
A LSTM-Based Realtime Signal Quality Assessment for Photoplethysmogram

and Remote Photoplethysmogram

Haoyuan Gao, Xiaopei Wu, Chenyun Shi, Qing Gao, Jidong Geng

School of Computer Science and Technology, Anhui University

Anhui University, Hefei, China

gaohaoyuan98@outlook.com, wxp2001@ahu.edu.cn, cyshi98@qq.com,

gqing sun@163.com, 769904039@qq.com

Abstract

Monitoring physiological parameters is very important

to access individuals’ health status. Recent years, remote

photoplethysmogram (rPPG) captured from human face by

consumer-level cameras is used to estimate heart rate (HR).

However, remote sensing signals are more easily affected

by motion artifacts and environmental noise, which make

the evaluation results unreliable. In this paper, we propose

a long-short term memory network (LSTM) to assess the

quality of the PPG(rPPG) signals in real time. This al-

gorithm can also seek out the high quality segments from

the ultra-long signals quickly. First, we labeled the PPG

data by the combination of three traditional methods. Then,

a LSTM network was trained to distinguish between clean

signals and noisy signals in the PPG database. Finally, the

network from the PPG data was verified in the rPPG data.

The results of the experiments show that our method can

get the signal quality index in real time, and the high qual-

ity fragments extracted by our method indirectly increase

the accuracy of HR evaluation.

1. Introduction

Photoplethysmogram(PPG) [2, 35] is often obtained by a

pulse oximeter which illuminates the skin surface and mea-

sures changes in light absorption. It is a simple and low-

cost technique which can monitor physiological parameters,

such as blood pressure [21], heart and respiration rate [24],

HR variability [18] and other changes of vital signs.

Recent years, remote PPG (rPPG) [4, 37] captured from

human face by consumer-level cameras is used to esti-

mate vital signs [3, 10, 29]. The rPPG is also referred as

image Photoplethysmogram (iPPG) and non-contact Pho-

toplethysmogram. The method can provide comfortable

physiological assessment [28, 40]. It is a distinct conve-

nience to get the rPPG with smart phones, laptops, or other

high-definition cameras. However, the rPPG is easier con-

taminated by external light sources [12, 15] and motion ar-

tifacts [6, 36] than the PPG. It makes vital signs assessment

by the rPPG more difficult. So identifying the high quality

signals from the large amount of rPPG data is significant.

The computational complexity and accuracy of the local-

ization algorithm are of great importance.

It has been well investigated that the PPG measurements

are significant in clinic. But there is still a lack of stud-

ies in identifying the high quality signals which also known

as signal quality assessment (SQA) or signal quality index

(SQI). We first introduce SQA methods in another cardiac

monitoring signal, electrocardiogram (ECG) [32]. ECG is

an earlier and more sophisticated cardiac monitoring signal.

In this paper, ECG and PPG features for SQA are grouped

into two categories, fiducial features and nonfiducial fea-

tures.

The fiducial features include waveform morphological

features of R-peak [27], QRS-complex [17, 30] and T-

wave, and heartbeat interval features such as RR interval

[16]. The nonfiducial features include frequency-domain,

time-domain, statistical and information theoretic features.

Signal-to-noise ratio [19], correlation coefficient [20], en-

tropy [13], KL divergence [26], skewness and kurtosis

[14] are common characteristics for quality assessment.

The features extracted from the signals can be used as in-

put features of machine learning to predict signal quality

scores[5, 23, 25, 39].

The PPG signal is consistent with the ECG signal, and

they both reflect the periodic changes of heartbeat. Sig-

nal quality assessment methods [27, 41] are shared be-

tween them. Not only that, signal quality evaluation of PPG

signals also requires the following characteristics. Fidu-

cial features include R-peak, RR interval [38]and perfusion

[7, 34], nonfiducial features include signal power spectrum

[42], entropy [33], skewness and kurtosis [7, 34] are com-

mon characteristics for quality assessment.
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The above methods obtain new features by pre-

processing a section of the signal. The quality of that signal

is then evaluated by the new features. In real-time systems,

the preprocessing features need to be calculated again after

additional sampling points are acquired. The computation

of statistical features and frequency domain features need

enough sampling points. It makes the space complexity and

time complexity of the algorithm unsatisfactory.

In this paper, we propose a LSTM-based realtime sig-

nal quality assessment (LSTM-SQA). It is an end-to-end

algorithm and the algorithm can detect high-quality signal

quickly. The memory cells can save the characteristics of

the preceding signal and predict quality score for the cur-

rent time signal.

For the rPPG signals, there are almost no signals with the

same high-quality as PPG. We used the PPG data to solve

the label imbalance problem of the rPPG data and shared

the network parameters from the PPG to assess the quality

of the rPPG. It is transfer learning that the PPG data are

in the source domain and the rPPG data are in the target

domain.

To verify the results, the mean scores of the sampling

points are considered as the score of the whole signal. The

mean values are compared with the scores given by the tra-

ditional methods and errors in heart rate assessment. We

also visually display the results through pictures.

There are two contributions of this paper. Firstly, we

applied LSTM to the PPG signal and propose a new real-

time SQA algorithm. Secondly, we used domain adaptive

method to expand the rPPG data and improve the stability

of the model by sharing parameters.

2. Methods

2.1. Introduction to the PPG databases

We use two PPG public data sets and two rPPG data sets

collected by ourselves to verify our method.

2.1.1 The PPG-DaLiA data set

The PPG-DaLiA data set [31] contains heart rate, PPG,

ECG and ACC signals. PPG data collection uses a mobile

device worn by the wrist and ECG data collection uses a

mobile device worn by the chest. The sampling rate of the

PPG signal is 64 Hz. Heart rate was evaluated by ECG with

pseudo peaks removed manually. The noise includes mo-

tion artifacts produced by walking up and down stairs, play-

ing foosball, cycling, driving, eating lunch, walking and

working. Fig.1(a) and Fig.1(b) show the signal fragments

we processed. Red color represents low-quality signals and

blue color represents high-quality signals.

(a) The high quality signal in PPG-DaLiA data set.

(b) The low quality signal in PPG-DaLiA data set.

(c) The signal in Cuff-Less blood pressure estimation data set.

Figure 1. Examples of PPG data sets.

2.1.2 The Cuff-Less blood pressure estimation data set

Cuff-Less blood pressure estimation data set [11] con-

tains ECG, PPG and arterial blood pressure (ABP) wave-

form signals recorded by patient monitors at various hos-

pitals. Fig.1(c) shows the signal fragments we processed.

It is the opposite of the PPG-DaLiA data set in value, so

that the image is flipped up and down. The signals are sam-

pled at the frequency of 125 Hz. With machine learning

algorithms, the signals can estimate blood pressure. It can

be seen intuitively that the signal quality of this database

is higher than that of PPG-DaLiA dataset. We labeled the

original signals as high quality signals. We used this data

set to expand the high-quality signals, so the distribution of

high and low quality signals is balanced.
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Figure 2. Basic framework of rPPG measurement.

2.1.3 The rPPG data sets

We built a facial image video dataset captured by the

camera of nokia’s mobile phone, and a supervised data set

containing facial videos collected by microsoft lifecam stu-

dio and heart rates collected by CMS50E. The CMS50E is

a PPG signal collector worn on human’s finger. The frame

rate of the videos is 30 fps, which also means the sam-

pling rate of the signals is 30 Hz. Based on relevant rPPG

studies in the literature, the corresponding basic framework

can be summarized and described in Fig.2. First, video of

faces was collected via a smartphone or other camera. To

make sure the signals are reliable, the subjects were asked

to remain still and we collect data in an environment with

sufficient light. Such then, region of interesting (ROI) ar-

eas were obtained by manual annotation. We selected fa-

cial skin as ROI from the first frame of the video. The

RGB color channels means were calculated from the ROI.

As shown in the middle of the Fig.2, the red, green and

blue channels provide three sets of original signals. Finally,

signal processing methods (band-pass filtering algorithms,

blind source separation algorithms or other denoise meth-

ods) were applied to derive the cleaner component. In this

paper, we selected the green channel and carry out simple

filtering processing as the original signal of rPPG. The pro-

cessed signal is shown in the lower part of the Fig.2.

2.2. Long Short Term Memory Network

As would be expected, LSTM has been applied to a va-

riety of practical problems. LSTM is a good solution for

requiring the use of long-range contextual information [9],

such as music generation [43], speech recognition [1] and

reinforcement learning [8]. LSTM is local in space and

time. Its computational complexity per time step is O(1).
The architectures of the LSTM block can be seen in

Fig.3. It features block input, three gates (a input gate it,

a forget gate ft and a output gate ot), cells ct. The input

gate controls which new information flows into the cells, the

forget gate controls which information remains in the cells

and the output gate controls which information in the cell is

used to output in the LSTM block. The vector formulas for

a LSTM block forward pass can be written as:

ft = σ(Wfxt +Rfht−1 + bf ) (1)

it = σ(Wixt +Riit−1 + bi) (2)

ot = σ(Woxt +Roht−1 + bo) (3)

c̃t = tanh(Wcxt +Rcht−1 + bc) (4)

ct = ft ⊙ ct−1 + it ⊙ c̃t (5)

ht = ot ⊙ tanh(ct) (6)

where the vector xt ∈ R
d is input vector to the LSTM

block. The vector ht ∈ R
h is hidden state vector. It also

known as output vector and recurrent vector of the LSTM

block. The vector ct ∈ R
h is cell state vector and the vec-

tor c̃t ∈ R
h is cell input activation vector. The matrices

Wf ∈ R
h×d, Wi ∈ R

h×d and Wo ∈ R
h×d are weight

matrices of input vector for the forget gate ft, the input

gate it and the output gate ot respectively. The matrices

Rf ∈ R
h×h, Ri ∈ R

h×h and Ro ∈ R
h×h are weight

matrices of hidden state vector for the forget gate, the input

gate and the output gate respectively. The vector bf ∈ R
h,

bi ∈ R
h and bo ∈ R

h are bias vector for the forget gate, the

input gate and the output gate respectively. We set c0 = 0

and h0 = 0. The operator ⊙ denotes the Hadamard prod-

uct. The matric Wc ∈ R
h×d is weight matrices of input

vector and the matric Rc ∈ R
h×h is weight matrices of hid-

den state vector for cell input activation vector. The func-

tions σ() and tanh() are nonlinear activation functions. The

logistic sigmoid σ() is used as gate activation function and

the hyperbolic tangent tanh() is used as the LSTM block

input and output activation function.

From Fig.3 and Formulate.5, we can see that the current

time cell vector ct is the sum of the last time cell vector ct−1

passing through the forget gate ft and the cell input activa-

tion vector c̃t passing through the input gate it. Finally, we

can get output vector ht after cell vector ct passing through

the output gate ot .

2.3. Traditional quality index of PPG(rPPG)

In the traditional SQA methods, characteristics are ex-

tracted by preprocessing the signal waveforms. In this sec-

tion, µs and σs are the mean and standard deviation of the
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Figure 3. Internal structure of LSTM block.

signal s respectively. N is the number of sampling points

and ŝ is the filtered PPG signal. As follow show:

Perfusion(PSQA):The perfusion is the gold standard for

assessing PPG signal quality [7]. The perfusion index is

the ratio of difference of pulse blood flow to average blood

flow in capillary bed. In other words, this is the difference

of the light reflected by the blood pulse when the finger is

illuminated, which can be defined as follows:

PSQA = [(ŝmax − ŝmin)/|µs|]× 100 (7)

where ŝmax and ŝmin are the maximum and minimum val-

ues of the signal respectively.

Skewness( SSQA):The skewness is the third standard-

ized moment. It is a measure of the symmetry of a prob-

ability distribution, which is defined as:

SSQA =
1

N

N
∑

i=1

[(si − µs)/σs]
3

(8)

Kurtosis( KSQA ):The kurtosis is the fourth moment of

the distribution. It is a statistical measure used to describe

the distribution of observed data around the mean, which is

defined as:

KSQA =
1

N

N
∑

i=1

[(si − µs)/σs]
4

(9)

Signal-to-noise ratio( NSQA ):The SNR measures the ra-

tio of the energy in a desired signal to the energy in back-

ground noise. In this paper, the ratio of signal variance to

the noise variance is used, as follows:

NSQA = σ2
signal/σ

2
noise (10)

Template matching ( TMSQA ): The template matching

approaches have been used for signal quality assessment of

the PPG and ECG in [27]. The approximately periodic of

heartbeat activity means that the more periodic the PPG sig-

nal, the higher the quality. The template matching quantizes

regularity of signals in a segment, which is an indicator of

reliability. The template matching of PPG signal can define

as:

TMSQA =
1

M

M
∑

r=1

ρ(s̄r, sr) (11)

where sr is a segment in PPG signal. The center of sr is

R-peak/PPG-pulse peak and the width of sr is a fixed value.

The variable r means the r−th peak and M is the number

of peaks. s̄r is the mean of sr . The function ρ() is Pearson

correlation coefficient.

Standard deviation of peak-to-peak time interval(

STDTSQA ): The STDTSQA [38] is also based on the

pseudo-periodicity of the heartbeat. The time interval be-

tween adjacent peaks are smooth with no mutation:

STDTSQA =

√

√

√

√

1

(M − 2)

M−1
∑

r=2

(Tr − Tr−1)
2

(12)

where Tr = tpr+1
− tpr

is the time interval between the

r−th successive peak pr and the (r + 1)−th successive

peak pr+1. Since the time interval between neighboring

peaks is pseudo-periodic for clean parts, it is expected that

STDTSQA for high quality one to be smaller than low qual-

ity one.

The methods above use statistical information such as

mean value and standard deviation. It means the signals

should be long enough for evaluating statistics. It is not

appropriate to position of high-quality segments from extra-

long signals.

2.4. LSTM­SQA

Unlike the above methods, we propose a signal quality

assessment method based on long short term memory net-

work (LSTM-SQA). Our method is an end to end algorithm

used the sampling points of the signal directly. This method

does not have to calculate statistical characteristics or other

features. It is a real-time algorithm and the LSTM network

can process time sequence with time complexity of O(1).
The detail of algorithm is shown in Fig.4. In the pre-

processing stage, we built a small window to split the sig-

nal. The stride d1 means we move the window d1 sampling

points at one time step. The width of the window d2 is the

length put into the network every moment. We set d1 = 1,

d2 = 5 and the label of center point as the window’s la-

bel. So the network predicts the quality index of a sampling

point.

As depicted in Fig.4, the net contains three units. When

new sampling points flow in, the network will update the

information of hidden cells, and then determine the quality

of the current sampling points. At the beginning of LSTM,

enough sample points are necessary for updating the mem-

ory cells. After this stage, the network can automatically
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Figure 4. The LSTM net for PPG (rPPG) SQA. In each time step, the network reads the sampling points in the red box and gives the data

quality of the current sampling points. The net contains three units: the first is fully connected layer for input; the intermediate unit is a

standard LSTM block; the last is a fully connected layer for output with sigmoid activation function.

discard unimportant information and update valuable infor-

mation to ensure the accuracy of the current period of eval-

uation. The whole process can output quality score in terms

of sampling points, but scores are reliable only when the

memory cells record enough information.

With sigmoid function, its output dimension is 1 and the

range of network output is [0,1]. It is a binary classification

model. Its output po is the probability of been high quality,

while 1 − po is the probability of been low quality. When

the probability of high quality was greater than that of low

quality, we considered the input signal as high quality. On

the other hand, we also regarded the output of the network

as continuous quality scores.

3. Experiment

3.1. Labelling of the PPG signals

Firstly, LSTM belongs to supervised machine learning,

which requires data to be labeled. Traditional methods can

only estimate the quality of long signals, but real time meth-

ods need higher resolution tag information. Therefore, we

have improved some traditional methods so that they can

evaluate the quality of signals in 1 second or even less, but

the method still needs nearby signal information.

We evaluated the signal quality based on PSQA, TMSQA

and STDTSQA. First, the signals were divided into smaller

units by the average time interval of R-peak. The average of

perfusion and s̄r in TMSQA method have been calculated

in this process. For the unit signals, the difference between

the individual perfusion and the average perfusion could be

obtained. We calculated the correlation between the unit

signals and the average template. We also judged whether

the unit signals lacks the R-peak. On this basis, the unit

signals were divided into good or bad.

3.2. Generalization performance in motion artifacts
noise

In this section, we verified the generalization of the net-

work through cross-subject task. There are 15 subjects in

the PPG-DaLiA dataset and we numbered them from 1 to

15. Every time we trained the network, we extracted the

data of two subjects in turn as the test set, and the others

were used to train the network. We judged whether the sig-

nal is good or bad according to the probability of network

output. The network only has three layers, in which the

length of hidden cells in RNN layer is 8. The results of the

experiments are as shown in Table 1.

From the training accuracy, it can be seen that the net-

work can stably converge. The average value of the training

accuracy is 81.34%. From the accuracy of the test set, it can

be seen that the average accuracy of the test set is 79.73%,

which proves that the network is learnable and has good

generalization in cross-subject experiments.

3.3. Correlation analysis between LSTM score and
other signal quality assessment characteristics

In this paper, we used three traditional signal quality as-

sessment methods as artificial labels. We regarded the prob-
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Subjects’ number

in Test Set

Train Set

Accuracy

Test Set

Accuracy

1,2 81.45% 80.02%
3,4 80.02% 82.00%
5,6 82.62% 75.22%
7,8 81.75% 80.96%

9,10 83.18% 82.99%
11,12 79.34% 79.56%
13,14 81.04% 77.33%

average 81.34% 79.73%

Table 1. Accuracy of LSTM network in cross-subjects experiment.

ability values given by the network as the quality scores.

We directly used the output of network to analyze the cor-

relation with three other signal quality index parameters, in-

cluding the SNR, the skewness and the kurtosis.

Since the network scores each sampling point, the SNR,

the skewness and the kurtosis require an amount of sam-

pling points to get statistical information, we need to aver-

age the scores of the sampling points from LSTM within a

section of signal which has enough information to evaluate

other parameters.

In this section, we cut the signal into segments with a

length of 8 seconds. Correlation coefficients were calcu-

lated for each subject’s average scores from the network

and the three parameters. As showed in Fig.5, the abscissa

represents the subject number, the last digit is the average

value, and the ordinate represents the Pearson correlation

coefficients (PCCs).

It can be seen that the quality scores given by the net-

work have a strong correlation with the SNR, a weak nega-

tive correlation with the skewness, and no correlation with

the kurtosis. The correlation between the quality scores and

the SNR is the strongest, and the average correlation co-

efficient is 0.47. Subject 11 had the strongest correlation,

and the correlation coefficient is 0.56. The quality scores

from network have negative correlation with the skewness.

Subject 13 has the strongest negative correlation, and the

correlation coefficient is -0.39. However, the quality scores

have almost no correlation with the kurtosis, and the aver-

age correlation coefficient is closed to 0.

3.4. Correlation analysis between heart rate accu­
racy and network score in PPG

We have used the PPG signals in the PPG-DaLiA dataset

to evaluate the heart rate. The database provides reliable

heart rate obtained from the ECG signals. The Fast Fourier

Transform analysis [22] was used for heart rate measure-

ment in the PPG signals. The PPG signals contain a lot

of motion noise, which makes the calculation results ob-

viously different from the artificial labels. We calculated

the absolute errors between the artificial labels and the FFT

(a) Correlation between LSTM and signal-to-noise ratio.

(b) Correlation between LSTM and skewness.

(c) Correlation between LSTM and kurtosis.

Figure 5. Correlation analysis.

method. Then we compared them with the scores given by

the LSTM-SQA.

As showed in Fig.6(a), the abscissa represents the sub-

ject number, the last digit is the average value, and the ordi-

nate represents the PCCs. In Fig.6(b) and Fig.6(c), abscissa

represents the average of network score, and ordinate rep-

resents the mean absolute error (MAE) between evaluation

results by FFT method and artificial labels. It can be ob-

served in Fig.6(a) that the signal quality score is negatively

correlated with the mean absolute error of the HR evalua-

tion. The correlation coefficient of subject 11 is -0.58 and

the correlation is largest. Subject 9 have the lowest correla-

tion, with the average correlation coefficient is -0.45.

We selected signals with the quality score greater than

a certain value and calculated the mean of absolute error

for heart rate evaluation. As showed in Fig.6(b), the mean

absolute error of all data on heart rate evaluation is 22.13.

As low scores signals are excluded, the error became lower

and lower. When the scores given by the network greater

than 0.3, the average error is lower than 5. In other words,

the error of heart rate evaluation is less than 5 beats per

minute. The MAE of heart rate evaluation is 2.75 when

the scores are greater than 0.5. In general, the higher the

score given by the network, the more accurate the heart rate
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(a) Correlation between LSTM and MAE.

(b) The influence of LSTM on MAE in PPG.

(c) The influence of LSTM on MAE in rPPG.

Figure 6. Mean absolute error of heart rate analysis.

assessment.

3.5. LSTM­SQA in rPPG

It is difficult to extract high quality rPPG signals even

from high quality video. The signal quality of rPPG is

lower than that of mobile PPG. This creates an imbalance

between low quality data and high quality data which is a

challenge for machine learning. However, the signal qual-

ity index criteria for rPPG signals are consistent with PPG.

We enhance the PPG data and transfer to data domain of

the rPPG. PPG-DaLiA dataset contain signals with motion

noise, while Cuff-Less blood pressure estimation dataset

contain a large amount of high quality signals.

We mixed the PGG datesets and the rPPG datasets to

solve the class imbalance problem at first. We flipped the

data, whitened signals, aligned the sampling rate and the

amplitude, so that the feature distributions of the three data

fields (include PPG-DaLiA dataset, Cuff-Less dataset and

rPPG datasets) were similar. The sampling frequency of all

signals is 64Hz by quadratic interpolation. Next, a LSTM

network for PPG signals quality index has trained. Finally,

the rPPG signals were used to fine tune the network param-

eters.

With the same method in the Section 3.4, we compared

the error of heart rate assessment with the scores of the net-

work. Because the signal quality of rPPG is far lower than

that of PPG, the maximum value of average score is only

0.25. As shown in Fig.6(c), LSTM-SQA still conforms

to the rule that the higher the scores, the smaller the er-

ror of heart rate evaluation. The rPPG signals is filtered

in advance, and the average error of heart rate evaluation

is 12.67. When the score is greater than 0.23, the average

error of heart rate evaluation is less than 4.

We extracted the rPPG signal from the video of three

women and three men. The green channel signals were fil-

tered to get the original signal of 150s. The length of the

extracted optimal signal segments was set to 10 seconds

in advance. Each sample point was scored by LSTM. The

sampling point scores in the 10s segment were summed to

obtain the optimal segment of one rPPG signal. Some ex-

perimental results are shown in Fig.7.

It could be observed that the fragments with higher qual-

ity are selected by LSTM. In the segments, the beating cy-

cle of the heart is obvious, and there are no obvious mu-

tations in the heartbeat interval and perfusion. Heart rate

can be estimated with less error. However, compared with

high-quality PPG signals, there are still noise, some pseudo-

peaks and mutation of extremum, which are also the limita-

tion of rPPG without special denoising algorithm.

4. Conclusion and future work

We have used LSTM to assess the signal quality in real

time. From the experimental results, using LSTM for SQA

can enhance the credibility and accuracy of heart rate esti-

mation. The quality scores of LSTM are directly and signif-

icantly correlated with the accuracy of heart rate. It works

effectively for both heart rate estimation of mobile devices

and heart rate estimation of rPPG, helping to eliminate the

hard-to-evaluate signals and giving more accurate results.

However, mobile devices and rPPG still have limitations

in that even the best fragments are not good as the data col-

lected by a professional device. This requires a denoising

algorithm to remove the noise, or train a network to regen-

erate high-quality signals. We have trained a mature dis-

criminator and its gradient can be propagated back to the

sampling points. In the future, we will introduce the gener-

ative adversarial network into it, and strive to enhance the

quality of mobile data and rPPG data to the level of pro-

fessional equipment. Such high-quality signals obtained by

non-contact methods can extract more vital signs.
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