
 

 

 

Abstract 

 

Convolutional neural network is valid for object 

segmentation. In recent years, it has been applied to the 

fields of medicine and cell biology. Each class has a 
different number of pixels in an image. Therefore, the 

accuracy of semantic segmentation varies drastically 

between objects with a large number of pixels and objects 

with a small number of pixels. In this paper, we propose X-

Net that integrates two encoders and decoders to solve this 

problem. This has the advantage of extracting rich features 

from two encoders and using two decoders to complement 

the location information and small objects. By using 

different loss functions for each decoder, we can use the 

ensemble of two decoders with different viewpoints. We 

evaluated our method on the Arabidopsis cell images and 
Drosophila cell images. Experimental results show that our 

method achieved better accuracy than the conventional 

methods. 

 

1. Introduction 

Convolutional neural network has been used in various 

image recognition problems such as image classification [3], 

object detection [4], image generation [5], and semantic 
segmentation [6]. In particular, semantic segmentation has 

been applied not only to autonomous driving [7,8] but also 

to medicine and cell biology [9,10]. Semantic segmentation 

is a task for assigning class labels to each pixel in an image.  

Only one label is assigned to each image in image 

classification but all pixels in an image have class labels in 

semantic segmentation. Thus, class imbalance problem 

easily occurs in segmentation. The classes with a large 

number of pixels can achieve high accuracy, but the classes 

with a small number of pixels become low accuracy.  

In this paper, we propose X-Net that integrates two 
encoders and decoders to solve the problem. This has the 

advantage of extracting rich features from two encoders and 

using two decoders to complement the location information 

and small objects in an image. By using two encoders, we 

will be able to obtain rich features that could not be 

extracted by a single network. For each decoder, we use 

different loss functions. We use Softmax Cross Entoropy 

loss for top decoder which classifies each pixel in an image. 
For bottom decoder, we use IoU loss which predicts on 

entire image by calculating the overlap ratio between the 

prediction result and ground truth in each class. By using 

different loss functions, each decoder can predict 

segmentation results from different point of views. Thus, 

we can use the ensemble of segmentation results obtained 

by two decoders with different viewpoints. This improves 

the accuracy further. 

In experiments, we evaluate the proposed method on two 

kinds of cell image datasets; the Arabidopsis thaliana 

(Arabidopsis) cell dataset [11] and the Drosophila 
melanogaster (Drosophila) cell dataset [12]. As a result of 

experiments, our method improved the segmentation 
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Fig. 1: Percentage of the number of pixels in each 

class. Top row shows Arabidopsis cell dataset. 
Bottom row shows Drosophila cell dataset. 
 



 

 

accuracy of 2.21% on the Arabidopsis cell images and 

2.18% on the Drosophila cell images. 

The structure of this paper is as follows. Section 2 

describes related works. Section 3 shows the details of the 

proposed X-Net. Section 4 shows the experimental results 
on two kinds of cell image datasets. Finally, conclusion and 

future works are described in section 5. 

 

2. Related Work 

Recent semantic segmentation methods are based on 

fully convolutional network (FCN) [14]. Since FCN does 

not use fully connected layers and consists of only 

convolutional layers, it is no longer necessary to fix the size 
of the input image. Encoder-decoder structures are often 

used for semantic segmentation. SegNet [15] memorizes 

the position at the pooling layer in encoder, and the original 

position is used at upsampling layer in decoder. This 

complements the location information and makes the 

memory more efficient. 

U-Net [10] was proposed for medical image 

segmentation, and it is one of the most famous CNN models. 

In our implementation, max pooling is used for down- 

sampling and deconvolution is used for upsampling. The 

most important characteristic of U-Net is skip connection 
between encoder and decoder. The feature map in the 

encoder is concatenated to the restored feature map in the 

decoder. Therefore, the position information is 

complemented, and class label can be more accurately 

assigned to each pixel. 

There are the methods using two U-nets to improve the 

accuracy. Double U-Net [16] has the structure that two U-

Nets are connected in a series. By feeding the output of the 

first U-Net into another U-Net, more semantic information 

can be obtained efficiently. Ensemble U-Net [17] used the 

ensemble of outputs of two independent U-Nets to obtain a 

final segmentation result. Authors reported the accuracy 
improvement by the ensemble. 

In contrast to those methods, our proposed X-Net 

consists of two encoders and two decoders. This allows us 

to extract rich features which cannot be extracted by a 

single network. After aggregating the features obtained by 

two encoders, we use two decoders to obtain two 

segmentation results independently. Finally, we integrate 

two outputs in two decoders and obtain a final segmentation 

result. By training two decoders with different loss 

functions, the effect of ensemble is enhanced and the 

accuracy will be improved further. 
 

3. X-Net 

We explain our proposed X-net in this section. At first, 

we explain the architecture of X-net which consists of two 

encoders and two decoders in section 3.1. Section 3.2 

describes the loss functions for decoders. 

 

3.1. Architecture 

Figure 2 shows the network architecture of the proposed 
method. This method consists of two encoders and two 

decoders, and has three outputs. The input image is fed into 

two encoders, and two feature maps at the final layer in two 

encoders are then aggregated by concatenation. This allows 

us to extract rich features which could not be extracted by a 

single network, and it contributes to improve the 

segmentation accuracy.  

The aggregated feature map is fed into two decoders 

simultaneously. The decoders use skip connections to 

provide the feature maps in each encoder with the same 

resolution to complement the positional information. The 

output (output1 and output2) of each decoder is the feature 
maps with the same resolution as the input image, and the 

number of channels is converted to the number of classes 

by 1x1 convolution. Although X-net has three outputs, two 

of the three outputs are from two decoders and the third 

output (output3) is the ensemble result of two outputs by 

1x1 convolution after concatenation.  

The reason for the ensemble of two outputs is to 

complement each other. The reason to prepare multiple 

outputs is to use different loss functions for each decoder in 

order to obtain segmentation results from different 

viewpoints. We explain loss functions in the next section. 
 

3.2. Loss function 

In semantic segmentation, Softmax Cross Entropy (SCE) 

loss is the loss function for classifying each pixel in an 

image. On the other hand, Intersection over Union (IoU) 

loss computes the overlap ratio between the prediction 

result and ground truth at each class. This means that it 

predicts on the entire image. If we use different loss 

functions for each decoder in the X-net, each decoder can 

predict the segmentation result from different viewpoints. 

We expect to enhance the ensemble effect at the output3 in 

Figure 2 by using different loss functions for each decoder. 
Therefore, X-Net is trained so that top decoder is trained 

with SCE loss and bottom decoder is trained with IoU loss.  

SCE loss is defined as 

 SCE loss = − ∑ ∑ 𝑝𝑐𝑖 log 𝑞𝑐𝑖𝑐𝑖 (1) 



 

 

 

where 𝑖 means the i-th sample in training data, c means the 

c-th class, 𝑝𝑐𝑖  is one hot vector of ground truth, 𝑞𝑐𝑖  is the 

probability of class c for the i-th sample.  

IoU loss is defined as 

 𝐼𝑜𝑈 𝑙𝑜𝑠𝑠 = 1 − 𝑝𝑐𝑖 𝑞𝑐𝑖 + 𝛾𝑝𝑐𝑖 + 𝑞𝑐𝑖 − 𝑝𝑐𝑖 𝑞𝑐𝑖 + 𝛾 (2) 

 

where 𝛾 = 1.0−5 so that the function is not indefinite even 

when 𝑝𝑐𝑖 = 𝑞𝑐𝑖 = 0. 

Dice loss is defined as 

 𝐷𝑖𝑐𝑒 𝑙𝑜𝑠𝑠 = 1 − 2𝑝𝑐𝑖 𝑞𝑐𝑖 + 𝛾𝑝𝑐𝑖 + 𝑞𝑐𝑖 + 𝛾 (3) 

 

Let the loss functions of output1, output 2, and output3 

in Figure 2 be Loss1, Loss2, and Loss3, respectively. As 

described previously, we used SCE loss as Loss1 and IoU 

or Dice loss as Loss2 to enhance the ensemble effect. Since 

output 3 is the integration of output 1 and 2, the loss 

function was also set to the sum of Loss1 and Loss2.  

 𝐿𝑜𝑠𝑠1 = 𝑆𝐶𝐸 𝑙𝑜𝑠𝑠 (4) 𝐿𝑜𝑠𝑠2 = 𝐼𝑜𝑈 𝑙𝑜𝑠𝑠 (5) 

𝐿𝑜𝑠𝑠3 = 𝑆𝐶𝐸 𝐿𝑜𝑠𝑠 + 𝐼𝑜𝑈 𝑙𝑜𝑠𝑠 (6) 

 

4. Experiments 

4.1. Datasets and evaluate measure 

We use two datasets with very different image properties. 

The first one is the Arabidopsis cell dataset [11] as shown 

in left two columns of Figure 3. This dataset consists of 

tissue sections stained with toluidine blue staining and 

photographed with light microscopy. The dataset consists 

of 2 classes; cells and cell walls. The sizes of the original 

images are large (e.g. 3118×2261 pixels). Thus, we cropped 

the regions of 512 x 512 pixels and resized them to 256 x 
256 pixels. There is no overlap for cropping areas, and the 

total number of regions is 50. We used 30 regions for 

training, 10 for validation and 10 for test. We evaluate our 

method with 5 fold cross- validation. 

The second is one the Drosophila cell image dataset [12] 

as shown in two right columns of Figure 3. This dataset is 

the Drosophila melanogaster third instar larva ventral 

nerve cord taken at serial section Transmission Electron 

Microscopy (ssTEM). The dataset consists of 5 classes; 
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Fig.2: Architecture of X-Net 

Conv+Batch+ReLU                    Max pooling 2 × 2 

Deconv+Batch+ReLU                Concatlate 



 

 

membrane, mitochondria, synapses, glia/extracellular and 

intracellular. Since the original size is 1024×1024 pixels, 

we cropped regions of 256×256 pixels from original images 
due to the size of GPU memory. There is no overlap for 

cropping regions, and the total number of cropped regions 

is 320. We used 192 regions for training, 64 for validation 

and 64 for test. We evaluate our method with 5 fold cross-

validation 

We use Intersection over Union (IoU) as evaluation 

measure. IoU is the overlap ratio between segmentation 

result and ground truth labels. In this paper, we use IoU of 

each class and mean IoU which is the average IoU of all 

classes. 

 

4.2. Implementation details 

In this paper, we used the Pytorch library and trained our 

method using the Adam for 1,500 epochs. The learning rate 

was set to 0.001 as the initial value and 0.0001 after 1,000 

epochs. Batch size was set to 8. Furthermore, class weight 

was used in SCE loss to address class imbalanced problem.  

We evaluated the following 8 methods; U-Net using the 

sum of SCE loss and IoU loss, U-Net using the sum of SCE 

loss and Dice loss, Double U-Net using the sum of SCE loss 

and IoU loss, Ensemble U-Net using the sum of SCE loss 

and IoU loss, X-Net using the sum of SCE loss and IoU loss, 

X-Net using the sum of SCE loss and Dice loss, X-Net that 
top network is trained with SCE loss and bottom network is 

trained with IoU loss, and X-Net that top network is trained 

with SCE loss and bottom network is trained with Dice loss. 
The best model was selected by using the accuracy for 

validation set. 
 

4.3. Comparison with Another Method 

Table 1 shows the evaluation result on the Arabidopsis 

cell dataset. SCE+Dice in the Table indicates that the sum 

of SCE loss and Dice loss is used as the loss function, and 

“SCE and Dice” indicates that SCE loss is used for the 

upper network of X-Net and Dice loss is used for the lower 

network. The numbers in brackets are the standard 

deviations of the accuracies in 5-fold cross validation. The 

best accuracy was obtained by the proposed X-Net that top 

network is trained with SCE loss and bottom network is 
trained on IoU loss. The accuracy of our method was 

63.33% on mean IoU which is 2.21% higher than the U-net 

with sum of SCE loss and IoU loss. In addition, the standard 

deviation was smaller than conventional methods. 

The accuracy was improved when we use X-net with 

different loss functions. This shows the effectiveness of 

ensemble of two decoders trained by different losses. By 

comparison with conventional methods using two U-nets; 

Double U-net and Ensemble U-net, we demonstrated the 

effectiveness of architecture of our X-net using two 

encoders and two decoders. 

Table 2 shows evaluation results on the Drosophila cell 
image dataset. The proposed method achieved 73.81% on 

Fig. 3: Examples of datasets. Left two columns show the Arabidopsis cell dataset which consists of cell and cell 

wall. Right two columns show the Drosophila cell image dataset which consists of cytoplasm, cell membrane, 

mitochondria, and synapses. 
 



 

 

mean IoU. The accuracy was 2.18% higher than the U-net. 
Our method was also better than conventional Double U-

net and Ensemble U-net. 

Table 1 and 2 show that the usage of IoU loss achieved 

higher accuracy than that of Dice loss. This is because IoU 

loss is the same as the evaluation measure. When we check 

the accuracy of each class, there is no significant change in 

accuracy for cells in the Arabidopsis dataset or intracellular 

in the Drosophila dataset. However, there is a significant 

increase in accuracy for cell walls and synapses which have 
small number of pixels. This means that the accuracies of 

difficult classes were improved by the proposed X-net. 

  

4.4. Qualitative Results 

Figure 4 shows the segmentation results on two cell 

image datasets. In the case of the Arabidopsis dataset, we 

see that the proposed method was better than other methods 

Table 2: Comparison result on the Drosophila cell image dataset. 

Table 1: Comparison result on the Arabidopsis cell dataset 



 

 

in the cell wall class. The cell walls were broken in the 

result of U-net and Double U-Net, but the number of the 

connected cell walls increased by our method. In the 

Drosophila datasets, other methods could not discriminate 

between membranes, synapses, and glia/extracellular cells, 
but X-Net was able to segment them successfully. These 

results demonstrated that X-Net can segment the classes 

with fewer pixels well in comparison with the other 

methods. 

Figure 5 shows the visualization results of the feature 

map on two cell image datasets. For the U-Net, Double U-

Net, and Ensemble U-Net, we visualized the convolutional 

layer just before the output. For the X-Net, we visualized 

the convolutional layer just before output3. The feature map 

for visualization was created by averaging all feature maps. 

We normalized the feature map from 0 to 1 and painted red 
to the pixels that are close to 1 and blue to the pixels that 

are close to 0.  

The feature map of X-Net, that top decoder is trained 

with SCE loss and bottom decoder is trained with IoU loss, 

has more reddish mitochondria and membranes than the 

other methods. This indicates that X-Net is better at 

(a): Segmentation result on the Arabidopsis cell dataset 

(b): Segmentation result on the Drosophila cell image dataset 

Fig. 4: Segmentation results on two cell image datasets. (a) shows the segmentation results on the Arabidopsis 

cell dataset and (b) shows the results on the Drosophila cell image dataset. From left to right images in top 

row show input image, ground truth, the result by U-Net using the sum of SCE loss and IoU loss. From left to 
right images in bottom row show the result by Double U-Net using the sum of SCE loss and IoU loss, the 

result by Ensemble U-Net using the sum of SCE loss and IoU loss, the result by X-Net using the sum of SCE 

loss and IoU loss, and the result by X-Net that top network with SCE loss and bottom network with IoU loss. 

 



 

 

identifying mitochondria and membranes than the other 

methods.  

 

5. Conclusion 

In this paper, we proposed the X-Net which consisted of 

two encoders and two decoders.  This made it possible to 

extract rich features from two encoders and obtain superior 
segmentation results by two decoders from the aggregated 

features of two encoders. In addition, we trained top 

decoder with SCE loss for classifying each pixel in an 

image, and we trained bottom decoder with IoU loss or Dice 

loss which predicts on the entire image. By using different 

losses, we obtained better discrimination ability. 

In addition, this paper evaluates the accuracy using two 

datasets with very different image properties, and found 

that it is effective for both. This indicates that X-Net is a 

highly versatile analysis method.   

X-Net improved segmentation accuracy but used 

multiple encoders and decoders. This increases the 

computational cost and memory required. It is necessary to 

reduce them. By using pointwise convolution or summing 

(b): Visualization of feature maps at the final layer on the Drosophila cell image dataset. 

(a): Visualization of feature maps at the final layer on the Arabidopsis thaliana cell dataset. 

Fig. 5: Visualization of feature maps at the final layer on two cell image datasets. (a) shows the feature map 

on the Arabidopsis cell dataset and (b) shows that on the Drosophila cell image dataset. From left to right 

images in top row show input image, ground truth, the feature map in U-Net using the sum of SCE loss and 

IoU loss. From left to right images in bottom row show the feature map in Double U-Net using the sum of 

SCE loss and IoU loss, that in Ensemble U-Net using the sum of SCE loss and IoU loss, that in X-Net using 

the sum of SCE loss and IoU loss, and that in X-Net that top network with SCE loss and bottom network 

with IoU loss. 

 



 

 

the connections, we may be able to achieve the same 

accuracy with lower computational cost. This is a subject 

for future works. 
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