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Abstract

Cervical cancer is one of the leading causes of cancer
death in women aged 20 to 39 years, which emphasizes
the importance of cervical precancerous diagnosis and
treatment. Although there are many attempts on medical
image processing, the research on the automatic diagnosis
of cervical precancerous pathology is still scarce. In this
paper, a challenging end-to-end automatic segmentation
task for cervical precancerous diagnosis is focused.
Specifically, considering that the diagnosis of cervical
lesions relies heavily on spatial information, a hierarchical
spatial pyramid network (HSP-Net) is proposed to enhance
the representation ability of cervical structural features.
First, a vertical hierarchical spatial pyramid (V-HSP)
network is devised to aggregate the multiscale information
during the feature extraction of the encoder. Second, a
horizontal hierarchical spatial pyramid (H-HSP) network
is designed to fuse information of multiscale receptive
fields before and after cascading features from different
branches.  Experiments on the public dataset MTCHI
demonstrate that HSP-Net achieves the state-of-the-art
performance, reflecting the potential to assist doctors and
patients clinically.

1. Introduction

Since the mid-1970s, the survival rates of all the most
common cancers have improved except uterine cervix and
uterine corpus; cervical cancer is one of the leading causes
of cancer death in women aged 20 to 39 years with 10
premature deaths per week [31]. Fortunately, mild cervical
precancerous lesions is curable when detected early, and
visual inspection on hematoxylin and eosin (H&E) stained
cervical pathological slides is a popular screening method.
However, the giga resolution of pathological images (e.g.,
up to 168, 960px x 99, 072pz for one image from MTCHI

dataset') places high demands on the professionalism
and concentration of pathologists. Therefore, automated
processing with deep learning can assist pathologists in
diagnosis in terms of efficiency and accuracy. Although
deep learning has achieved excellent performance in natural
image processing (e.g., ResNet [12] and GoogLeNet [33]
in classification; Faster R-CNN [28] and Mask R-CNN
[13] in detection; U-Net [29], FCN [19], and DeepLab
v3+ [60] in segmentation), it still faces many challenges
in the processing of pathological images: (1) Different
H&E stained slides vary in hue, saturation and contrast,
due to the factors such as laboratory protocols, source
manufacturers, scanners, concentration, and even staining
time. (2) Considering the progression of cervical lesions,
different lesion grades cannot be completely accurately
distinguished, and thus adjacent categories are similar to
each other. (3) The diagnosis of pathologists is affected
by subjectivity and experience, and pixel-level annotations
exist inevitable errors, which introduces noise to the data
fitting. (4) The resolution of a cervical whole slide image
(WSI) far exceeds that of natural images, which greatly
increases the burden of the graphics processing unit (GPU).

Deep networks have achieved outstanding performance
in the classification tasks of pathological images [17].
Conventional methods usually crop a giga-WSI into
multiple small patches for processing. The output
diagnostic map is composed of the prediction results of
the patches. Since each patch in the classification task
corresponds to only one pixel in the output map, the
size of the final diagnostic map is much smaller than
the original image. However, the area of the cervical
lesion is usually small. The diagnostic map generated by
classification will miss many small lesions. Variants of
U-Net are widely utilized in medical image segmentation
tasks, such as brain tumor segmentation [9] and blood
vessel segmentation [36]. Considering that the original

Uhttps://mcprl.com/html/dataset/ MTCHILhtml
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Figure 1. (1) U-Net gradually aggregates features of different
scales through skip-connections to integrate contextual space
information. (2) DeepLab v3+ expands the receptive fields
through the atrous spatial pyramid pooling (ASPP) to obtain
spatial features.

U-Net output size is smaller than the input size, the
variants usually slightly modify the convolutional layers
through zero padding to obtain equal-sized segmentation
results. As shown in Figure 1 (1), U-Net gradually
merges the information of the encoder and decoder through
skip connections. In previous work, TriUpSegNet [24]
implemented segmentation instead of classification based
on DeepLab v3+, to ensure pixel-by-pixel diagnosis for
cervical WSIs. As shown in Figure 1 (2), DeepLab v3+
applies ResNet as the encoder to extract semantic features,
and ASPP to expand the receptive fields. However, typical
segmentation networks have several shortcomings in the
precancerous segmentation task of cervical pathological
images. For example, the ASPP module of DeepLab v3+
merely expands the receptive fields of one feature map,
and the integration of multiscale information is insufficient.
In addition, the encoder of U-Net-like networks cannot
be flexibly replaced with a common pretrained network,
and the deconvolution operation increases the amount of
parameters. To address above problems, we propose a HSP-
Net to improve the segmentation performance of cervical
pathological images. First, different from the decoder of
the U-Net which cascades the features from the encoder
after deconvolution gradually, a vertical hierarchical spatial
pyramid (V-HSP) structure is devised to cascade the bilinear
up-sampled features from different nodes of the encoder
directly. Without deconvolution, V-HSP structure contains
fewer parameters than the U-Net. Second, inspired by
the ASPP structure of DeepLab v3+, the down-sampling
blocks (DS-Blocks) are applied instead of conventional
convolutions to fuse information of multiscale receptive
fields before and after cascading the features output from
the encoder, which forms a horizontal hierarchical spatial
pyramid (H-HSP) network. Combining the V-HSP and H-
HSP structures, HSP-Net achieves outstanding results in
the task of cervical precancerous pathological segmentation
which is very concerned about the spatial information.

The contributions can be summarized as follows:

* To obtain rich information from multiple perspective
scales, the V-HSP structure is proposed to fuse
multiscale features during the feature extraction of
the encoder. Four output feature maps from different
nodes of the encoder are first bilinear up-sampled
without deconvolution and then aggregated directly
instead of cascading step by step to save parameters.

* To avoid the loss of structural information caused by
deep convolutions, the H-HSP structure is built. DS-
Blocks with parallel convolutions of different dilations
are assigned instead of conventional convolutions to
aggregate information from multiscale receptive fields
multifoldly.

» Experiments on the public histopathological dataset
MTCHI demonstrate the effectiveness of our HSP-
Net (the combination of H-HSP and V-HSP structures)
through cross validation. In addition, the HSP-
Net also outperforms the recently published state-of-
the-art (SOTA) segmentation algorithms for cervical
precancerous lesions on the test set of MTCHI dataset.

The remainder of the paper proceeds as follows: Section
2 introduces recent works about the automatic diagnosis
of the cervix and pathology. Section 3 is concerned with
the specific construction of HSP-Net, including the V-HSP
and the H-HSP structures. Section 4 analyses the ablation
experiments, cross validation, and comparison with other
methods. Section 5 provides the conclusion.

2. Related Work
2.1. Cervical automatic diagnosis

In recent years, most of the explorations of cervical
computer-aided diagnosis have delved in Pap smear images.
The issue is often addressed through the following aspects:
(1) semantic segmentation of nuclei, cytoplasm, and
background; (2) accurate extraction of overlapping cell
edges; and (3) abnormal identification of each cell. For
example, Song et al. [32] explored the topic of overlapping
cell edge extraction on the dataset of challenge ISBI
2015 [20]. Zhang et al. [39] achieved high accuracy for
single-cell classification on the public dataset Herlev [15].
Although previous studies have reported the effectiveness
of computer-aided algorithms in Pap smear screening, it is
still insufficient on cervical pathology automatic diagnosis.
Considering that the diagnosis of cervical pathology is
largely dependent on structural features, the algorithms for
cervical Pap smear images cannot be directly transferred
to pathological precancerous segmentation. Some previous
algorithms [8] [10] [1] cut some relatively simple cervical
tissues into three layers along the parallel direction of
the basement membrane, and extracted features to jointly
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Figure 2. The architecture of HSP-Net. The encoder consists of the blocks of ResNet. The multiscale outputs from the encoder are
concatenated together to form the V-HSP structure. DS-Blocks are used to reduce dimensions and aggregate features of multiscale receptive

fields. Multiple DS-Blocks form the H-HSP structure.

predict the tissue progression. Wang et al. [37] determined
the position of the basement membrane by adversarial
neural networks. However, they manually selected samples
containing basement membranes for exploration, which
is unsuitable for practical applications when the tissue is
incomplete. In this paper, we address the task of cervical
precancerous diagnosis through the exploration of CNN
structure based on a complicated pathology dataset.

2.2. Histological automatic diagnosis

Since the resolution of WSI is much higher than
the input of the CNN, most of the previous algorithms
usually cut WSIs into small patches containing regions of
interest (Rols) for processing. The 2018 grand challenge
on breast cancer histology images (BACH) [2] attracted
many attempts on breast pathology classification. They
took advantage of image preprocessing, transfer learning,
weakly supervised learning, and attention mechanism to
classify the breast image patches with size of 2,048px x
1, 536px into four categories (i.e., normal, benign, in situ
carcinoma, and invasive carcinoma), and achieved high
accuracy [22] [16] [7]. The WSI diagnostic inference map
was usually obtained by stitching the classification results
of cropped patches [ 18] [1 7]. Some algorithms sent the WSI

feature maps obtained from the classification network to
the segmentation network, to further improve the diagnostic
accuracy [34] [11]. The output diagnostic maps of these
strategies with the classification network as backbones were
often much smaller than the original WSI size. In addition,
many outstanding instance segmentation algorithms were
widely investigated for pathological patches [5] [27] [38].
In this paper, we explore the pixel-by-pixel diagnosis of
pathology, i.e., semantic segmentation, to focus on small
lesions in cervical tissue.

3. Methodology
3.1. HSP-Net

The overall architecture of HSP-Net is shown in
Figure 2. HSP-Net gradually extracts semantic features
through an encoder. Considering the scarcity of annotated
cervical images, the encoder is extracted from classification
networks pretrained on the dataset ImageNet [30]. Here,
HSP-Net adopts the backbone of ResNet as the encoder.
The encoder can flexibly choose ResNet-34 or ResNet-101
according to the trade-off between time and accuracy. For
the input image X with side length x, during the feature
extraction by the encoder, the side length of the feature map



gradually decreases, and the number of channels gradually
increases accordingly, so as to ensure sufficient information.
HSP-Net sets four intermediate results of the encoder as
output nodes. The output feature maps of the encoder are
XEn =< XEn1, XEn2, XEn3, XEna >, Where Xgy,; is
the output of Block i. Note that the minimum size of the
output feature map of the encoder is 2:/32, which is different
from 2:/16 of DeepLab v3+. The feature maps of the four
branches differ in size and channel, thus converging rich
multiscale information in subsequent convolutions. The
numbers of X, feature map channels < cj,cs,c3,c4 >
vary according to the complexity of the encoder, and ¢; <
co < c3 < cq 1s always satisfied.

3.2. V-HSP

V-HSP extracts and aggregates features of different
scales from the encoder. Unlike using multiple
deconvolutions in the U-Net, V-HSP fuses the multiscale
features from the encoder by using bilinear up-sampling
which is parameter-free. = The features of the four
branches are cascaded together directly instead of stepwise
convolutions. To further reduce the parameters and balance
the multiscale information, the features of the four branches
are dimensionally reduced before concatenation. The
features with different scales are dimension-reduced by DS-
Blocks. DS-Blocks reduce the number of channels from
< ¢1,09,¢3,¢4 > t0 < ), ch,ch, ¢y >. Then, the feature
maps from DS-Block 2, 3, 4 are up-sampled to the size of
the feature map from DS-Block 1. Finally, the aggregation
of feature maps with different scales forms the V-HSP
structure. Specifically, the output is

XCat = C{D(XEnl);u[D(XEnQ)]Q’ (1)
u[D(XEnB)]47U[D(XE’ML)}S}v

where C(-) denotes the concatenation of feature maps, D(-)
is the dimension reduction operation, and U/(+)* denotes up-
sampling by ¢ times. The size of X, is the same as that
of X g,1. The channel number of X ; is the sum of those
after dimension reduction, namely, c5 = ¢} + ¢ + ¢4 + ¢).

3.3. H-HSP

DS-Blocks are adopted to reduce the dimension and
aggregate features with multiscale receptive fields as shown
in Figure 3. To avoid the loss of spatial information during
deep convolutions, five DS-Blocks are adopted to form a
H-HSP structure. The input X, of a DS-Block with size
(c,2’,2") is fed in parallel to five sub-blocks, namely, a
global pooling, a convolutional layer with kernel size 1, and
three atrous convolutional layers with dilations of 6, 12, and
18. The output of the global pooling is then up-sampled
to the same size as other sub-block outputs. Note that
the numbers of the five sub-block channels are all ¢/(¢’ <
¢). And thus the feature map size after concatenation is

Table 1. The input and output feature map sizes of the five DS-
Blocks. The input image size of HSP-Net is (3, z, x). The input
and output feature map sizes of a DS-Block are (c,z’,z’) and
(c,a',z").

| ResNet-34 | ResNet-101
DS-Block O d | e c

DS-Block 1 x/4 64 32 256 32
DS-Block 2 x/8 128 64 512 64
DS-Block3  z/16 | 256 128 | 1024 128
DS-Block4  x/32 | 512 256 | 2048 256
DS-Block 5 x/4 256 256 | 256 256

r Global Pooling

Input feature map (c, x’, x)
¢

Output feature map (c’, x’, x”)
<€
“

Figure 3. The DS-Block structure. The input of DS-Block is
dimension-reduced by five parallel operations, including a global
average pooling and four convolutions with different rates. Then
the features from the five branches are cascaded to aggregate
features with different receptive fields. Finally, a 1 X 1 convolution
is applied to reduce the dimension again and obtain the output.

(5¢/,2',2"). Then, a convolutional layer with kernel size
1 is assigned to reduce the dimension to ¢’. The numbers
of input channels ¢ and output channels ¢’ of the five DS-
Blocks in HSP-Net are shown in Table 1. The segmentation
head contains three convolutional layers with kernel size of
3 x 3. Finally, the HSP-Net output is

Xouwt =U{V[D(Xcar), 3}, 2)

where V(-,i)? denotes j convolutional layers with kernel
size 7. The size of X, is x, and the channel number of
Xout 18 set according to the task.

All of the convolutional layers in HSP-Net except the last
one for segmentation, are activated by ReLU function and
followed with a batch normalization layer.



Table 2. Cross validation on the MTCHI dataset. HSP-Net is superior to the DeepLab v3+ without post-processing. When the Gauss-like
post-processing is combined, performance of HSP-Net trained with AE-Loss is better than that of TriUpSegNet trained with DC-loss.

Network Loss Post | Dice mlIoU AP
DeepLab v3+ CE-Loss X (0.503340.1218) (0.36784+0.1098) (0.5611+0.0984)
HSP-Net CE-Loss x (0.5125-0.1551) (0.3856-:0.1457) (0.56930.1306)
TriUpSegNet-A DC-Loss v (0.532140.1473) (0.406540.1399) (0.5913+0.1363)
TriUpSegNet-B DC-Loss vV (0.534340.1458) (0.404840.1389) (0.596740.1261)
HSP-Net AE-Loss Vv (0.5416+0.1681) (0.4186+0.1624) (0.6086+0.1353)

4. Experiments
4.1. Data and implementation

The experiments are conducted on the public dataset
MTCHI. There are 101 cervical precancerous regions
selected by pathologists for training and evaluation. The
images are annotated pixel-by-pixel into normal or cervical
intraepithelial neoplasia (CIN). According to the severity
of precancerous lesions, CIN is further divided into CIN1,
CIN2, and CIN3. The test set consists of 39 regions for
evaluation. We cropped the images in the training set at x 10
magnification with a size of 400px x 400px and a stride
of 100pz. After discarding the patches with foreground
proportions of less than 20%, 7,724 image patches are used
for training. The network is optimized with stochastic
gradient descent, and the batch size is set to 16. The
learning rate of the encoder of HSP-Net is initialized with
0.001, and decreased by using the cosine annealing strategy.
The learning rates of the other blocks are ten times of that of
the encoder. The experimental results of the 30th epoch are
stored for comparison. The experiments are implemented
via Pytorch [26], and a single NVIDIA Tesla-T4 GPU with
16 GB RAM.

4.2. Evaluation metrics

The effectiveness of the algorithms on cervical
precancerous segmentation is measured by three evaluation
metrics, namely, Dice coefficient, mean intersection over
union (mloU), and average precision (AP). Specifically, the
three metrics are defined as follows:

4

2| PNT; |
Dice = 3
Z|P|+|T| )
4
1< PNT,
mIOU*Z;PiuT/ 4)
N
_ 1 z;=1 (y; =t))
APNZIJ{:EJ—O (y; #t5) ©)

where P; denotes the regions predicted to be category i
(¢ = 1,2,3,4 denote normal, CIN1, CIN2, and CIN3,

Table 3. Ablation experiments of DS-Blocks. DS-Blocks before
and after the cascade are both effective. The performance is
significantly improved when all five DS-Blocks are adopted.

DS 1-4 DS5 | Dice mloU AP
X X 0.5646  0.4065 0.5802
v X 0.7029 0.5599 0.7152
X Vv 0.7134  0.5673 0.7370
v v 0.7390 0.5998 0.7533
Table 4. Experiments of the encoder and the loss function.
Encoder Loss | Dice mloU AP
ResNet-34 CE-Loss 0.6845 0.5421 0.7004
ResNet-101 CE-Loss 0.7390 0.5998 0.7533
ResNet-101 AE-Loss 0.7517 0.6150 0.7646

respectively) and T; denotes the truth regions; N is the
number of pixels, y; denotes the predicted category for a
pixel, and ¢; denotes the ground truth.

4.3. Ablation experiments

The ablation experiments of DS-Blocks are conducted
with the same encoder (ResNet-101) and cross-entropy loss
(CE-Loss). The results are shown in Table 3, where*y/”
denotes the aforementioned DS-Block is adopted, and “x”
denotes only a convolutional layer with kernel size 1 is
adopted. When DS-Block 1-4 are assigned without DS-
Block 5, the results are already better than the baselines
(results of U-Net and DeepLab v3+ in Table 5). The results
increase when all DS-Blocks are utilized, which implies
the effectiveness of the HSP-Net. Since the utility of the
adaptive elastic loss (AE-Loss) has been demonstrated in
cervical segmentation in [23], the AE-Loss is used to further
improve the performance. As shown in Table 4, HSP-
Net obtains high accuracy when the encoder is ResNet-
101 because of more parameters. All of the subsequent
experiments are on the basis of the ResNet-101 encoder.

4.4. Cross validation

Due to the limited number of cervical images in the test
set, cross validation is conducted to demonstrate the validity
of HSP-Net on the whole dataset. Similar to TriUpSegNet,



Table 5. Comparison with previous methods. HSP-Net without post-processing is obviously better than other methods without post-
processing, and even better than some methods with post-processing. With Gauss-like post-processing, HSP-Net achieves better
performance than the SOTA results with fewer parameters.

Network Parameters Loss Post Dice mloU AP
FCN32s [19] 18.64M CE-Loss X 0.3882 0.2749 0.4231
U-Net [29] 31.03M CE-Loss X 0.4015 0.2820 0.4739
ENS-UNet [21] 34.18M CE-Loss X 0.4195 0.3039 0.4811
FCN16s [19] 18.64M CE-Loss X 0.4308 0.3214 0.4508
HookNet [35] 48.97M CE-Loss X 0.4652 0.3218 0.4382
Res-UNet [4] 65.45M CE-Loss X 0.5059 0.3770 0.5690
SegNet [3] 28.44M CE-Loss X 0.5260 0.4016 0.6118
UNET 3+ [14] 26.98M CE-Loss X 0.5600 0.4122 0.5721
DeepLab v3+ [0] 59.34M CE-Loss X 0.6445 0.5091 0.6921
DeepLab v3+ [0] 59.34M AE-Loss [23] X 0.7002 0.5569 0.7233
Ensemble-A [25] 59.35M CE-Loss X 0.7060 0.5626 0.7362
Ensemble-B [25] 84.13M CE-Loss X 0.7261 0.5829 0.7492
Ensemble-C [25] 84.13M CE-Loss X 0.7321 0.5910 0.7477
HSP-Net (Ours) 69.70M AE-Loss [23] X 0.7517 0.6150 0.7646
TriUpSegNet-A [24] 60.06M DC-Loss [24] vV 0.7395 0.6030 0.7628
TriUpSegNet-A [24] 59.47M DC-Loss [24] vV 0.7413 0.6043 0.7620
Ensemble-A [25] 59.35M CE-Loss N4 0.7559 0.6255 0.7930
Ensemble-B [25] 84.13M CE-Loss Vv 0.7699 0.6404 0.8004
Ensemble-C [25] 84.13M CE-Loss vV 0.7700 0.6403 0.7930
HSP-Net (Ours) 69.70M AE-Loss [23] v/ 0.7822 0.6549 0.7976

HSP-Net
AE-Loss
Post-processing

DeepLab v3+ DeepLab v3+ HSP-Net
WSI Truth CE-Loss AE-Loss AE-Loss

Figure 4. Three WSIs from the test set and their corresponding segmentation results. The black, white, green, blue, and red regions denote
background, normal, CIN1, CIN2, and CIN3, respectively. HSP-Net performs better than other methods in detail.



a four-fold cross validation is conducted and the test set is
regarded as one of the folds. TriUpSegNet is a recently
published segmentation network derived from DeepLab
v3+, and it achieves good performance on the MTCHI
dataset when the distribution consistency loss function (DC-
Loss) and Gauss-like post-processing are combined. Table
2 compares the means and standard deviations of DeepLab
v3+, TriUpSegNet, and our HSP-Net. Since the original
training set contains more complex samples than the test
set, the average results are lower than the test set results,
but the cross validation can still compare the stability of the
algorithms on the whole dataset. Without post-processing
and special loss functions, the HSP-Net performs better
than the baseline DeepLab v3+. When the Gauss-like post-
processing from [24] is applied to our HSP-Net trained
with AE-Loss, the results are further improved and better
than the two specific structures of the TriUpSegNet, which
demonstrates the stability and superiority of the HSP-Net.

4.5. Comparison with SOTA networks

Table 5 compares HSP-Net with previous SOTA
methods.  The Dice coefficient of HSP-Net trained
with AE-Loss without post-processing is 0.7517, which
is significantly higher than the published best result
0.7321 with fewer parameters. The results of HSP-Net
without post-processing are even superior to those of
TriUpSegNet with Gauss-like post-processing. Ensemble-
A, -B, and -C are the networks assembling classification
and segmentation together. For fair comparison, only
results without additional training data are included in
this paper. Ensemble-A, -B, and -C with post-processing
are conducted by averaging the predictions of overlapping
pixels and the stride is set to 96 which is 25% of the side
length. TriUpSegNet and HSP-Net adopt Gauss-like post-
processing which averages Gauss-weighted predictions and
the stride is set to 100. After post-processing, the Dice
coefficient of HSP-Net reaches 0.7822 which is obviously
higher than 0.7559 of Ensemble-A. Although Ensemble-
C achieves good results, it contains more parameters than
HSP-Net. To compare the performance visually, three
examples from the test set are shown in Figure 4. Note
that for fair comparison, all the cropped patches are
stitched without overlapping except the last column. HSP-
Net performs more accurate at segmentation details than
others. Images in the last column are patches stitched with
Gauss-like post-processing. The segmentation map exists
noises at the edge of the cervical tissue due to insufficient
information which can be avoided by post-processing.

5. Conclusion

In this paper, a HSP-Net is proposed to improve the
accuracy of cervical pathology precancerous segmentation.
Considering that the diagnosis of cervical lesions strongly

depends on the spatial structures, HSP-Net focuses on the
aggregation of spatial information. Specifically, the V-HSP
structure is adopted to fuse multiscale features from the
encoder, and H-HSP structure is combined to interweave
structural information of multiscale receptive fields. The
HSP-Net is simple but efficient. The experiments on the
public dataset MTCHI demonstrate the effectiveness of
HSP-Net. Although the accuracy of automatic diagnosis
of cervical pathological images has room for improvement,
it shows great potential for clinical applications with the
advancement of algorithms.
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