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Abstract

This paper presents a novel deep learning enabled, video

based analysis framework for assessing the Unified Parkin-

son’s Disease Rating Scale (UPDRS) that can be used in

the clinic or at home. We report results from comparing

the performance of the framework to that of trained clini-

cians on a population of 32 Parkinson’s disease (PD) pa-

tients. In-person clinical assessments by trained neurolo-

gists are used as the ground truth for training our frame-

work and for comparing the performance. We find that the

standard sit-to-stand activity can be used to evaluate the

UPDRS sub-scores of bradykinesia (BRADY) and posture

instability and gait disorders (PIGD). For BRADY we find

F1-scores of 0.75 using our framework compared to 0.50

for the video based rater clinicians, while for PIGD we

find 0.78 for the framework and 0.45 for the video based

rater clinicians. We believe our proposed framework has

potential to provide clinically acceptable end points of PD

in greater granularity without imposing burdens on pa-

tients and clinicians, which empowers a variety of use cases

such as passive tracking of PD progression in spaces such

as nursing homes, in-home self-assessment, and enhanced

tele-medicine.

1. Introduction

Parkinson’s disease (PD) is a progressive neuro-

degenerative disorder affecting 10 million people world-

wide with approximately 60,000 Americans being diag-

nosed each year [2]. It has been reported that the life-

time risk of developing PD is 2% for men and 1.3% for

women over the age of 40 [4]. The hallmarks of PD include

motor symptoms such as bradykinesia (BRADY), rigidity,

tremor, posture instability and gait disorders (PIGD), as

well as non-motor symptoms such as olfactory dysfunction

and sleep disorder, imposing profound impacts on the qual-

ity of life of PD patients.

There is no cure for PD; however, dopamine replacement

therapy can help to manage symptoms with the goal of im-

proving the quality of life as much as possible. A crucial

part to ensuring the effectiveness of the treatment is cus-

tomizing the types, timing and dosage of medications as the

disease progresses. It is thus essential for neurologists to

understand the severity of symptoms and the extent of motor

fluctuations. The current clinical instrument for assessing

disease progression and response to treatment is a structured

in-person assessment based on protocols specified in Uni-

fied Parkinson’s Disease Rating Scale (UPDRS). Specifi-

cally, such assessment is administered by trained clinicians

once or twice a year with major drawbacks including “white

coat effect”, relatively high levels of disagreement in ratings

among different neurologists, as well as its lack of ability to

characterize the fluctuation of symptoms [21].

In an effort to better understand the dynamics of motor

symptoms in between clinic assessments, daily self-reports

of symptoms [11] have been used as an additional tool

for clinicians to get a sense of the response to treatment.

However, similar to most questionnaire-based approaches,

this method suffers from limitations such as recall bias and

poor adherence which result in poor accuracy and reliabil-

ity. Such limitations and the importance of understanding

motor fluctuations to PD management have been driving

research efforts in deriving continual metrics of PD symp-

toms from signals using wearable devices [9, 3, 15]. The

wearable-based approach, although able to provide objec-

tively quantifiable measurements of motor fluctuations, still

requires effort from the patients on a daily basis and there-

fore is potentially susceptible to compliance adherence.

Encouraged by the exciting progress in computer vision

and deep learning, we set out to investigate the feasibility of

a video-based approach for free-living assessment of PD in

a contact-free and passive manner. In this paper, we show-
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case the idea by developing and evaluating an end-to-end

deep learning framework that takes individual video clips

containing sit-stand motion as input and outputs predic-

tions of two UPDRS sub-scores, Bradykinesia (BRADY)

and PIGD scores, which are commonly used as clinical end-

points of PD.

The dataset used to support this exploration was col-

lected as part of a clinical study [9] where video record-

ings of patients’ UPDRS examinations were obtained, along

with in-clinic ratings from the neurologist who adminis-

tered the UPDRS, as well as ratings from two additional

clinicians who scored the patients by watching the video

recordings of their UPDRS sessions.

As shown in Figure 1, the proposed framework com-

prises a sequence of deep learning enabled components that

take a short video containing sit-stand motion as input and

output predictions of UPDRS subscores including BRADY

and PIGD. We believe the proposed technology has po-

tential to transform the way we understand motor symp-

toms by providing automated and continual predictions of

motor examination ratings (UPDRS-III) commonly used as

clinical endpoints for PD. We envision the proposed sys-

tem would enable clinical decision makings and accelerate

clinical trials by providing clinical-grade assessments on a

daily basis compared to a semi-yearly or yearly basis in to-

day’s practice. In addition to its contribution to the deliv-

ery and development of treatment, the proposed technology

could also provide value to PD patients by offering in-home

self-assessment which gives them more control over disease

management.

To summarize, our contributions in this paper include the

following:

1. We present a novel analysis framework based on deep

learning models which use human body pose data rep-

resentations to automate assessment of UPDRS sub-

scores (i.e., BRADY and PIGD scores) in a contact-

free and passive manner while achieving performance

comparable to trained neurologists.

2. We present results from retrospective analysis of clini-

cal assessments of PD patients, and compare our anal-

ysis framework to trained clinicians evaluating the

same video. Our results demonstrate the potential of

deep learning enabled ambient sensing to facilitate re-

mote clinical evaluations.

2. Related Work

Recently there has been a growing body of research ef-

forts aiming to develop technologies that are able to quan-

tify PD motor fluctuations in free-living conditions. Most of

such technologies rely on acceleration data collected from

wearable motion sensors to generate relevant features in-

dicative of motor symptoms.

The wearable-based approach can be further divided into

the following two categories. Some early works [19] used a

network of on-body motion sensors to collect acceleration

data from various body parts of interest (e.g., wrists, waist,

ankles, etc.) to identify kinematic features that are poten-

tially related to motor symptoms. More recently, in an ef-

fort to simplify the setup process, and more importantly for

the ability to harness data from consumer devices such as

smartwatch and fitness trackers, a growing body of research

[3, 15] has been investigating the feasibility of leveraging

only data from the wrist-worn motion sensor to estimating

changes in PD state.

In addition to the wearable-based approaches, camera-

based methods have been proposed, most of which relied

on the 3D skeletal keypoints provided by commercial depth

cameras [1]. In Galna et al. [10], the authors bench-

marked depth camera’s output against a gold standard mo-

tion analysis system to study its accuracy in measuring clin-

ically relevant movements in people with PD. In other stud-

ies, kinematic features derived from the depth camera have

been used to differentiate subjects with and without PD [8],

and to detect freezing of gait [6]. Compared to wearable-

based methods, camera-based approaches offer the advan-

tage of providing more fine-grained spatial-temporal kine-

matic information and requires less effort for setup due to its

contact-free nature. In this paper, we develop a marker-less

framework based on RGB cameras which is empowered by

recent advances in video-based pose estimation and activ-

ity recognition techniques that can automate the process of

predicting the UPDRS scores for PD patients.

The rest of the paper is structured as follows. In section

3, we describe the overall framework of our proposed sys-

tem which includes the tasks from input video processing

to prediction of the UPDRS scores. In this section, we also

explain the predictive models, their corresponding data rep-

resentation and our ensemble architecture. In section 4, we

provide the details of the dataset along with various visu-

alization of feature embeddings and some samples. In this

section, we also outline our train-test protocol and other im-

plementation details. We end this section by showing the re-

sults for both our baseline and ensemble models and bench-

mark our results with those of the clinician video raters. Fi-

nally, we conclude this paper in section 5.

3. Proposed Framework

Fig 1 shows the overall architecture of the proposed

framework. It starts with a human detector [18] which ex-

tracts human bounding box proposals from an input video

sequence. The human proposals are fed into a 2D pose es-

timation model [18] which predicts coordinate locations of

human joints in 2D image space. Next, a 3D pose model

[5] takes the 2D pose as input and predicts joints locations

in 3D Cartesian space. Finally, the 3D pose information



Figure 1. Overview of the reported analysis framework. Given an input video sequence (A), first a human detector (B) extracts human

proposals from the video frame-by-frame and feed the proposals into a 2D pose estimation model (C) which predicts coordinate locations

of human joints in 2D image space. Next, a 3D pose model (D) uses the 2D pose information and predicts joints locations in 3D Cartesian

space. Finally, the 3D pose information is fed into the proposed ensemble zoo (E) to predict UPDRS scores. (E1), (E2), and (E3) are three

different ensemble combinations for our predictive models. Note that the input image (A) is overlaid with a black rectangle for privacy

purposes.

is fed into an ensemble zoo which contains three different

ensemble models predicting the UPDRS scores of the in-

put video sequence. Note that for our experiments, we also

consider 2D joints for the predictive models. The exam-

ple of predictive models shown in Fig 1 is for our best per-

forming predictive models. In the following, we describe

in detail the different baseline models employed, their cor-

responding data representations and our proposed ensemble

for predicting the UPDRS scores.

3.1. Baseline Networks

Since our input data is 2D and 3D pose information

fetched from the video sequence and the task being to pre-

dict the UPDRS scores, we propose to employ the mod-

els used in a similar task of skeleton-based action recog-

nition. We start with building a simple baseline model of

a 4-layer Multi-layer Perceptron (MLP). Later, we employ

the popularly used models for the task of skeleton-based ac-

tion recognition. Earlier methods for such a task have used

Long Short Term Memory Networks (LSTMs) [14],[22]

and Temporal Convolutional Network (TCN) [12] for clas-

sifying actions based on the skeleton data. We employ these

models for our task as well. Later, we experiment with more

complex models which have achieved recent state-of-the-

art in skeleton based action recognition performance. For

this experimental phase, we select the following models -

Hierarchical Convolutional Network (HCN) [13], Spatio-

Temporal Graph Convolutional Networks (ST-GCN) [23],

and Convolutional Networks (CNNs) [7] such as Resnet50.

3.2. Data Representation

For the above specified networks, we reshape our input

data into their accepted formats for each network. For TCN,

HCN, and ST-GCN, our data is constructed in the shape

of C× T× Nj× Np representation where C represents the

dimensionality of each joint (2 for 2D pose and 3 for 3D

pose), T represents the temporal length i.e. the number

of frames in a video sample, Nj represents the number of

joints which are 13 in our case, Np represents the number of

persons in the video which is 1 in our case. For CNN such

as Resnet50, we convert the joint data into visual represen-

tation. For this, we reshape the C× T× Nj× Np data to

C× T× Nj * Np and normalize channel values between 0

and 255. Then we resize this visual representation to a fixed

representation of (C × 244× 244) using bilinear interpola-

tion. For a given joint jt,k of type k at a time frame t, the

corresponding normalized pixel value is calculated as:

d = 255×
jt,k − cmin

cmax − cmin

, (1)

where cmax and cmin correspond to the maximum and min-

imum values of all the joint coordinates in the data respec-

tively. For MLP model, the data shape of C× T× Nj× Np

is reshaped and represented as a wholesome feature with

the shape of C * T * Nj * Np. For LSTM model, the data

shape of C× T×Nj×Np is reshaped to T ×C * Nj * Np,

in which T corresponds to the sequence length and C * Nj

* Np corresponds to number of features.

3.3. The Proposed Ensemble

We also build ensemble architectures to improve the gen-

eralization capability of the individual models. For this, we

explore different combinations of state-of-the-art HCN, ST-

GCN, and Resnet50 models that extract hierarchical, struc-

tural and covolutional features from the data, respectively.

The individual models are trained independently and com-

bined during inference by summing the final logits pro-

duced by the models. Specifically, each model in the pro-



posed ensemble ends with a global average pooling opera-

tion and produces Y ∈ R
1×M−dimensional feature maps

which are then fed to a linear layer of 1 × K dimensions

to produce probabilitic distributions (Qs ∈ R
1×K) with re-

spect to K target classes (representing UPDRS scores of

BRADY & PIGD). Mathematically, the output of a linear

layer can be written as:

Qs = Y ∗W s +Bs (2)

where, W s and Bs represent weights and bias matrices,

respectively. Finally, the outputs of the linear layers are

summed to produce a combined feature representation Ps.

It is given by:

Ps =

Ns∑

i=1

Qs
i (3)

Consider a training dataset of videos and labels (x, y) ∈
(X ,Y), where each sample belongs to one of the K classes

(Y = 1, 2, ...,K). To learn the mapping fs(x) : X → Y ,

we train our ensemble models parameterized by fs(x, θ
∗),

where θ∗ are the learned parameters obtained by minimiz-

ing a training objective function Ltrain:

θ∗ = argmin
θ

Ltrain(y, fs(x, θ)) (4)

Our training function Ltrain is based on a CrossEntropy

loss which is applied on the outputs of the individual models

of the ensemble with respect to the ground truth labels (y).

Mathematically, Ltrain can be written as:

Ltrain(Qs, y) =

K∑

k=1

I(k = y) log σ(Qs, y), (5)

where I is the indicator function and σ is the SoftMax oper-

ation. It is given by:

σ(z) =
exp(z)

∑K

k=1
exp(zk)

. (6)

4. Experiments

4.1. Dataset

The present study was a non-interventional study con-

ducted at a single site in 35 people with mild (Hoehn &

Yahr = {1}) to moderate (Hoehn & Yahr = {3}) PD (Table

1) under controlled laboratory conditions. Participants were

asked to perform a series of motor and cognitive tests in ac-

cordance with the UPDRS protocol over two visits lasting

approximately one hour each. During one visit the study

participant was off medication and thus in an ”OFF” state,

while in the other visit the study participant had recently

taken his/hers medication and thus was in an ”ON” state.

The order of the ON and OFF visits was randomized and

Table 1. Summary of subjects in the study (N = 35)

Age (years) 68.3± 8.0 (46− 79)
Height (cm) 171.6± 16.4 (147− 189)
Weight (kg) 82.3± 18.0 (44− 112)
Gender (%)

Male 23 (65.7%)
Female 12 (34.3%)

Hoehn & Yahr (%)

1 2 (6%)
2 26 (74%)
3 7 (20%)

no more than 14 days passed between the visits. The ses-

sions were video taped by a technician and led by the same

neurologist who also scored each UPDRS task. Later on,

the videos were watched and independently scored by two

other clinicians. Data collection was carried out at the clin-

ical and translational research center (CTRC) at Tufts Med-

ical Center and all study procedures were approved by the

Tufts Health Sciences Campus Institutional Review Board.

More details on the study protocol can be found in Mahade-

van et al. [15].

4.2. Class Distribution and Traintest Split

We frame the task of predicting the UPDRS scores from

the input videos as a classification task by converting the

average neurologist rated values of the BRADY and PIGD

scores to integers. Based on the data collected, for BRADY,

this translates to a 4-class problem {0, 1, 2, 3} and for PIGD

it translates to a 3-class problem {0, 1, 2}, as there were

no cases having a PIGD score of {3} for this data. With

this method, we present the distribution for 125 video sam-

ples in our dataset amongst the different classes for both

BRADY and PIGD in Fig 2. Note that only videos with rat-

ings from the on-site neurologist and both clinician video

raters were selected, resulting in a dataset involving sit-

stand videos from 32 subjects.

We employ a 5-fold train-test split protocol. We use the

stratified fold split strategy so that the class distribution is

preserved amongst the train and test samples. With this pro-

tocol, we get 5-folds with each fold containing 100 training

sample videos and 25 testing sample videos. When compar-

ing the performance of our trained models with that of the

clinician video raters, we evaluate them on each fold and

employ weighted averaging for the scores presented later in

the Results section.

4.3. Data Distribution and Feature Embeddings

We also show the distribution of the feature embeddings

amongst the different classes based on the body 2D and 3D

joints. For this purpose, we apply the dimension reduction

technique of Uniform Manifold Approximation and Pro-



Figure 2. Class distribution for (A) BRADY scores and (B) PIGD scores. Dataset samples for (C) 2D Pose and (D) 3D Pose.

Figure 3. UMAP embeddings clusters with respect to individual classes of (A) BRADY for 2D joints (B) PIGD for 2D joints (C) BRADY

for 3D joints (D) PIGD for 3D joints

jection (UMAP) [16] to map out the body 2D joints and

3D joints distribution amongst the classes of BRADY and

PIGD. Fig 3 shows the distribution of feature map embed-

dings of the 2D joints and 3D joints with respect to the sam-

ple classes in BRADY and PIGD. It can be seen from Fig

3 that the feature embeddings are highly scattered in nature

where there are no pre-defined cluster patterns for the dif-

ferent classes both for BRADY and PIGD, which makes the

task of predicting the UPDRS scores difficult.

4.4. Implementation Details

We trained all our models both baseline and ensembles

using Adam optimizer with the default parameters except

having the weight decay of 1e-4, batch size of 16, an ini-

tial learning rate of 0.001 with an exponential decay factor

of 0.99 for 100 epochs. Both the sequential 2D and 3D

joints are transformed to a fixed temporal length width of T

= 150 frames with bilinear interpolation along the temporal

dimension. T = 150 is selected as the mean length of the

temporal lengths of all the video samples in our dataset.

As we are converting the raw BRADY & PIGD scores to

integers, this can lead to difficulty for our models in learning

some closely related features. Moreover, for a better gen-

eralization of the models and to avoid over-fitting on our

classification tasks, we implement the training with label

smoothing strategy [20],[17]. With this strategy, we min-

imize the cross-entropy loss between the modified targets

yLS and the network’s output probability. The modified tar-

get yLS is given as:

yLS = y(1− α) + α/K (7)

where α is the label smoothing parameter, y is the original

target of a sample and K represents the number of categor-

ical classes for the task. For our experiments, we vary the

parameter α in the range [0.05, 0.1, 0.2, 0.3, 0.4] and found

that 0.2 produces the best results.

4.5. Results

In this section, we present the results of our baseline

models, ensemble models and benchmark them with those

of the neurologist video raters for the task of predicting the

UPDRS scores. For benchmarking purposes, we convert

the raw BRADY and PIGD scores provided by the clinician

video raters into integers.

4.5.1 Baseline Models

As we have an imbalanced class distribution for both

BRADY and PIGD, we employ the metric of weighted f1

score to benchmark our various models. We compare all



Figure 4. UMAP embedding clusters based on the representative features for BRADY classification on test data for different models and

input data (A) TCN based on 2D joints (B) Resnet50 based on 2D joints (C) Resnet50 based on 3D joints (D) Ensemble of ST-GCN +

Resnet50 based on 3D joints

Figure 5. UMAP embedding clusters based on the representative features for PIGD classification on test data for different models and input

data (A) TCN based on 2D joints (B) Resnet50 based on 2D joints (C) Resnet50 based on 3D joints (D) Ensemble of HCN + Resnet50

based on 3D joints

Table 2. Comparisons of the weighted f1 scores for models trained

using the different input keypoints - 2D & 3D body joints respec-

tively for BRADY and PIGD classification with 5-fold stratified

split protocol.

Model Input BRADY PIGD

MLP Body 3D joints 0.36 0.37

LSTM Body 3D joints 0.28 0.35

TCN Body 3D joints 0.45 0.58

HCN Body 3D joints 0.47 0.68

Resnet50 Body 3D joints 0.73 0.72

ST-GCN Body 3D joints 0.62 0.70

MLP Body 2D joints 0.35 0.33

LSTM Body 2D joints 0.17 0.20

TCN Body 2D joints 0.41 0.46

HCN Body 2D joints 0.43 0.53

Resnet50 Body 2D joints 0.65 0.64

ST-GCN Body 2D joints 0.57 0.54

our baseline models mentioned earlier in Section 3 on both

2D joints and 3D joints. The results for the performance

are shown in Table 2. It can be seen that very simple mod-

els such as MLP, LSTM, and TCN are not able to achieve

even a reasonable score for these tasks. As the models be-

come more complex in nature, they are able to learn the

relevant features and as such HCN, ST-GCN, and Resnet50

perform much better. Another important observation from

the baseline performance results is that for all the models

the f1 scores for 3D joints are comparatively higher than

those for 2D joints. To analyze the results of the models

in more detail, we extract the representative feature embed-

dings (256 dimensional) of the models from the penultimate

layer of each model on our test dataset. We apply UMAP

technique to map out the representative features which are

shown in Fig 4 and Fig 5 for the tasks of BRADY and PIGD

classification respectively. It can be seen that for Resnet50

the learned features are more clustered in nature compared

to that of TCN where they are quite scattered. However, for

both the networks, the clustering is much better compared to



Figure 6. Samples of sit-stand videos from our dataset where the patient is firstly in sitting position and then stands. (A) and (C) relate

to the 2D poses extracted from such sequences for two different video inputs; (B) and (D) represent the corresponding 3D poses for the

video sequence (represented with an angle view change in the xy dimension for better viewing). Note that it is difficult to classify video

sequences based only on the 2D pose as there are very little changes in the pose information compared to the 3D pose.

the raw 2D and 3D joints which was shown in Fig 3. More-

over, it can also be noted that the variance amongst the clus-

ters in case of Resnet50 is less for 3D joints as compared

to the 2D joints, thus explaining the higher performance of

our models in Table 2 for 3D joints compared to the 2D

joints. We also show some qualitative results of 2D pose

and 3D pose sequences to better understand the compara-

tively higher performance for 3D joints in Fig 6. It can be

seen that the 3D pose information is much more distinctive

for these kind of sit-stand motion especially to identify the

nuanced features and changes between the bones responsi-

ble for variation in BRADY and PIGD scores.

4.5.2 Ensemble Models

Having performed the initial baseline experiments with dif-

ferent models for 2D and 3D joints, we build ensemble

models combining the higher performing models from the

baseline experiments. For this purpose, we resort to three

models - ST-GCN, HCN and Resnet50. We build the en-

sembles for each of their combination i.e. ST-GCN & HCN,

ST-GCN & Resnet50, and HCN & Resnet50 based on the

Table 3. Comparisons of the weighted f1 scores for ensemble

models trained using the 3D joints with clinician video raters for

BRADY and PIGD classification with 5-fold stratified split proto-

col.

Model Input BRADY PIGD

Clinician Video Rater #1 Video 0.50 0.45

Clinician Video Rater #2 Video 0.38 0.22

(Ours) ST-GCN + Resnet50 3D joints 0.75 0.70

(Ours) HCN + Resnet50 3D joints 0.72 0.78

(Ours) ST-GCN + HCN 3D joints 0.65 0.74

input of 3D joints as the performance for 3D joints is rel-

atively higher compared to those based on 2D joints. The

performance results for our ensemble models are shown in

Table 3 where we also compare it with those of the clini-

cian video raters. It can be seen from the results that our

models surpass the scores of the clinician video raters for

both the tasks of BRADY and PIGD. More specifically, the

highest f1 score obtained by our models is 0.75 and 0.78

for BRADY and PIGD respectively compared to those of



Figure 7. Comparison of confusion matrices for the task of BRADY for 5-fold split protocol (A) Our ensemble model of ST-GCN +

Resnet50 based on 3D joints input, (B) Clinician video rater #1 based on video input, (C) Clinician video rater #2 based on video input

Figure 8. Comparison of confusion matrices for the task of PIGD for 5-fold split protocol (A) Our ensemble model of HCN + Resnet50

based on 3D joints input, (B) Clinician video rater #1 based on video input, (C) Clinician video rater #2 based on video input

the clinician video raters which is 0.50 and 0.45. Note that

we also train a combined ensemble of ST-GCN, HCN, and

Resnet50, however it’s performance is on par with their in-

dividual respective combinations, so we do not present it

here. We also present confusion matrices for the tasks of

BRADY and PIGD for our best performing ensemble and

the clinician video raters in Fig 7 and Fig 8 respectively. It

can be seen that our ensemble models performance is higher

for each individual class of BRADY and PIGD except class

{0} for BRADY when compared to those of the clinicians

who have provided the ratings based on the video input. The

better performance of the ensemble models can be also be

justified by noting the tight clustering of the learned features

by ensemble models shown in Fig 4 and Fig 5.

5. Conclusion

In this paper, we explore the feasibility of automatically

assessing the motor symptoms of Parkinson’s disease pa-

tients from video. To this end, we collected video clips

containing sit-stand motions from 35 subjects, during two

separate clinic visits. This task was performed as part of

wider UPDRS tests under the supervision of a neurologist

who also assigned scores for each task. The scores range

from zero, for no impairment, to four, corresponding to

maximum impairment. At the end of the session, all the

individual scores were added up to form the total UPDRS

score. This measure serves an essential clinical role in as-

sessing disease progression as well as customizing treat-

ment for individual patients to improve their specific motor

symptoms. Here we focused on bradykinesia (BRADY) and

posture and gait disorders (PIGD) and used the correspond-

ing sub-scores from UPDRS as end-points for deep learning

models. We then demonstrate that it is possible to predict

BRADY and PIGD scores from just a short sit-stand video

clip. Specifically, the F1-scores of our models for BRADY

and PIGD end-points were 0.75 and 0.78, respectively, out-

performing the best results from two clinician video raters

(0.50 and 0.45) benchmarked against in-clinic assessments.

These results suggest the presented framework has potential

to provide continual clinically acceptable end-points of PD

without imposing additional burden on clinicians and pa-

tients. On further validation, automatic video analysis could

unlock an array of use cases such as enhanced tele-medicine

or clinical-grade at-home assessments.
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