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Abstract

Deep learning has achieved great success in process-

ing large size medical images such as histopathology slides.

However, conventional deep learning methods cannot han-

dle the enormous image sizes; instead, they split the im-

age into patches which are exhaustively processed, usually

through multi-instance learning approaches. Moreover and

especially in histopathology, determining the most appro-

priate magnification to generate these patches is also ex-

haustive: a model needs to traverse all the possible magnifi-

cations to select the optimal one. These limitations make the

application of deep learning on large medical images and

in particular histopathological images markedly inefficient.

To tackle these problems, we propose a novel spatial and

magnification based attention sampling strategy. First, we

use a down-sampled large size image to estimate an atten-

tion map that represents a spatial probability distribution

of informative patches at different magnifications. Then a

small number of patches are cropped from the large size

medical image at certain magnifications based on the ob-

tained attention. The final label of the large size image is

predicted solely by these patches using an end-to-end train-

ing strategy. Our experiments on two different histopathol-

ogy datasets, the publicly available BACH and a subset of

the TCGA-PRAD dataset, demonstrate that the proposed

method runs 2.5 times faster with automatic magnification

selection in training and at least 1.6 times faster than us-

ing all patches in inference as the most of state-of-the-art

methods do, without loosing in performance.

1. Introduction

Deep neural networks have achieved significant success

in a variety of medical tasks [18]. A particular domain

of interest for deep learning methods has been histopathol-

ogy, where deep learning approaches are already providing

state of the art performance for classification tasks. Meth-

ods focusing on different cancer predictions [8], classifi-

cation of tumor [17] or detection of cancer metastases in

lymph node sections [2] have received a lot of attention re-

cently. Moreover, methods tackling clinical endpoints such

as survival analysis [31, 20] or prediction of prognostic mu-

tated genes [3] focus on deep learning approaches indicat-

ing the importance of efficient, scalable and accurate auto-

matic systems.

Even if current deep learning methods provide very

promising directions in histopathology, we argue that the

current way that they are used, exhaustively investigating

all the different histology regions (patches) is costly and in-

efficient. The inefficiency is shown in two aspects: on one

hand, not all the patches are informative for specific classi-

fication tasks. For example, a patch cropped at a fatty tis-

sue region provides little information about grades of can-

cer. On the other hand, the informative patches may be a

source of redundant information. For example, two patches

that are spatially close to each other may have the same

discriminative power. Based on this intuition, some meth-

ods consider patch selection strategies and attention mech-

anisms [32, 34, 11].

Among these patch-based methods, determining the op-

timal magnification to crop patches is also very important,

but usually neglected. Given a large size image or a whole

slide image (WSI) and a fixed patch size, cropping at too

low magnification yields a small number of patches with ad-

equate context. Additionally, low magnification can cause a

loss of discriminative details that are useful for the specific

classification task. However, cropping at too high magni-

fication augments significantly the number of patches con-

taining the finest scale of details at the loss of context, or

at increased training cost. Currently, even if magnification

seems to be very informative for a variety of tasks [23], few

works investigated the effects of different patch sizes and

magnifications [12]. Most of the time the selection of the
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optimal magnification is based on medical practice without

really ensuring the best performance of the deep learning

models.

In this work, we propose an attention sampling frame-

work that addresses these limitations introducing both spa-

tial and magnification based attention for large histopathol-

ogy images. The contributions of this work are: (i) we

propose a novel spatial and magnification sampling mecha-

nism for classification tasks adapting in an end-to-end fash-

ion, (ii) we provide a fast (low training and inference time)

and low-cost (based on small regions) framework that gives

competitive results compared to other state of the art meth-

ods for two different classification tasks of histopathology.

To the best of our knowledge, this is the first attempt that

proposes a fully automatic way for a joint spatial and mag-

nification based attention mechanism. Our method per-

forms comparably to the state of the art methods, using

only a small subset of the initial input, reducing time and

resources requirements.

2. Previous Work

We roughly categorize the previous large size medical

image classification methods presented in histopathology

into patch exhaustive methods and patch selective methods.

Exhausting all the patches in a large medical image is a

straightforward way to classify the whole image. Korbar

et al. [15] trained a convolutional neural network (CNN) to

predict each patch label in a WSI in a supervised manner for

colorectal polyp classification. The final whole image label

is estimated by simple patch level majority voting. Sim-

ilarly, Han et al. [16] proposed a deep learning based ar-

chitecture to detect lymphocytes on large breast cancer im-

ages by exhaustively investigating all the available patches.

Moreover, in [24] the authors present an analysis of dif-

ferent deep learning architectures in an extensive search of

magnifications for the multi-classification of breast cancer

histopathology images. Even though these methods achieve

promising performance, most of the time, they require not

only the image level labels, but also patch level annotations.

Annotating each patch requires a significant amount of te-

dious work from pathologists since each large medical im-

age contains hundreds and thousands of patches, while it is

not clear on which magnification the patch level annotation

should be provided.

To tackle this problem, Hou et al. [9] proposed to use

image level annotation only. Thus, the image classification

task becomes a Multiple Instance Learning (MIL) problem

relying on different aggregation functions to combine infor-

mation from large regions. In particular, Hou et al. pro-

posed a patch-CNN with a two-level strategy to classify

gigapixel glioma WSIs. The first level estimates the dis-

criminative power of each patch by a CNN trained in an

Expectation-Maximization manner. The second level ag-

gregates the patch level features as a descriptor of the WSI

and classifies the label of the WSI with conventional SVMs.

Ilse et al. [11] extended [9] by proposing a deep attention

based MIL framework. In this framework, patch level fea-

tures extracted by a CNN are aggregated by an attention

mechanism [5]. The whole framework is trained end-to-

end with only image level labels. Takahama et al. [27] op-

timized the training procedures to process all patches in a

WSI simultaneously with limited GPU memory capacity.

These patch exhaustive methods waste a lot of compu-

tational resources on not very informative and redundant

patches, which is inefficient and possibly less accurate in

both training and testing. Thus, patch selective methods

have attempted to overcome this drawback. In [34, 32, 7] a

small set of patches is randomly sampled, assuming a high

probability that at least one patch in the sampled set is infor-

mative. Particularly, patches from multiple magnifications

are included in the random sampled set in [7]. A heuris-

tic strategy [6] samples patches based on nuclear density.

Inspired by the attention based MIL [11], Katharopoulos

et al. [13] proposed an attention sampling strategy: they

computed an attention map on the low resolution image

to localize the potential informative regions. Assuming

the attention map represents a probability distribution, the

authors sampled patches corresponding to high probability

and cropped from the full resolution image. These patches

are used to predict the image level labels. Compared to [11],

this attention sampling method claimed a 25× speed-up and

consumed 30× less memory, with comparable accuracy.

Similarly [19] assumed some image labels could be deter-

mined by low resolution features, with no need to resort

to high resolution. This assumption is partially supported

by Jin et al. [12]. In this study, the authors demonstrated

that the Gleason 3 regions in a prostate cancer WSI could

be better determined by relatively low resolution. Thus a

“switch” determined whether the network can assert the im-

age label based on low resolution only, or the attention sam-

pling pipeline needs to kick in to estimate the image label

from high resolution patches. Overall, even if spatial atten-

tion mechanisms are quite popular, currently, magnification

based attention is still under-explored [24].

Inspired by both attention sampling [13] and the insight

that different cancer subtypes have different optimal recog-

nition magnification [12, 7, 28], we propose a multi reso-

lution attention sampling framework which learns to sam-

ple patches from not only spatial locations, but also differ-

ent magnifications. Compared to the other attention based

methods in the literature, our formulation offers an end to

end formulation tested on two different and challenging

classification tasks of histopathology, proving fast and com-

parable to state of the art results.
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Figure 1. Overview of the proposed model. The first part of our architecture consists of the feature extractor h(·) and the attention network

A that highlights interesting spatial regions P
j

i on different magnification. For our setup, we used 3 different magnification levels (for

visualization, we use 50X , 100X and 200X in this figure). The second part of our architecture collects the selected patches and applies a

second feature extractor f(·) using an aggregation strategy for the final prediction Ψ(X) of the classification task. The final prediction is

performed by the classifier g(·).

3. Method

3.1. Problem definition

Due to their large size, pathology images are usually di-

vided into small patches to processes. Different from the

models that need patch level annotations, which is rather

expensive, we only use image level labels. Therefore, we

formulate this classification problem as a MIL problem. We

denote the original image as X . We aim to build a model

Ψ(·) to predict the label of X: Y = Ψ(X). Ψ(·) pro-

cesses X in patches at different magnifications. Particu-

larly, given m different magnifications, X is resized to Xj ,

j = 1, 2, . . . ,m. Each Xj contains a set of fixed size

patches {xj
i | i = 1, 2, . . . , pj , j ∈ [1,m]}, where pj is

the total number of patches in Xj at the magnification j,

and i is the spatial location index.

During training, the image level label Y is annotated

while the patch level label y
j
i is unknown. Thus our model

Ψ(·) needs to aggregate the features from the patches to

make a prediction Ψ(X) on the image level. In our frame-

work, instead of traversing all i, j, we propose to selectively

process a small subset of i, j based on the attention mecha-

nism of Sec. 3.2 to increase efficiency while maintaining a

high classification accuracy.

3.2. Attention mechanism

In general, attention mechanisms aim to discover infor-

mative regions on the input image that could provide rich

information for different tasks. Even if attention mecha-

nisms could reveal informative regions, they still need to be

trained using the entire input which could be memory and

time demanding [11]. In our formulation, we address this

issue by proposing a sampling strategy combining informa-

tion from different magnifications.

Our overall framework is presented in Figure 1. Our

framework takes as input a large size pathology image X .

The original image X is then down-sampled to a thumbnail

X0 to reduce the memory and the computational complex-

ity of our framework. Given a thumbnail X0, we apply a

feature extractor h(·) and an attention network A to gen-

erate m attention maps P 1, P 2, . . . , Pm corresponding to

the original image X at m different magnifications. These

attention maps represent the probability distribution of in-

formative patches at different spatial locations and magnifi-

cations. That is, P
j
i represents the probability that the patch

at location i and magnification j is informative. Therefore,∑
i,j P

j
i = 1.

Based on the probability distribution P j , j = 1, ..,m,

we sample k patches at different is locations and js mag-

nifications. We denote the set containing all (is, js),
s = 1, 2, . . . , k as Q. The sampled patches are then in-

putted into a feature extractor f(·) to get k feature vec-

tors. These feature vectors are aggregated by expectation:∑
i,j∈Q P

j
i f(x

j
i ) based on the corresponding attention val-

ues P
j
i , (i, j) ∈ Q.

It has been proven that such sampling and aggregation by

expectation is an approximation of using an attention mech-

anism on all patches [13]. The prediction on X using all
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patches can be approximated by the following formulation,

Ψ(X) = g(
∑

i,j

P
j
i f(x

j
i )) (1)

≈ g(
∑

i,j∈Q

P
j
i f(x

j
i )), (2)

where g(·) represents a neural network classifier and we use

cross entropy as the loss function.

Eq. 2 is an unbiased approximation and the gradient re-

garding the network parameters can be approximated fol-

lowing the same strategy in [13]. By using such an attention

expectation method, our whole framework is differentiable

and can be trained end-to-end.

3.3. Attention Regularization

Our attention module estimates the most informative

regions in the input image. However, such an attention

estimation strategy encounters similar problems as other

saliency detection models [33, 10, 25]. As pointed out in

[11], the attention maps might be too sparse, and the learned

attention distribution may focus on only one or two patches.

This problem prevents the model from exploring patches at

other positions and causes over-fitting, resulting in poor per-

formance.

To tackle this problem, we applied two regularizations to

the attention map. The first one is attention dropout, which

is similar to [4]. It randomly resets a portion of the atten-

tion map to 0 before sampling in the training phase. Such a

technique helps the network to explore more regions. Our

second regularization is an entropy regularizer [13]:

R = −H(P j
i ) (3)

=
∑

i,j

P j log(P j
i ) (4)

where H is the entropy function on the attention distribution

P j . The entropy R encourages the attention maps to follow

a more uniform distribution and penalizes the model if the

attention maps focus on few patches.

3.4. Optimization

The final loss L is the sum of cross entropy and attention

entropy regularizer R:

L = L′(Ψ(X), Y ) + αR, (5)

where L′ denotes the cross entropy loss between our pre-

diction Ψ(X) and the ground truth image label Y . α is a

hyper parameter to adjust the regularization strength.

4. Experiments

In this section we evaluate our method on two different

histopathology datasets.

4.1. Datasets

BACH Dataset. The ICIAR 2018 BreAst Cancer His-

tology (BACH) dataset [1] contains 400 images for training

and 100 images for testing. The images were labeled as:

normal, benign, in situ carcinoma, or invasive carcinoma

based on the predominant cancer type in each image. All

the classes have the same number of images. The images

have the same size of 2048 × 1536 pixels. In our experi-

ments, 320 out of 400 samples were used for training and

the rest 80 for validation. We used the online submission

system for testing.

TCGA-PRAD Large Patch Dataset. This dataset is

based on the publicly available TCGA-PRAD dataset [35].

TCGA-PRAD contains 449 WSIs of prostate cancer. In our

experiments, we extracted 285 2000×2000 pixel regions at

100X magnification, from 54 WSIs. We call this subset the

TCGA-PRAD Large Patch Dataset. Our dataset contains

3 classes: benign, Gleason 3, and Gleason 4/5, annotated

by a pathologist. Each class has 95 images. We performed

a WSI-wise split and used 219 images from 44 WSIs for

training/validation, and 66 images from 10 WSIs for test-

ing. The training, validation, and test sets are also balanced.

4.2. Implementation Details

For all our experiments, we used two Inception V3 net-

works [26] pretrained on ImageNet as the feature extractors

(h(·) and f(·)) for thumbnails and sampled patches.

On the BACH dataset, we focused on three different

magnifications: 50X , 100X and 200X . We set the input

size of the thumbnail to 299× 224. h(·) takes a thumbnail

as input and returns a feature vector of 2048 × 8 × 6. The

feature vector is the input to the attention module A which

consists of 3 adaptive average pooling layers followed by 3

1×1 convolutional layers to output attention maps at differ-

ent spatial resolutions. A sigmoid function is appended at

the end to convert the logits in 3 attention maps into prob-

ability distributions. A outputs 3 attention maps of size:

2× 2, 4× 3, and 7× 6, corresponding to the 3 input image

magnifications: 50X , 100X and 200X

On the TCGA-PRAD large patch dataset, we focused on

the magnifications of 25X , 50X and 100X 1. The experi-

ment configuration is almost the same as that for the BACH

dataset, except for the size of the thumbnails and attention

maps. We set the thumbnail size to 299× 299 since the in-

put images are square. Thus h(·) outputs a feature vector

of 2048 × 8 × 8. The spatial resolutions of the 3 attention

maps are 2 × 2, 4 × 4, and 7 × 7, corresponding to the 3

input image magnifications: 25X , 50X and 100X .

We use a fully connected layer with a dropout layer as

the final classifier. We set the regularization factor α = 0.01

1We did not use 200X since usually it is not used by pathologists for

the grading of prostate cancer.
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Method Accuracy

Roy et al. [22] 87%
Wang et al. [29] 83%
Wang et al. [30] 79%

Proposed single magnification (50X) 80%
Proposed single magnification (100X) 85%
Proposed single magnification (200X) 82%
Proposed multiple magnifications 85%

Table 1. Comparison of the overall accuracy on the BACH test

dataset. Different state of the art methods are presented together

with our proposed formulation using our magnification selection

approach and three different single resolutions.

Method Accuracy AUC-ROC AP

25X 89% 0.94 0.90
50X 92% 0.96 0.93
100X 89% 0.91 0.87

Multiple mag. 91% 0.98 0.96

Table 2. Overall accuracy on the TCGA-PRAD large patch dataset

using our magnification selection method and using three single

resolutions. 25X denotes Proposed single magnification of 25x
method and so does for 50x and 100x. Multiple mag. denotes

Proposed multiple magnifications method. AUC-ROC denotes the

area under the ROC curve. AP denotes the average precision

which was determined on the validation set.

Moreover, for all our experiments we used the PyTorch

library [21] and an Nvidia Quadro RTX 8000 GPU. For op-

timization, we used the Adam [14] optimizer with an initial

learning rate of 1e− 4 and decreased the learning rate by a

factor of 0.1 when the validation accuracy did not improve

for 25 epochs. The models on both datasets were trained for

100 epochs.

4.3. Results

In this section, we first present the performance of our

method in comparison with other methods. We also demon-

strate that our method identifies the optimal magnification

by providing attention maps with higher attended distribu-

tion. We qualitatively show our model focuses more on the

informative regions by comparing the attention map with

the pathologist’s interpretation. At last, we present compar-

isons on time efficiency.

4.3.1 Evaluation of overall performance

We choose overall accuracy as the main metric for the eval-

uation of our method and we perform an extensive study

comparing our method with state-of-the-art methods. To

demonstrate the efficiency of our method we also perform

Figure 2. Receiver Operating Characteristic (ROC) curve on the

test data of the TCGA-PRAD large patch dataset. Micro-average

AUC is used for this multi-class classification problem. AUC

stands for area under curve.

Figure 3. Precision-Recall (PR) curve on the test data of the

TCGA-PRAD large patch dataset. Micro-average PR is used for

this multi-class classification problem. AP stands for average pre-

cision.

experiments by training our formulation on a single mag-

nification. On the BACH dataset, our method achieves an

85% accuracy on the test set (Table 1), which is comparable

to other state of the art methods that did not use any external

data nor ensemble models [22, 29, 30]. We need to highlight

that the other methods extract information from the entire

input image, while our method is able to use only a small

subset (10%) of the initial input region. Moreover, our sin-

gle magnification models reach lower or similar accuracy to

our proposed method. That is, being completely agnostic on

the appropriate magnification level, the conventional strat-

egy needs to train 3 different models to achieve the same ac-

curacy as our method. Such multiple model training could

be very time and resource consuming.

The performance on the TCGA-PRAD large patch

dataset is presented in Table 2. Our approach achieves 91%
accuracy which is comparable to the performance of each
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Magnification Attention Percentage

50X 6%
100X 78%
200X 16%

Table 3. Attention percentage of the 3 selected magnifications on

the BACH dataset.

independent magnification. Particularly, the model on the

single 50X magnification yields a slightly better perfor-

mance of 92% accuracy, which requires training of 3 dif-

ferent models as the optimal magnification is unknown be-

fore all 3 magnifications are evaluated. Also, Figure 2 and

Figure 3 show the micro average Receiver Operating Char-

acteristic (ROC) curve and Precision-Recall (PR) curve on

this dataset. In particular, as shown in Table 2, our method

achieves an area under curve of ROC (AUC-ROC) of 0.98
and an average precision of 0.96, which outperforms that of

single magnification models. Such analysis on the BACH

dataset is unavailable because the ground truth test labels

are unknown.

4.3.2 Evaluation of the magnification based attention

We demonstrate our method is able to automatically focus

more on the optimal magnification. On the BACH dataset,

Table 1 shows that our model trained on a single magnifi-

cation using 100X achieves a higher accuracy than 200X
and 50X . As summarised in Table 3, our magnification at-

tention model also focuses mainly on the 100X magnifica-

tion to make its final prediction. In particular, 78% of the

overall attention distribution comes from the 100X mag-

nification, while the other 2 magnifications contribute only

16% and 6% to the overall attention map. This means that

our method selects 100X as the best magnification for this

classification task, which is in accordance with our exten-

sive single magnification experiments.

On the TCGA-PRAD large patch dataset, Table 4 high-

lights that our model is focusing on the 50X magnification.

In particular, 65% of the overall attention distribution comes

from the 50X magnification while 33% are from 100X and

only 1% are from the 25X . This is also comparable to our

experiments summarised in Table 2 on which our single

50X magnification network reaches higher accuracy than

that of 100X or 25X .

4.3.3 Evaluation of time efficiency

One of the main advantages of our approach is the time

efficiency compared to patch exhaustive methods. On the

BACH dataset, Table 5 summarises the time efficiency

comparing our proposed spatial and magnification atten-

tion method with the model trained on a single magnifica-

Magnification Attention Percentage

25X 1%
50X 65%
100X 33%

Table 4. Attention percentage of the 3 selected magnifications on

the TCGA-PRAD large patch dataset.

Phase Training Inference

#patches 5 all 5 all

50X 17.9s 17.9s 13.8ms 13.8ms

100X 22.9s 59.0s 18.4ms 50.3ms

200X 22.9s 148.1s 24.4ms 125.6ms

Combined 63.7s 225.0s \ \

Ours 25.2s \ 30.6ms 316.1ms

Table 5. Average speed for training (per epoch) and average time

(per sample) for inference on the BACH dataset. The reported

times are in seconds for training and millisecond for evaluation.

#patches correspond to two different schemes: using 5 sampled

patches or the entire patches. Each cell denotes the running time

of a single epoch under some conditions. Combined: running 50X,

100X and 200X one by one to determine the best resolution for this

task.

Phase Training Inference

#patches 5 all 5 all

25X 13.2s 13.2s 11.6ms 11.6ms

50X 15.1s 39.9s 14.4ms 39.6ms

100X 15.3s 115.0s 16.1ms 118.9ms

Combined 43.6s 168.1s \ \

Ours 17.1s \ 23.2ms 288.0ms

Table 6. Average speed for training (per epoch) and inference

phases on the TCGA-PRAD large patch dataset. The reported

times are in seconds and correspond to two different schemes: us-

ing 5 sampled patches or the entire patches. Each cell denotes the

running time of a single epoch under some conditions. #patches:

the number of small patches we used to do prediction. Combined:

running on 50X, 100X and 200X one by one to determine the best

resolution for this task.

tion. We show the time elapsed for each epoch in train-

ing as well as an average inference time for each image.

For the training stage, our approach needs 25.2 seconds for

one epoch, which is comparable to our formulation using

a single magnification. Since the experiments on a single

magnification need to process all 3 magnifications to find

the best magnification, our approach is 2.5 times faster than

running them one by one which requires a training time of

63.7 seconds per epoch. Our approach is 8.9 times faster in
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Original 50X 100X 200X Original 50X 100X 200X

Figure 4. Visualizations of attention distribution over 3 magnifications on BACH dataset. Blue boxes in the original images denote the

regions the annotating pathologist thinks are most informative

Original 25X 50X 100X Original 25X 50X 100X

Figure 5. Visualizations of attention distribution over 3 magnifications on the TCGA-PRAD large patch dataset. Blue boxes in the original

images denote the tumor regions annotated by an expert pathologist

training than traversing all magnifications and all patches to

find the best one, which takes 225.0 seconds. We think that

training time is especially important when only limited re-

sources are available. In this scenario, reduced training time

means that more tuning, data, and variations of networks

can be tried, thus it leads to better performance of models.

For inference, compared with the state of art method [22],

which uses 12 patches of size 512× 512 at 20X (similar to

our 299× 299 patch size at 10X), our method runs at least

1.6 times faster. Compared with our spatial and magnifica-

tion attention model using all patches, our approach is 10.3
times faster.

Table 6 shows the time efficiency on the TCGA-PRAD

large patch dataset. Our approach runs at 17.1 seconds per

epoch, which is 2.5 times faster than running our formula-

tion on 3 resolutions one by one (43.6 seconds per epoch)

in the training phase. Our approach is 10 times faster than

the patch and magnification traversing method, which re-

quires 172.7 seconds for each epoch. For inference, com-

pared with our spatial and magnification attention model us-

ing all patches, our approach is 12.4 times faster than using

all the patches.

4.3.4 Evaluation of attention maps

Another advantage of our approach is that the computed at-

tention maps add interpretability to our model. Generally,

our model focuses more on informative regions for most

samples in the two datasets: Figure 4 shows 4 samples and

the model’s attention maps on magnification 50X, 100X,

200X on the BACH dataset. The regions that our model

focuses on are consistent with the informative regions iden-

tified by the pathologist in the blue boxes.

Figure 5 shows the attention maps on the TCGA-PRAD

large patch dataset. We show 4 samples and our model’s at-

tention maps on magnification 25X, 50X, 100X. Our model

tends to focus more on the tumor regions that were identi-

fied by the pathologist within the blue lines.

5. Conclusion

In this paper, we presented a novel, end-to-end training

strategy for joint spatial and magnification based attention.
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Our method has been tested on two completely different

classification tasks of histopathology problems proving its

superiority and efficiency. In particular, using only 10% of

the initial input our method is comparable or superior to

other state of the art methods while it discovers completely

automatically the optimal magnification and spatial loca-

tions for the specific task. Moreover, our method reports

lower training and inference times, reducing the time com-

plexity significantly, which is a very important considera-

tion when it comes to medical applications and in particu-

lar application on pathology and large scale microscopy im-

ages. One limitation of our current formulation is the fixed

number of patches and predefined magnifications that are

required on the attention module. In the future, we aim to

investigate ways that we can automatically select the mag-

nification levels and the number of patches. Moreover, we

aim to investigate additional attention formulations provid-

ing explainable tools on a variety of clinically relevant med-

ical tasks.
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