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Abstract

Melanoma is the third most common type of skin cancer

and is responsible for the most skin cancer deaths. A di-

agnosis of melanoma is made by the visual interpretation

of tissue sections by a pathologist, a challenging task given

the complexity and breadth of melanocytic lesions and the

subjective nature of biopsy interpretation. We leverage ad-

vances in computer vision to aid melanoma diagnosis by

segmenting potential regions of lesions on digital images

of whole slide skin biopsies. In this study, we demonstrate

a Mask-R-CNN-based segmentation framework for such a

purpose. To alleviate the cost of data annotation, we lever-

age a sparse annotation pipeline. Our model can be trained

on sparse and noisy labels and achieves state-of-the-art

performance in identifying melanocytic proliferations, pro-

ducing a segmentation with Dice score 0.719, mIOU 0.740

and overall pixel accuracy 0.927.

1. Introduction

Melanoma is the third most common type of skin cancer

and is responsible for most skin cancer deaths [18, 19]. In

the United States, between 2007–2011, more than 63,000

people were diagnosed with melanoma, and nearly 9,000

people died from this disease each year [10, 14]. Although

melanoma rates overall are highest among older adults, it

is the third most common cancer in adolescents and young

adults (aged 15–39 years) [38]. Recent analyses have found

increases in incidence across all tumor thicknesses and

stages [18]. According to a report for melanoma skin cancer

in [14], the 5-year relative survival rates are 99%, 66%, and

27% in localized, regional and distant stages, respectively.

This shows that although melanoma in advanced stages is

difficult to treat, precursors of melanoma, (i.e. melanoma in

*kechun@cs.washington.edu

situ) and thin melanomas (i.e., depth of invasion < 1 mm),

are 99% likely to be cured. Thus, the early diagnosis of

melanoma is important for reducing melanoma deaths.

The gold standard for melanoma diagnosis is micro-

scopic examination of skin biopsies using routine hema-

toxylin and eosin (H&E)-stained tissue sections with sup-

plemental immunohistochemistry as needed. Pathologists’

diagnoses of melanocytic lesions have been noted to have

both low accuracy and reproducibility [7]. The diagno-

sis of melanoma and melanoma precursors is predicated

on an accurate assessment of architectural growth pat-

terns. Assessing melanocytic lesions requires identifying

where melanocytes are microanatomically situated in the

skin (e.g. intraepidermal, dermal-epidermal junction, in-

tradermal) and characterizing, in part, the architecture of

the melanocytic population. Melanoma in situ, for ex-

ample, exhibits confluent melanocytic growth of single

cells and nests at the epidermal base and/or extension of

melanocytes into the mid-to-upper levels of the epidermis

(pagetoid spread). Invasive (malignant) melanoma con-

tains atypical melanocytes within the dermis, often lack-

ing features of maturation as they descend (e.g., smaller

and more dispersed cells). While melanocytic prolifera-

tions exhibit numerous patterns of growth, our paper fo-

cuses on two fundamental patterns: single cell dispersion

and nests. Figure 1 shows examples of singly dispersed

intraepidermal melanocytes and nested melanocytes at the

dermal-epidermal junction.

The diagnosis of melanoma and its precursors may have

significant barriers on histopathology due to variable archi-

tectural growth patterns and cytomorphology. A critical

first step in developing accurate machine algorithms is the

recognition of melanocytic proliferations and how they are

situated in cutaneous microanatomy. In view of this, we

focus on the following question: can we design a computer-

vision-aided system to automatically point out these growth

patterns? Once the system can reliably detect single cell
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Figure 1: Examples of melanocytic proliferations: we

use red polygons to mark the singly dispersed intraepider-

mal single melanocytes and yellow polygons to mark the

melanocytic nests.

dispersion and nests of melanocytes, it can provide potential

histological clues to aid pathologists. In the rest of the pa-

per, we refer to singly dispersed intraepidermal and nested

melanocytes as melanocytic proliferations for brevity.

Motivated by the recent advances in deep learning, an

increasing number of researchers leverage neural networks

for medical image segmentation, especially for histological

image segmentation, in different disease domains. For in-

stance, many studies use Convolutional Neural Networks

(CNN) to find tumor regions or ducts for breast cancer

[11, 22]. Similarly, researchers have utilized CNNs to seg-

ment prostate cancer grading to aid diagnosis [23, 16]. For

skin cancer, Kucharski et al. [21] performed patch-level

melanocytic nest segmentation using Autoencoders.

In our work, we developed a pipeline to identify image-

level melanocytic proliferations with weak supervision. Our

method leverages sparse and noisy annotations on skin

biopsy images and uses weighted loss functions to account

for the imperfect labels. Altogether, we achieve state-of-

the-art performance on segmentation of melanocytic prolif-

erations. Our work is validated by ground truth from expe-

rienced pathologists trained in dermatopathology.

In summary, our main contributions are three-fold:

(1) Our model provides image-level segmentation results

that can assist in diagnosis by pathologists and aid in

downstream computer vision analysis.

(2) Our approach achieves state-of-the-art accuracy on

identification of melanocytic proliferations.

(3) Our framework only requires weakly-supervised train-

ing using sparse and noisy annotations, which greatly

alleviates the annotation work by pathologists and, at

the same time, achieves a solid performance.

2. Related Work

In this section, we first briefly review the previous work

on melanoma diagnosis using computer vision techniques.

Then, we discuss several recent representative medical im-

age segmentation methods, including semantic segmenta-

tion models such as FCN and U-Net, and instance segmen-

tation models like Mask R-CNN, upon which our approach

is based.

2.1. Melanoma diagnosis work

A few previous papers have been published regarding

melanoma diagnosis and melanocytic region segmentation

using skin histological images. In terms of melanoma di-

agnosis, some notable examples include a feature-based di-

agnosis framework based on cytological and textural char-

acteristics of the epidermis and dermis [41]; a method ca-

pable of diagnosing squamous cell carcinoma in situ by us-

ing an epidermis axis analysis [30]; a method for classify-

ing nodular basal cell carcinomas (BCCs), dermal nevi, and

seborrheic keratoses using a Fully Convolutional Network

[32]; and methods for melanoma diagnosis based on tumor

region segmentation [37, 33]. None of the above diagnosis

methods considers melanocytic proliferations, which are es-

sential clinical diagnostic criteria. A recent work developed

a melanocytic nest segmentation method [21], which is cur-

rently the state-of-the-art model in this specific task. It first

uses a convolutional autoencoder to train a reconstruction

network using 128×128 patches from 70 WSIs. It then re-

places the decoder part with a segmentation head to train

a segmentation model with 39 annotated WSIs using pre-

vious layers in the encoder, which has learned the features

of skin biopsy patches. While this method shows it is fea-

sible to apply computer vision techniques for melanocytic

nest segmentation, it is limited by the number of parame-

ters in the convolutional autoencoder. In practice, it is hard

to feed large patches to the network due to memory issues,

which means a loss of contextual information that is essen-

tial for melanocytic proliferations segmentation. This leads

to lower segmentation and detection accuracies. The au-

toencoder approach achieved promising results to identify

melanocytic nests, and these aforementioned studies all in-

spired us to improve the segmentation performance for find-

ing melanocytic proliferations.

2.2. Deep learning in medical image segmentation

Recent developments in medical image segmentation us-

ing deep learning, especially semantic segmentation and in-

stance segmentation, provide our study’s groundwork.

Semantic segmentation is a common task that classifies

each pixel into a semantic category. For instance, the Fully
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Convolutional Network (FCN) [26], which enables CNNs

to take input images as arbitrary size and output its corre-

sponding mask, has been widely used in biomedical image

analysis [1, 17, 35]. Built upon the elegant structure of the

FCN and a design of skip connections, U-Net overcomes

the trade-off between localization and the use of context

[34]. Many published works regarding medical image anal-

ysis benefit from U-Net [9, 39, 43]. Variations of U-Net,

like 3D U-Net [5], attention U-Net [31] and V-Net [29], also

help tackle many medical image analysis tasks [2, 4, 8].

While semantic segmentation becomes much more

prevalent in medical image analysis, instance segmentation

is rarely used. This is mainly because most medical image

segmentation tasks don’t need the target tissue to be sepa-

rated as instances, and instance segmentation is more diffi-

cult than semantic segmentation. However, instance seg-

mentation also shows promising results in many medical

image analysis studies, such as segmenting glands in colon

histology images [42, 3], ducts in breast biopsies [22], nu-

clei in any microscopy images [20] and different stages of

prostate cancer [23]. Among many instance segmentation

models, Mask R-CNN is a well-known and influential ap-

proach that leverages a two-stage structure to first roughly

locate the target instances by a Region Proposal Network

and second locate precisely, classify and segment the tar-

gets. In our study, we adopt Mask R-CNN to detect and

segment melanocytic proliferations.

3. Methods

Figure 2 shows our proposed melanocytic proliferation

segmentation pipeline, which consists of two main compo-

nents: (1) data annotation and preprocessing procedure, (2)

melanocytic proliferation segmentation model, and patch

stitching. In this section, we first introduce the dataset and

annotations used in our proposed melanocytic proliferation

segmentation pipeline. Second, we describe the model used

in both the segmentation and post-processing steps in detail.

Finally, we provide evaluation metrics on which our model

was assessed and compared with previous efforts.

3.1. Dataset

Our dataset consists of 227 region of interest (ROI) im-

ages extracted from hematoxylin and eosin (H&E) stained

slides of skin biopsy images at 10x magnification and di-

agnosed by three expert pathologists, who all agreed on the

consensus diagnosis and selected the ROIs [7]. Each ROI

image indicates the diagnosis result to some extent, which

ranges from class 1 (benign) with 29 samples, class 2 (mod-

erately dysplastic nevi) with 49 samples, class 3 (melanoma

in situ) with 67 samples, class 4 (invasive melanoma stage

T1a) with 50 samples, and class 5 (invasive melanoma stage

≥ T1b) with 32 samples. All the images are compressed in

tiff format.

3.1.1 Melanocytic proliferation annotations

Demarcating melanocytic proliferations in a biopsy image

is difficult for three main reasons. First, melanocytic nests

come in various sizes and shapes, which makes annotation

difficult. Second, a typical whole slide image can include

a few to several hundred melanocytic nests and hundreds

of single melanocytes, depending on the cases. This causes

annotating a single image to be extremely labor-intensive.

Last but not least, annotating nests can only be done by an

expert dermatopathologist, which makes it extremely costly

in time and human resource to collect a sizable dataset for

training a model. Altogether, these challenges render it dif-

ficult to create datasets of marked melanocytic prolifera-

tions suitable for deep learning techniques.

Training computer vision models require datasets of ad-

equate sizes. Given the aforementioned difficulties in an-

notation, we designed the following annotation procedure.

We ask an expert pathologist to partially mark the 227 ROI

images, using the Sedeen Viewer [28]. Annotating the sin-

gle melanocytes is challenging due to their small sizes and

large quantities, as shown in red labels in Figure 1. To solve

this, we drew polygons around many melanocytes instead of

circling every single melanocyte. In addition, we had two

other expert pathologists check the markings. Although this

procedure leads to several sources of noise in our labels,

which we will discuss in 3.1.2, it gives us significant sav-

ings in annotation time, in comparison to fully and exactly

labeling every singly-dispersed and nested melanocyte.

3.1.2 Annotation Caveats

Sparse annotation, noisy annotation, and irreducible human

errors are the main caveats of the efficient weakly anno-

tation procedure, as shown in Figure 3. First, because of

the sparse labeling strategy, not all the images are marked

with melanocytic proliferations, and not all the melanocytic

proliferations are marked in any one single image. Figure

3a shows an example of our sparse annotations. Second,

when drawing polygons around many intraepidermal single

melanocytes instead of circling every single melanocytes,

this inevitably includes the ”false” background into the la-

bels and leads to the noisy annotations as illustrated in Fig-

ure 3b. Third, since we are using a polygonal annotation

tool, there are some misalignments between the annotated

boundaries and the true boundaries. Fourth, there exist few

false positive examples that are labeled by mistake. We re-

fer to these as “human error” and show an example of them

in Figure 3c. These limitations render our annotations “sil-

ver standard” rather than “gold standard”, even if a consen-

sus was reached among pathologists in the markings. To

address these annotation caveats, we incorporate different

training strategies and loss functions to the computer vision

model, which are shown in Section 3.2.
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Figure 2: Melanocytic proliferation segmentation pipeline: this pipeline enables training from sparse annotations using

the Mask R-CNN model with different loss functions, and aggregates results on patches to provide an image-level mask that

can be used in further diagnosis. Note: only the middle slide is the important region of interest, even though parts of the other

two slides fell into the box.

(a) Sparse annotations (b) Noisy annotations (c) Human errors

Figure 3: Limitations in our annotations: (a) sparse annotations: green markings belong to the sparse annotations, and

yellow markings show the complementary annotations; (b) noisy annotations: red and yellow markings show the true in-

traepidermal single melanocytes and the melanocytic nests separately, while they are actually labeled as the green markings

in our annotations; (c) human errors: the two green markings pointed to with yellow arrows are false positive examples which

were inaccurately labeled.

3.1.3 Data split

We split our dataset randomly into training, validation, and

testing subsets. The number of ROI images in each subset

equals 174 (76%), 19 (8%), and 34 (15%), respectively. The

validation set is used to choose the model and parameters.

After the training is finished, the testing set is used to eval-

uate the model’s performance. The dataset is split before

further preprocessing steps.

3.1.4 Data preprocessing

Even if ROI images are cropped from the original whole

slide images (WSIs), they are still too large to fit into

memory, with the smallest size 428×381 to largest size

23691×22401 and median size 6221×3171 at the magni-

fication 10x. A common strategy to deal with this mem-

ory issue is to extract patches [6, 13]. As we are using a

pretrained Mask R-CNN model whose default anchor box

sizes are 32, 64, 128, 256, and 512, we split the images

into 1000×1000 patches; this avoids training new layers

since the dataset is too small. The patches will be further

resized with the shortest edge around 800, which is a de-

fault step in the model, so that the default anchor box sizes

can cover most of the melanocytic proliferations. Besides,

to reduce the boundary effect when stitching patches into

images, we downscale the ROI images from 10x to 5x, i.e.

down-sampling to half resolution, and extract the patches

with 50% overlap.
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3.2. Model

Among our processed data patches, most include only a

few small-sized melanocytic proliferations, leaving the ma-

jority of the patches non-target tissues. This motivates us to

adopt the Mask R-CNN [12], a widely-used instance seg-

mentation model for our task. The advantage of Mask R-

CNN is that it is a two-stage model, as described in Figure

4. The first stage is to roughly locate the target entities us-

ing a Region Proposal Network. The second stage is to fur-

ther refine the anchor boxes and at the same time produce

segmentation masks and classification results. This design

helps us efficiently filter out the majority of the non-target

tissues. We next introduce the loss function designed for

our partially labeled dataset.

3.2.1 Loss Function

The original Mask R-CNN model was developed for in-

stance segmentation on the Microsoft COCO: Common Ob-

jects in Context (MS COCO) dataset [25], a fully labeled

dataset. In comparison to MS COCO, our dataset is only

sparsely labeled, as described in section 3.1.1. We hereby

describe our modification to the loss function in Mask R-

CNN to better suit our dataset.

The loss function for Mask R-CNN consists of 5 parts.

(1) Lrpn cls: Classification loss in the RPN. (2) Lrpn loc: An-

chor box location loss in the RPN. (3) Lcls: Classification

loss in the prediction head. (4) Lbox reg: Bounding box re-

gression loss in the prediction head. (5) Lmask: Segmenta-

tion loss in the prediction head.

In the training of the Mask R-CNN, Lrpn loc, Lbox reg,

Lmask only back-propagate the loss values on positive sam-

ples . However, Lrpn cls and Lcls fully utilize the labeled and

unlabeled areas to decide whether there is an instance in

the anchor box. As we are using a partially-labeled dataset,

treating those unlabeled areas as background, i.e. not nests,

is unfair to our task. Thus, we changed the loss functions in

these two parts to better train our data. The original forms

of Lrpn cls and Lcls are binary cross entropy, and categorical

cross entropy. In our study, we tried two other loss func-

tions, weighted cross entropy (WCE) and focal loss (FL).

Weighted Cross Entropy is a variation of cross entropy

with weights given to different categories to address the

dataset imbalance. This helps achieve higher recall and

precision. The larger the weight of a specific category, the

higher the recall is on that category. In our study, WCE is

used to reduce punishment from unlabeled areas. We define

WCE as:

LWCE = −
∑

i

(w∗yi∗log(p̂i)+(1−yi)∗log(1− p̂i)) (1)

where yi ∈ {0, 1} is the ground truth label whether the ob-

ject belongs to class i. p̂i ∈ [0, 1] is the probability of the

object being in class i, predicted by the model. w is the

weight given to the categories.

Focal Loss was first introduced in [24], which adds adap-

tive weights on cross entropy to let the model focus on hard

examples rather than treating hard and easy examples in the

same way. This strategy helps to alleviate the imbalanced

data problem. In our study, focal loss is used to reduce un-

fair punishment as well as let the model learn from hard

examples and is given by

LWFL =−
∑

i

(w ∗ yi ∗ (1− p̂i)
λ ∗ log(p̂i)

+ (1− yi) ∗ p̂i
λ log(1− p̂i)) (2)

where λ is a hyper-parameter. The larger λ is, the more

the model focuses on hard examples. We use λ = 2 in

our experiment, following the same setting in [24]. The

definitions of yi, p̂i, and w remains the same as equation 1.

In both LWCE and LWFL, w is used to balance the labeled

and unlabeled areas. The results of different values of w are

shown in the ablation study 4.2.

3.2.2 Transfer Learning

Transfer Learning is an effective technique in computer vi-

sion tasks where the dataset is the main bottleneck. As with

most medical image analysis domains, we are limited by

a scarcity of accurately annotated training data due to the

difficulty and cost of collecting and annotating data. The

scarcity is even aggravated in our partially labeled dataset.

In fact, we only have 130 images labeled with melanocytic

proliferations in the training dataset. Thus, we use transfer

learning via CNNs originally pretrained on natural images

to compensate for this limitation.

Previous studies [15, 36] show that transfer learning in

CNNs helps alleviate the need for large datasets. Despite

the difference between natural images and medical images,

neural nets can still learn some basic structures e.g. edges,

blobs from natural images, and these parameters are shared

in transfer learning. CNNs can be further fine-tuned in

the limited medical datasets to learn a specific task like

melanocytic nests. Thus, transfer learning can help to train

a model on a limited dataset as well as allow us to take ad-

vantage of deep neural networks.

In our study, we used an off-the-shelf implementation of

Mask R-CNN from detectron2 [40], pretrained on the MS

COCO dataset, which has over 200,000 accurately labeled

images and 80 categories. To better utilize transfer learn-

ing, we kept the pretrained model’s parameters as much as

possible, except we changed the prediction head since our

task is for different categories and preprocessed the images

to get their sizes close to MS COCO image sizes.
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Figure 4: Overview of Mask R-CNN model architecture: We use ResNet-101+FPN as the backbone to extract feature

maps from the input image. Combining the feature maps and the anchor box results from Region Proposal Network (RPN),

fixed-size feature maps are fed into three prediction heads (classification, bounding box regression, and segmentation) to

jointly generate instance segmentation results. Since our dataset is partially-labeled, we change the loss functions of bbox cls

in the RPN and classification head to reduce punishment from unlabeled data.

3.2.3 Post-processing

To provide a complete prediction on ROI images instead

of patches, we stitched the patch results to image-level

masks by only preserving instances with confidence scores

over 0.5 and aggregating them together to generate masks.

Although this step loses the information of separate in-

stances, it is acceptable in our task as the delimitations on

the melanocytic proliferations are also vague.

3.2.4 Implementation and Training

The Mask R-CNN model was fine-tuned on our dataset us-

ing the SGD optimizer for a total of 40 epochs with an ini-

tial learning rate of 0.001. We used learning rate warm-up

in the first three epochs and decayed the learning rate by 0.5

after every 4 epochs. To achieve a stable measurement, we

ran each model 10 times with different randomization (e.g.,

random mini-batch, random dropout, etc.). In the follow-

ing sections, we report the mean and the standard deviation

(STD) for all metrics in our experiments.

3.3. Evaluation Metrics

To make our model comparable with the state-of-the-art

melanocytic nest segmentation method [21], we used the

standard pixel-level metrics: Dice Score, mean Intersection

Over Union (mIOU), accuracy, sensitivity and specificity

to evaluate the model’s segmentation performance. These

metrics are calculated based on the pixel populations of true

positive (TP ), true negative (TN ), false positive (FP ), and

false negative (FN ).

Dice =
2× TP

2× TP + FP + FN

mIOU =
1

2
× (

TP

TP + FP + FN
+

TN

TN + FP + FN
)

4. Results and Discussion

Despite being trained with weak-supervision using only

partially labeled datasets, our model was able to achieve

good performance on the fully labeled test set. This is due to

the architecture, loss function (WCE and FL), and transfer

learning techniques, as discussed in Section 3.2. To have

a fair evaluation, we asked our expert pathologist to thor-

oughly label the melanocytic nests in our test set, which

consists of 34 ROI images. In this section, we provide ex-

perimental results on the fully labeled test set, ablation stud-

ies, as well as a detailed discussion of our results.

4.1. Experimental Results

We re-implemented the convolutional autoencoder

model described in the previous state-of-the-art (SOTA)

work [21], and trained it following all the detailed steps

as described. Table 1 quantitatively compares this autoen-

coder with our method in different loss functions, including

the default cross entropy loss, using the segmentation met-

rics described in Section 3.3. Although the SOTA autoen-

coder achieves higher sensitivity, it provides less accurate

and more noisy segmentation results as shown in mIOU,

accuracy, specificity and Figure 5. Overall, our method out-

performs the SOTA autoencoder in Dice score, mIOU, ac-

curacy and specificity.

Figure 5 qualitatively illustrates the goundtruth and the

results of the autoencoder and our model overlaid on the

H&E images. The first two rows in Figure 5 show two good

examples of melanocytic proliferation segmentation results

compared to both groundtruth and the autoencoder. The

bottom two rows show two imperfect examples compared

to the groundtruth. In Figure 5 (c), our model predicts a

false positive proliferation in the middle layer of the epider-

mis, which consists of many keratinocytes with “halo” re-

gions surrounding the nuclei. This is mainly because most
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Method Dice mIOU Accuracy Sensitivity Specificity

Autoencoder [21] 0.679 0.705 0.905 0.814 0.918

Mask R-CNN with CE loss 0.685 0.715 0.917 0.726 0.944

Mask R-CNN with WCE loss 0.705 0.726 0.917 0.792 0.935

Mask R-CNN with FL loss 0.719 0.740 0.927 0.751 0.952

Table 1: Quantitative results: Dice score, mIOU, Accuracy, Sensitivity and Specificity for all methods. The best perfor-

mances are highlighted in bold font in this table.

Loss function Weight Dice mIOU Accuracy Sensitivity Specificity

Weighted Cross Entropy (WCE)

w = 1 0.685(0.013) 0.715(0.008) 0.917(0.002) 0.726(0.041) 0.944(0.006)

w = 2 0.705(0.003) 0.726(0.003) 0.917(0.003) 0.792(0.027) 0.935(0.007)

w = 3 0.701(0.009) 0.723(0.006) 0.915(0.003) 0.792(0.021) 0.933(0.005)

w = 5 0.701(0.008) 0.722(0.006) 0.914(0.002) 0.813(0.028) 0.928(0.005)

w = 8 0.700(0.007) 0.718(0.007) 0.909(0.005) 0.850(0.022) 0.918(0.008)

w = 12 0.700(0.005) 0.716(0.003) 0.908(0.002) 0.847(0.021) 0.917(0.005)

Focal Loss (FL)

w = 1 0.717(0.018) 0.740(0.011) 0.928(0.002) 0.740(0.053) 0.954(0.007)

w = 2 0.703(0.022) 0.731(0.014) 0.926(0.003) 0.710(0.053) 0.956(0.006)

w = 3 0.702(0.021) 0.730(0.014) 0.926(0.003) 0.705(0.045) 0.957(0.004)

w = 5 0.711(0.014) 0.735(0.008) 0.926(0.002) 0.730(0.044) 0.954(0.006)

w = 8 0.719(0.011) 0.740(0.007) 0.927(0.003) 0.751(0.027) 0.952(0.005)

w = 12 0.710(0.023) 0.734(0.015) 0.925(0.004) 0.742(0.056) 0.951(0.007)

Table 2: Ablation experiments for weighted cross entropy (WCE) and focal loss (FL): All the models with different

weights were evaluated on our fully-labeled test set. The mean and standard deviation (in parenthesis) from 10 runs are

reported.

intraepidermal melanocytes share the same characteristic of

“halo” regions [27]. In Figure 5 (d), our model mispredicts

some melanophages; this is mainly caused by the human

errors in annotations described in 3.1.2.

4.2. Ablations

To understand the relationship between the weights in

the loss function and segmentation performance, we tried

several experiments with different weight values for WCE

and FL. All the models with different loss function weights

were evaluated in our fully-labeled test dataset. As shown

in Table 2, we observe that the WCE loss performs the

best when w = 2, and FL achieves the best performance

when w = 8. The comparison between default cross en-

tropy (w=1) and other weighted loss functions shows that

adding weights helps improve performance in sparse anno-

tation datasets (like ours). The larger standard deviations

in focal loss compared to weighted cross entropy show that

while focal loss enlarges the confidence scores in positive

and negative samples, the noise in our dataset is also ampli-

fied, which leads to the uncertainty in the results.

4.3. Discussion

As shown in Table 1 and Figure 5, our proposed method

achieved better results than the SOTA autoencoder [21] in

all metrics except sensitivity, which can be explained by the

autoencoder’s tendency for overprediction. The identifica-

tion of melanocytic proliferations could provide potential

histological clues to help pathologists focus on important

regions and reduce their workload. Moreover, inexperi-

enced students could use our study to better understand the

critical first step of the diagnosis process.

We chose Mask-RCNN as our model architecture be-

cause it is robust to noise. In comparison, the autoencoder

mispredicts small and irrelevant entities as melanocytic pro-

liferations, as shown in Figure 5. Mask-RCNN does not

have the same drawback, because the anchor boxes help it

focus on specific regions of interest and filter out the irrele-

vant background. The design of non-maximum suppression

also reduces the noise around a target instance.

Diagnosis in practice requires many different features,

such as confluent growth of melanocytes along the basal

epidermis, mitotic figures, and melanocyte maturation on

descent. Our model shows great potential serving as the

first step of an automated diagnosis pipeline. Once we ac-
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H&E Groundtruth Autoencoder Mask-RCNN

(a)

(b)

(c)

(d)

Figure 5: Qualitative comparison between our model and SOTA autoencoder [21]: From left to right, each column shows

examples of ROI images stained by H&E, groundtruth annotated by expert pathologist, Autoencoder predictions, and Mask

R-CNN predictions, separately.

curately recognize melanocytic proliferations and how they

are situated in cutaneous microanatomy, we can incorpo-

rate other works to extract the aforementioned features. In

the future, researchers can combine these features with clas-

sification techniques such as multi-instance learning and

Transformers, to create an integrated diagnosis tool.

The quality of human annotation largely affects our

model’s performance. We find that irreducible human

errors can lead to misclassification of melanophages as

melanocytic proliferations in Figure 5 (d). One promis-

ing direction is to reduce human errors by leveraging our

model’s output. Noisy predictions from deep neural net-

works [22] can be used to assist data annotation in an inter-

active manner. We leave this direction to future work.

5. Conclusions

One important step in assessing melanocytic lesions is

to identify melanocytic growth patterns such as single cell

dispersion and nested melanocytes. In this study, we pro-

pose a weakly-supervised Mask-R-CNN-based model for

melanocytic proliferations segmentation. By leveraging

weak supervision, our model only requires partially labeled

datasets, which vastly reduces the data annotation cost. We

evaluated our method on ground truth labels provided by ex-

pert pathologists and found that it outperforms the previous

state-of-the-art approach. Although, more comprehensive

studies are needed to validate our approach in practice, we

are excited about its potential to aid in melanoma diagnosis.
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