synthetic Fibers

This dataset was generated from a computational model

by Konopczynski et al.[12] and it is a simulation of a short

glass fibers embedded in a reinforced polymer. The fibers

have a radius of 6.5 µm and a mean length of 500 µm with a

deviation of 100 µm and are oriented in arbitrary directions.

We used the dataset named “2016-S-HR-5.35p′′ depicted

in Fig. 7 for training the network and the dataset named

“2016-S-HR-5.38p′′ for testing.

We trained all the networks with the Adam [10] opti-

mizer with a learning rate of lr=0.001 over 2000 epochs. We

normalized the data to unit variance and zero mean and we

trained cropping subvolumes of sizes 64× 64× 64 cropped

at uniformly random locations of the full volume, and we

performed volume rotations for data augmentation. All the

models were trained on an NVIDIA-Titan RTX GPU with



Method Ra f1

Embedding Learning[1] 0.756 0.983

Multitask Learning[9] 0.622 0.977

Centroid Regression 0.767 0.993

Proposed 0.719 0.973

Table 1. f1 and Ra results for synthetic dataset

25GB of memory with a training time of approximately two

days.

Fig. 8 shows the average results over all tiles when vary-

ing the eps parameters for different methods and Table 1

shows the best scores obtained for each method over the

tested values of eps. The implementation that performs only

centroid regression with DBSCAN achieved the best scores

with 0.993 f1 score and 0.767 Ra score. Our approach ob-

tained 0.973 for the object-wise f1 score and 0.719 for the

Ra score.

(a) Synthetic data (b) Ground truth

Figure 7. Training dataset: synthetic fibers generated by

Konopczynski[12]

4.2. Low Resolution SFRP Dataset

This dataset was provided by Konopczynski et al.[12]

and it represents two samples of a commercial polybutly-

lene terephthalate PBT reinforced with short glass fibers.

The fibers diameters between 10-14µm and 1.1mm of

length. The samples were imaged with X-ray CT with an

isotropic resolution of 3.9µm and the volumetric dimen-

sions of 200 × 260 × 260 voxels. We used the trained

dictionaries from section 4.1 and tested all the methods

on the low resolution SFRP dataset named “Real MR2”.

It is worth noting that the ground truth fibers were pre-

segmented, hand labeled, and refined with the watershed

algorithm. Therefore, the ground truth labels can be biased

to the pre-segmentation algorithm followed by the water-

shed algorithm. The first column of Fig. 10 shows a tiled

cross section of sizes 64 × 64 pixels and each row shows

results for different approaches. The third and fourth row

show that the DBSCAN approaches encounter difficulties

clustering fibers. For example, Fig. 10(c) shows numer-

ous groups of white pixels (unlabeled pixels) that are near

(a) Ra score

(b) f1 score

Figure 8. Evaluation of average tile scores vs eps parameter in

synthetic data. For the proposed method, we let eps = rmin

two different fibers. Similarly, Fig. 10(d) shows merging of

fibers that are close to each other. These issues are trans-

lated in the volumetric results as shown in Figs. 10(h) and

Figs. 10(i) where fibers are artificially broken or nearby

fibers are merged. Our method, shown in Fig. 10(e) can

discriminate between nearby fibers and has also the abil-

ity to segment curved fibers when using volume merging as

shown in Fig. 10(j).

The numerical evaluation in Table 2 shows that our

method obtains significantly better scores for both metrics

with an Ra value of 0.638 and a f1 score of 0.917. Fig. 10

shows that we obtain the highest score when the eps param-

eter is equivalent to the true fiber radious. However, Fig, 9

shows that our method is more robust to parameter varia-

tions than the rest of proposed approaches.

4.3. High resolution SFRP: Polypropylene Matrix

This dataset was provided by the ACME Laboratory at

Purdue University[6]. The sample consists of a polypropy-

lene material reinforced with glass fibers, imaged at 1.3µm

resolution. The reconstructed volume has dimensions



Method Ra f1

Embedding Learning[1] 0.222 0.634

Multitask Learning[9] 0.111 0.831

Centroid Regression 0.563 0.831

Proposed 0.638 0.917

Table 2. f1 and Ra results for low resolution SFRP dataset.

(a) Ra scores

(b) f1 scores

Figure 9. Evaluation of mean tile scores vs eps parameter in Low

Resolution SFRP Dataset. For the proposed method, we let eps =

rmin.

2300×2300×1300 voxels and we used a sub-volume com-

prised of 950 × 950 × 150 voxels (shown in Fig. 11(a)).

The ground truth is from the results of Agyei et al.[2] and is

shown in Fig. 11(b).

The first row of Fig. 11 shows the XY-axis cross section

of the testing sample, the second row shows a cropped vol-

ume of size 256 × 256 × 150, and the third row shows a

YZ-axis cross section of the cropped volume. All the net-

works were trained using the synthetic dataset from section

4.1. This data is significantly different from the training

dataset, and hence both the embedding learning and multi-

task method merge multiple nearby fibers. These results

can be noticed in Figs. 11(h), 11(m). and Figs. , 11(i),

Method Ra f1

Embedding Learning[1] 0.365 0.604

Multitask Learning[9] 0.051 0.733

Centroid Regression 0.134 0.767

Proposed 0.422 0.855

Table 3. f1 and Ra results for high resolution SFRP: Polypropy-

lene Matrix.

11(n). Our results, shown in Figs. 11(j) and11(o) show that

our method does not merge nearby fibers thanks to the reg-

ularization imposed by cylindrical geometry regularization.

We should also point out that our method detects fibers that

were not detected in the ground truth dataset. Our method

also shows promising results for the merged volume in Fig.

11(e) compared to the merged results shown in Figs.11(c)

and 11(d). Our method shows improvement over the pro-

vided ground truth in detecting long fibers shown in Fig.

11(b).

Table 3 shows the Ra and f1 results for each approach.

The Ra score is relatively low because it also depends on

the segmentation and our method has an over segmentation

compared to the provided ground truth, and also because the

provided ground truth is not perfect. Fig. 11 shows several

visual examples where we believe our approach captured

fibers that were not captured in the provided ground truth.

5. Conclusion

We presented a neural network approach to detect fibers

in large volumetric datasets by first segmenting and then

regressing a vector pointing from each foreground pixel to

its instance centroid. Our approach depends on the param-

eter rmin that is related to the fiber minimum radius and

shows robustness across several datasets thanks to the ge-

ometric constrained clustering and also allows constraining

the detected objects with prior image knowledge. Unlike

common instance segmentation techniques, we propose a

clustering technique that relies on finding objects of spe-

cific shapes(cylinders). We showed that our approach out-

performs 3D fiber detection in several datasets and we be-

lieve that it can contribute to improve fiber-reinforced ma-

terials characterization. Similarly, we believe our approach

can be extended to other geometries such as using spheres

to segment cell nuclei.
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[19] J. Uhrig, E. Rehder, B. Fröhlich, U. Franke, and T. Brox.

Box2pix: Single-shot instance segmentation by assigning

pixels to object boxes. In IEEE Intelligent Vehicles Sym-

posium (IV), 2018.


