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Abstract

Cervical cancer is one of the leading causes of cancer

death in women aged 20 to 39 years, which emphasizes

the importance of cervical precancerous diagnosis and

treatment. Although there are many attempts on medical

image processing, the research on the automatic diagnosis

of cervical precancerous pathology is still scarce. In this

paper, a challenging end-to-end automatic segmentation

task for cervical precancerous diagnosis is focused.

Specifically, considering that the diagnosis of cervical

lesions relies heavily on spatial information, a hierarchical

spatial pyramid network (HSP-Net) is proposed to enhance

the representation ability of cervical structural features.

First, a vertical hierarchical spatial pyramid (V-HSP)

network is devised to aggregate the multiscale information

during the feature extraction of the encoder. Second, a

horizontal hierarchical spatial pyramid (H-HSP) network

is designed to fuse information of multiscale receptive

fields before and after cascading features from different

branches. Experiments on the public dataset MTCHI

demonstrate that HSP-Net achieves the state-of-the-art

performance, reflecting the potential to assist doctors and

patients clinically.

1. Introduction

Since the mid-1970s, the survival rates of all the most

common cancers have improved except uterine cervix and

uterine corpus; cervical cancer is one of the leading causes

of cancer death in women aged 20 to 39 years with 10

premature deaths per week [31]. Fortunately, mild cervical

precancerous lesions is curable when detected early, and

visual inspection on hematoxylin and eosin (H&E) stained

cervical pathological slides is a popular screening method.

However, the giga resolution of pathological images (e.g.,

up to 168, 960px × 99, 072px for one image from MTCHI

dataset1) places high demands on the professionalism

and concentration of pathologists. Therefore, automated

processing with deep learning can assist pathologists in

diagnosis in terms of efficiency and accuracy. Although

deep learning has achieved excellent performance in natural

image processing (e.g., ResNet [12] and GoogLeNet [33]

in classification; Faster R-CNN [28] and Mask R-CNN

[13] in detection; U-Net [29], FCN [19], and DeepLab

v3+ [6] in segmentation), it still faces many challenges

in the processing of pathological images: (1) Different

H&E stained slides vary in hue, saturation and contrast,

due to the factors such as laboratory protocols, source

manufacturers, scanners, concentration, and even staining

time. (2) Considering the progression of cervical lesions,

different lesion grades cannot be completely accurately

distinguished, and thus adjacent categories are similar to

each other. (3) The diagnosis of pathologists is affected

by subjectivity and experience, and pixel-level annotations

exist inevitable errors, which introduces noise to the data

fitting. (4) The resolution of a cervical whole slide image

(WSI) far exceeds that of natural images, which greatly

increases the burden of the graphics processing unit (GPU).

Deep networks have achieved outstanding performance

in the classification tasks of pathological images [17].

Conventional methods usually crop a giga-WSI into

multiple small patches for processing. The output

diagnostic map is composed of the prediction results of

the patches. Since each patch in the classification task

corresponds to only one pixel in the output map, the

size of the final diagnostic map is much smaller than

the original image. However, the area of the cervical

lesion is usually small. The diagnostic map generated by

classification will miss many small lesions. Variants of

U-Net are widely utilized in medical image segmentation

tasks, such as brain tumor segmentation [9] and blood

vessel segmentation [36]. Considering that the original

1https://mcprl.com/html/dataset/MTCHI.html



Figure 1. (1) U-Net gradually aggregates features of different

scales through skip-connections to integrate contextual space

information. (2) DeepLab v3+ expands the receptive fields

through the atrous spatial pyramid pooling (ASPP) to obtain

spatial features.

U-Net output size is smaller than the input size, the

variants usually slightly modify the convolutional layers

through zero padding to obtain equal-sized segmentation

results. As shown in Figure 1 (1), U-Net gradually

merges the information of the encoder and decoder through

skip connections. In previous work, TriUpSegNet [24]

implemented segmentation instead of classification based

on DeepLab v3+, to ensure pixel-by-pixel diagnosis for

cervical WSIs. As shown in Figure 1 (2), DeepLab v3+

applies ResNet as the encoder to extract semantic features,

and ASPP to expand the receptive fields. However, typical

segmentation networks have several shortcomings in the

precancerous segmentation task of cervical pathological

images. For example, the ASPP module of DeepLab v3+

merely expands the receptive fields of one feature map,

and the integration of multiscale information is insufficient.

In addition, the encoder of U-Net-like networks cannot

be flexibly replaced with a common pretrained network,

and the deconvolution operation increases the amount of

parameters. To address above problems, we propose a HSP-

Net to improve the segmentation performance of cervical

pathological images. First, different from the decoder of

the U-Net which cascades the features from the encoder

after deconvolution gradually, a vertical hierarchical spatial

pyramid (V-HSP) structure is devised to cascade the bilinear

up-sampled features from different nodes of the encoder

directly. Without deconvolution, V-HSP structure contains

fewer parameters than the U-Net. Second, inspired by

the ASPP structure of DeepLab v3+, the down-sampling

blocks (DS-Blocks) are applied instead of conventional

convolutions to fuse information of multiscale receptive

fields before and after cascading the features output from

the encoder, which forms a horizontal hierarchical spatial

pyramid (H-HSP) network. Combining the V-HSP and H-

HSP structures, HSP-Net achieves outstanding results in

the task of cervical precancerous pathological segmentation

which is very concerned about the spatial information.

The contributions can be summarized as follows:

• To obtain rich information from multiple perspective

scales, the V-HSP structure is proposed to fuse

multiscale features during the feature extraction of

the encoder. Four output feature maps from different

nodes of the encoder are first bilinear up-sampled

without deconvolution and then aggregated directly

instead of cascading step by step to save parameters.

• To avoid the loss of structural information caused by

deep convolutions, the H-HSP structure is built. DS-

Blocks with parallel convolutions of different dilations

are assigned instead of conventional convolutions to

aggregate information from multiscale receptive fields

multifoldly.

• Experiments on the public histopathological dataset

MTCHI demonstrate the effectiveness of our HSP-

Net (the combination of H-HSP and V-HSP structures)

through cross validation. In addition, the HSP-

Net also outperforms the recently published state-of-

the-art (SOTA) segmentation algorithms for cervical

precancerous lesions on the test set of MTCHI dataset.

The remainder of the paper proceeds as follows: Section

2 introduces recent works about the automatic diagnosis

of the cervix and pathology. Section 3 is concerned with

the specific construction of HSP-Net, including the V-HSP

and the H-HSP structures. Section 4 analyses the ablation

experiments, cross validation, and comparison with other

methods. Section 5 provides the conclusion.

2. Related Work

2.1. Cervical automatic diagnosis

In recent years, most of the explorations of cervical

computer-aided diagnosis have delved in Pap smear images.

The issue is often addressed through the following aspects:

(1) semantic segmentation of nuclei, cytoplasm, and

background; (2) accurate extraction of overlapping cell

edges; and (3) abnormal identification of each cell. For

example, Song et al. [32] explored the topic of overlapping

cell edge extraction on the dataset of challenge ISBI

2015 [20]. Zhang et al. [39] achieved high accuracy for

single-cell classification on the public dataset Herlev [15].

Although previous studies have reported the effectiveness

of computer-aided algorithms in Pap smear screening, it is

still insufficient on cervical pathology automatic diagnosis.

Considering that the diagnosis of cervical pathology is

largely dependent on structural features, the algorithms for

cervical Pap smear images cannot be directly transferred

to pathological precancerous segmentation. Some previous

algorithms [8] [10] [1] cut some relatively simple cervical

tissues into three layers along the parallel direction of

the basement membrane, and extracted features to jointly



Figure 2. The architecture of HSP-Net. The encoder consists of the blocks of ResNet. The multiscale outputs from the encoder are

concatenated together to form the V-HSP structure. DS-Blocks are used to reduce dimensions and aggregate features of multiscale receptive

fields. Multiple DS-Blocks form the H-HSP structure.

predict the tissue progression. Wang et al. [37] determined

the position of the basement membrane by adversarial

neural networks. However, they manually selected samples

containing basement membranes for exploration, which

is unsuitable for practical applications when the tissue is

incomplete. In this paper, we address the task of cervical

precancerous diagnosis through the exploration of CNN

structure based on a complicated pathology dataset.

2.2. Histological automatic diagnosis

Since the resolution of WSI is much higher than

the input of the CNN, most of the previous algorithms

usually cut WSIs into small patches containing regions of

interest (RoIs) for processing. The 2018 grand challenge

on breast cancer histology images (BACH) [2] attracted

many attempts on breast pathology classification. They

took advantage of image preprocessing, transfer learning,

weakly supervised learning, and attention mechanism to

classify the breast image patches with size of 2, 048px ×
1, 536px into four categories (i.e., normal, benign, in situ

carcinoma, and invasive carcinoma), and achieved high

accuracy [22] [16] [7]. The WSI diagnostic inference map

was usually obtained by stitching the classification results

of cropped patches [18] [17]. Some algorithms sent the WSI

feature maps obtained from the classification network to

the segmentation network, to further improve the diagnostic

accuracy [34] [11]. The output diagnostic maps of these

strategies with the classification network as backbones were

often much smaller than the original WSI size. In addition,

many outstanding instance segmentation algorithms were

widely investigated for pathological patches [5] [27] [38].

In this paper, we explore the pixel-by-pixel diagnosis of

pathology, i.e., semantic segmentation, to focus on small

lesions in cervical tissue.

3. Methodology

3.1. HSP­Net

The overall architecture of HSP-Net is shown in

Figure 2. HSP-Net gradually extracts semantic features

through an encoder. Considering the scarcity of annotated

cervical images, the encoder is extracted from classification

networks pretrained on the dataset ImageNet [30]. Here,

HSP-Net adopts the backbone of ResNet as the encoder.

The encoder can flexibly choose ResNet-34 or ResNet-101

according to the trade-off between time and accuracy. For

the input image X with side length x, during the feature

extraction by the encoder, the side length of the feature map



gradually decreases, and the number of channels gradually

increases accordingly, so as to ensure sufficient information.

HSP-Net sets four intermediate results of the encoder as

output nodes. The output feature maps of the encoder are

XEn =< XEn1, XEn2, XEn3, XEn4 >, where XEni is

the output of Block i. Note that the minimum size of the

output feature map of the encoder is x/32, which is different

from x/16 of DeepLab v3+. The feature maps of the four

branches differ in size and channel, thus converging rich

multiscale information in subsequent convolutions. The

numbers of XEn feature map channels < c1, c2, c3, c4 >
vary according to the complexity of the encoder, and c1 <
c2 < c3 < c4 is always satisfied.

3.2. V­HSP

V-HSP extracts and aggregates features of different

scales from the encoder. Unlike using multiple

deconvolutions in the U-Net, V-HSP fuses the multiscale

features from the encoder by using bilinear up-sampling

which is parameter-free. The features of the four

branches are cascaded together directly instead of stepwise

convolutions. To further reduce the parameters and balance

the multiscale information, the features of the four branches

are dimensionally reduced before concatenation. The

features with different scales are dimension-reduced by DS-

Blocks. DS-Blocks reduce the number of channels from

< c1, c2, c3, c4 > to < c′
1
, c′

2
, c′

3
, c′

4
>. Then, the feature

maps from DS-Block 2, 3, 4 are up-sampled to the size of

the feature map from DS-Block 1. Finally, the aggregation

of feature maps with different scales forms the V-HSP

structure. Specifically, the output is

XCat = C{D(XEn1),U [D(XEn2)]
2,

U [D(XEn3)]
4,U [D(XEn4)]

8}, (1)

where C(·) denotes the concatenation of feature maps, D(·)
is the dimension reduction operation, and U(·)i denotes up-

sampling by i times. The size of XCat is the same as that

of XEn1. The channel number of XCat is the sum of those

after dimension reduction, namely, c5 = c′
1
+ c′

2
+ c′

3
+ c′

4
.

3.3. H­HSP

DS-Blocks are adopted to reduce the dimension and

aggregate features with multiscale receptive fields as shown

in Figure 3. To avoid the loss of spatial information during

deep convolutions, five DS-Blocks are adopted to form a

H-HSP structure. The input XIn of a DS-Block with size

(c, x′, x′) is fed in parallel to five sub-blocks, namely, a

global pooling, a convolutional layer with kernel size 1, and

three atrous convolutional layers with dilations of 6, 12, and

18. The output of the global pooling is then up-sampled

to the same size as other sub-block outputs. Note that

the numbers of the five sub-block channels are all c′(c′ <
c). And thus the feature map size after concatenation is

Table 1. The input and output feature map sizes of the five DS-

Blocks. The input image size of HSP-Net is (3, x, x). The input

and output feature map sizes of a DS-Block are (c, x′
, x

′) and

(c′, x′
, x

′).

ResNet-34 ResNet-101

DS-Block x′ c c′ c c′

DS-Block 1 x/4 64 32 256 32

DS-Block 2 x/8 128 64 512 64

DS-Block 3 x/16 256 128 1024 128

DS-Block 4 x/32 512 256 2048 256

DS-Block 5 x/4 256 256 256 256

Figure 3. The DS-Block structure. The input of DS-Block is

dimension-reduced by five parallel operations, including a global

average pooling and four convolutions with different rates. Then

the features from the five branches are cascaded to aggregate

features with different receptive fields. Finally, a 1×1 convolution

is applied to reduce the dimension again and obtain the output.

(5c′, x′, x′). Then, a convolutional layer with kernel size

1 is assigned to reduce the dimension to c′. The numbers

of input channels c and output channels c′ of the five DS-

Blocks in HSP-Net are shown in Table 1. The segmentation

head contains three convolutional layers with kernel size of

3× 3. Finally, the HSP-Net output is

XOut = U{V [D(XCat), 3]
3}4, (2)

where V(·, i)j denotes j convolutional layers with kernel

size i. The size of XOut is x, and the channel number of

XOut is set according to the task.

All of the convolutional layers in HSP-Net except the last

one for segmentation, are activated by ReLU function and

followed with a batch normalization layer.



Table 2. Cross validation on the MTCHI dataset. HSP-Net is superior to the DeepLab v3+ without post-processing. When the Gauss-like

post-processing is combined, performance of HSP-Net trained with AE-Loss is better than that of TriUpSegNet trained with DC-loss.

Network Loss Post Dice mIoU AP

DeepLab v3+ CE-Loss x (0.5033±0.1218) (0.3678±0.1098) (0.5611±0.0984)

HSP-Net CE-Loss x (0.5125±0.1551) (0.3856±0.1457) (0.5693±0.1306)

TriUpSegNet-A DC-Loss
√

(0.5321±0.1473) (0.4065±0.1399) (0.5913±0.1363)

TriUpSegNet-B DC-Loss
√

(0.5343±0.1458) (0.4048±0.1389) (0.5967±0.1261)

HSP-Net AE-Loss
√

(0.5416±0.1681) (0.4186±0.1624) (0.6086±0.1353)

4. Experiments

4.1. Data and implementation

The experiments are conducted on the public dataset

MTCHI. There are 101 cervical precancerous regions

selected by pathologists for training and evaluation. The

images are annotated pixel-by-pixel into normal or cervical

intraepithelial neoplasia (CIN). According to the severity

of precancerous lesions, CIN is further divided into CIN1,

CIN2, and CIN3. The test set consists of 39 regions for

evaluation. We cropped the images in the training set at ×10
magnification with a size of 400px × 400px and a stride

of 100px. After discarding the patches with foreground

proportions of less than 20%, 7,724 image patches are used

for training. The network is optimized with stochastic

gradient descent, and the batch size is set to 16. The

learning rate of the encoder of HSP-Net is initialized with

0.001, and decreased by using the cosine annealing strategy.

The learning rates of the other blocks are ten times of that of

the encoder. The experimental results of the 30th epoch are

stored for comparison. The experiments are implemented

via Pytorch [26], and a single NVIDIA Tesla-T4 GPU with

16 GB RAM.

4.2. Evaluation metrics

The effectiveness of the algorithms on cervical

precancerous segmentation is measured by three evaluation

metrics, namely, Dice coefficient, mean intersection over

union (mIoU), and average precision (AP). Specifically, the

three metrics are defined as follows:

Dice =
1

4

4
∑

i=1

2 | Pi ∩ Ti |
| Pi | + | Ti |

, (3)

mIoU =
1

4

4
∑

i=1

Pi ∩ Ti

Pi ∪ Ti

, (4)

AP =
1

N

N
∑

j=1

xj

{

xj = 1 (yj = tj)
xj = 0 (yj 6= tj)

, (5)

where Pi denotes the regions predicted to be category i
(i = 1, 2, 3, 4 denote normal, CIN1, CIN2, and CIN3,

Table 3. Ablation experiments of DS-Blocks. DS-Blocks before

and after the cascade are both effective. The performance is

significantly improved when all five DS-Blocks are adopted.

DS 1-4 DS 5 Dice mIoU AP

x x 0.5646 0.4065 0.5802√
x 0.7029 0.5599 0.7152

x
√

0.7134 0.5673 0.7370√ √
0.7390 0.5998 0.7533

Table 4. Experiments of the encoder and the loss function.

Encoder Loss Dice mIoU AP

ResNet-34 CE-Loss 0.6845 0.5421 0.7004

ResNet-101 CE-Loss 0.7390 0.5998 0.7533

ResNet-101 AE-Loss 0.7517 0.6150 0.7646

respectively) and Ti denotes the truth regions; N is the

number of pixels, yj denotes the predicted category for a

pixel, and tj denotes the ground truth.

4.3. Ablation experiments

The ablation experiments of DS-Blocks are conducted

with the same encoder (ResNet-101) and cross-entropy loss

(CE-Loss). The results are shown in Table 3, where“
√

”

denotes the aforementioned DS-Block is adopted, and “x”

denotes only a convolutional layer with kernel size 1 is

adopted. When DS-Block 1-4 are assigned without DS-

Block 5, the results are already better than the baselines

(results of U-Net and DeepLab v3+ in Table 5). The results

increase when all DS-Blocks are utilized, which implies

the effectiveness of the HSP-Net. Since the utility of the

adaptive elastic loss (AE-Loss) has been demonstrated in

cervical segmentation in [23], the AE-Loss is used to further

improve the performance. As shown in Table 4, HSP-

Net obtains high accuracy when the encoder is ResNet-

101 because of more parameters. All of the subsequent

experiments are on the basis of the ResNet-101 encoder.

4.4. Cross validation

Due to the limited number of cervical images in the test

set, cross validation is conducted to demonstrate the validity

of HSP-Net on the whole dataset. Similar to TriUpSegNet,



Table 5. Comparison with previous methods. HSP-Net without post-processing is obviously better than other methods without post-

processing, and even better than some methods with post-processing. With Gauss-like post-processing, HSP-Net achieves better

performance than the SOTA results with fewer parameters.

Network Parameters Loss Post Dice mIoU AP

FCN32s [19] 18.64M CE-Loss x 0.3882 0.2749 0.4231

U-Net [29] 31.03M CE-Loss x 0.4015 0.2820 0.4739

ENS-UNet [21] 34.18M CE-Loss x 0.4195 0.3039 0.4811

FCN16s [19] 18.64M CE-Loss x 0.4308 0.3214 0.4508

HookNet [35] 48.97M CE-Loss x 0.4652 0.3218 0.4382

Res-UNet [4] 65.45M CE-Loss x 0.5059 0.3770 0.5690

SegNet [3] 28.44M CE-Loss x 0.5260 0.4016 0.6118

UNET 3+ [14] 26.98M CE-Loss x 0.5600 0.4122 0.5721

DeepLab v3+ [6] 59.34M CE-Loss x 0.6445 0.5091 0.6921

DeepLab v3+ [6] 59.34M AE-Loss [23] x 0.7002 0.5569 0.7233

Ensemble-A [25] 59.35M CE-Loss x 0.7060 0.5626 0.7362

Ensemble-B [25] 84.13M CE-Loss x 0.7261 0.5829 0.7492

Ensemble-C [25] 84.13M CE-Loss x 0.7321 0.5910 0.7477

HSP-Net (Ours) 69.70M AE-Loss [23] x 0.7517 0.6150 0.7646

TriUpSegNet-A [24] 60.06M DC-Loss [24]
√

0.7395 0.6030 0.7628

TriUpSegNet-A [24] 59.47M DC-Loss [24]
√

0.7413 0.6043 0.7620

Ensemble-A [25] 59.35M CE-Loss
√

0.7559 0.6255 0.7930

Ensemble-B [25] 84.13M CE-Loss
√

0.7699 0.6404 0.8004

Ensemble-C [25] 84.13M CE-Loss
√

0.7700 0.6403 0.7930

HSP-Net (Ours) 69.70M AE-Loss [23]
√

0.7822 0.6549 0.7976

Figure 4. Three WSIs from the test set and their corresponding segmentation results. The black, white, green, blue, and red regions denote

background, normal, CIN1, CIN2, and CIN3, respectively. HSP-Net performs better than other methods in detail.



a four-fold cross validation is conducted and the test set is

regarded as one of the folds. TriUpSegNet is a recently

published segmentation network derived from DeepLab

v3+, and it achieves good performance on the MTCHI

dataset when the distribution consistency loss function (DC-

Loss) and Gauss-like post-processing are combined. Table

2 compares the means and standard deviations of DeepLab

v3+, TriUpSegNet, and our HSP-Net. Since the original

training set contains more complex samples than the test

set, the average results are lower than the test set results,

but the cross validation can still compare the stability of the

algorithms on the whole dataset. Without post-processing

and special loss functions, the HSP-Net performs better

than the baseline DeepLab v3+. When the Gauss-like post-

processing from [24] is applied to our HSP-Net trained

with AE-Loss, the results are further improved and better

than the two specific structures of the TriUpSegNet, which

demonstrates the stability and superiority of the HSP-Net.

4.5. Comparison with SOTA networks

Table 5 compares HSP-Net with previous SOTA

methods. The Dice coefficient of HSP-Net trained

with AE-Loss without post-processing is 0.7517, which

is significantly higher than the published best result

0.7321 with fewer parameters. The results of HSP-Net

without post-processing are even superior to those of

TriUpSegNet with Gauss-like post-processing. Ensemble-

A, -B, and -C are the networks assembling classification

and segmentation together. For fair comparison, only

results without additional training data are included in

this paper. Ensemble-A, -B, and -C with post-processing

are conducted by averaging the predictions of overlapping

pixels and the stride is set to 96 which is 25% of the side

length. TriUpSegNet and HSP-Net adopt Gauss-like post-

processing which averages Gauss-weighted predictions and

the stride is set to 100. After post-processing, the Dice

coefficient of HSP-Net reaches 0.7822 which is obviously

higher than 0.7559 of Ensemble-A. Although Ensemble-

C achieves good results, it contains more parameters than

HSP-Net. To compare the performance visually, three

examples from the test set are shown in Figure 4. Note

that for fair comparison, all the cropped patches are

stitched without overlapping except the last column. HSP-

Net performs more accurate at segmentation details than

others. Images in the last column are patches stitched with

Gauss-like post-processing. The segmentation map exists

noises at the edge of the cervical tissue due to insufficient

information which can be avoided by post-processing.

5. Conclusion

In this paper, a HSP-Net is proposed to improve the

accuracy of cervical pathology precancerous segmentation.

Considering that the diagnosis of cervical lesions strongly

depends on the spatial structures, HSP-Net focuses on the

aggregation of spatial information. Specifically, the V-HSP

structure is adopted to fuse multiscale features from the

encoder, and H-HSP structure is combined to interweave

structural information of multiscale receptive fields. The

HSP-Net is simple but efficient. The experiments on the

public dataset MTCHI demonstrate the effectiveness of

HSP-Net. Although the accuracy of automatic diagnosis

of cervical pathological images has room for improvement,

it shows great potential for clinical applications with the

advancement of algorithms.
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