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Abstract

In this study, we propose a method to estimate oxygen

saturation by selecting the best bands from video images

captured by a multiband camera. Oxygen saturation is one

of the most important bioindicators for measuring human

health. For example, when a person contracts COVID-

19, which is currently prevalent, oxygen uptake does not

work properly and oxygen saturation drops without the per-

son being aware of it, which may lead to severe symp-

toms. Monitoring oxygen saturation is very important so

that the person receives treatment before such a situation

occurs. The commonly used contact sensor is uncomfort-

able because of its pressure and it is difficult to wear on a

daily basis, so non-contact estimation of oxygen saturation

is desirable. To estimate oxygen saturation using a con-

tact sensor, the difference in the absorption coefficients of

oxidized hemoglobin and deoxidized hemoglobin is used.

Using the same principle, it is possible to estimate oxygen

saturation without contact using the signals from two chan-

nels obtained by an RGB camera. Currently, many smart-

phones are equipped with infrared cameras for face recog-

nition, and increasingly more models are equipped with

multi-camera systems consisting of RGB and infrared cam-

eras. In such cases, it is difficult to take advantage of the

multiple bands because the optimal combination of bands

for oxygen saturation estimation varies depending on the

imaging environment and the subject. In this study, to select

the optimal combination of bands from multi-band video im-

ages, we used a Monte Carlo simulation of light scattering

on the skin to simulate pulse waves during oxygen satura-

tion changes while measuring the signals with a multi-band

camera. We further propose a method to select the most

accurate combination for estimating the oxygen saturation

based on the features obtained from the pulse wave.
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1. Introduction

One of the most important biological indicators of hu-

man health is oxygen saturation. Oxygen saturation is a

marker that indicates the percentage of oxygen combined

with hemoglobin contained in the red blood cells of the

blood carried from the heart to the entire body. It is used

as an indicator to diagnose respiratory failure because the

oxygen saturation decreases when the lungs and heart lose

their ability to take in oxygen. An example of the impor-

tance of oxygen saturation is the monitoring of patients with

COVID-19, which is currently prevalent. When a person is

infected with the SARS-CoV-2 virus, oxygen uptake does

not work properly, but the person is unaware of this fact

and oxygen saturation drops, which may lead to a serious

condition. Monitoring oxygen saturation is very important

to determine the symptoms so that the person may receive

treatment before this situation occurs. The current main-

stream method of measuring oxygen saturation is to use

a contact sensor, which is uncomfortable due to its pres-

sure, and it is difficult to live with this device on a daily

basis. Given this situation, the non-contact estimation of

oxygen saturation is desirable. To estimate oxygen satu-

ration, a non-contact method has been proposed in which

pulse waves are acquired from the R and B channels of

an RGB camera and oxygen saturation is estimated using a

method equivalent to that of a contact pulse oximeter. In this

paper, we propose a method of estimating oxygen saturation

using multi-band video images to obtain pulse waves from

two channels in the same way as a contact pulse oximeter.

Mobile devices such as iPhones and other smartphones are

frequently equipped with infrared cameras for face recog-

nition. In addition, sensors with a four-band Bayer array

(RGB plus infrared) have been developed for use in surveil-

lance cameras for both daytime and nighttime, and multi-

band cameras are expected to become more popular in the

future. The use of such multiband cameras is expected to

enable the estimation of oxygen saturation in various envi-

ronments because the number of bands is larger than that

of RGB cameras. However, when estimating oxygen satu-

ration using a multiband camera, it is difficult to take full

advantage of the multiple bands because the best combina-

tion of two bands for estimating oxygen saturation among

the four bands varies depending on the imaging environ-

ment and the subject. Therefore, the purpose of this study

is to construct a method to select the optimal combination of

bands from the bands available in multi-band video images.

2. Non-contact method of oxygen saturation es-

timation

In the conventional method, oxygen saturation is esti-

mated using a contact sensor. However, recent studies have

proposed a method for estimating oxygen saturation using

Figure 1. Absorption coefficients of Hb and HbO2

a camera.

2.1. Principle of oxygen saturation estimation

The amplitude of a pulse wave, which indicates the

change in arterial volume that occurs with the beating of

the heart, changes with respect to oxygen saturation. This

pulse wave variation is derived from the color of the blood.

In blood, there are two types of hemoglobin: oxidized

hemoglobin (HbO2), which is bound to oxygen, and deox-

idized hemoglobin (Hb), which is not combined with oxy-

gen. As shown in Figure 1, the absorption coefficients of

these two types of hemoglobin differ according to the wave-

length of light. Therefore, as shown in Figure 2, when

the oxygen saturation decreases (HbO2 decreases and Hb

increases), the amplitude of the pulse wave obtained by

red light increases and the baseline decreases in the case

of same blood volume. Conversely, the amplitude de-

creases and the baseline increases when infrared light is

used. Therefore, the ratio of the AC and DC components

of the pulse wave (ACDC ratio) is calculated, and the ratio

of the ratio (RoR) calculated by dividing the ACDC ratio of

red light by the ACDC ratio of infrared light is an index that

correlates with oxygen saturation. The relationship between

this RoR and oxygen saturation can be directly estimated by

collecting data through repeated pulse wave measurement

experiments while varying oxygen saturation and perform-

ing regression using the following equation.

SpO2 = αS + β (1)

In Equation (1), S represents the RoR, and α and β repre-

sent the regression coefficients.

2.2. Camera­based method for measuring oxygen
saturation

Verkruysse et al. reported that it is possible to obtain

pulse waves by calculating the change over time of the aver-
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Figure 2. Pulse wave variation in red and infrared light

age pixel value of the G signal in a video taken with an RGB

camera [1]. Currently, various methods have been proposed

to extend this method, such as methods using principal com-

ponent analysis and methods based on independent compo-

nent analysis, which can robustly estimate pulse waves in

response to illumination light and body motion [2, 3, 4, 5].

Of the RGB wavelengths that could be used for measure-

ment, the most basic method by Verkruysse et al. uses the

G signal. This is because green light has a larger absorption

coefficient than red or blue light and is the most suitable for

pulse wave measurement. In pulse wave acquisition using

an RGB camera, this method is the most common because it

requires the least amount of computation and can be imple-

mented easily. In addition, Guazzi et al. reported that the

non-contact estimation of oxygen saturation was possible

using a two-band pulse wave acquired using an RGB cam-

era with a method similar to that of the estimation using a

contact sensor [6]. In this study, we apply this method with

a multi-band camera to estimate oxygen saturation in a way

that is robust to the lighting environment and other factors.

3. Optimal band selection for multi-band video

The proposed method selects the optimal bands using a

regression model that is created from the optimal band se-

lection features for pulse waves generated by computer sim-

ulation. When estimating the oxygen saturation from the

pulse waves obtained from two bands, for a camera with n

bands, a combination of two pulse waves is selected from

the n pulse waves, and a method of calculating the nC2

pattern RoR is considered. Of these nC2 patterns of RoR,

the optimal pattern for oxygen saturation estimation is ex-

pected to vary depending on the imaging environment and

the subject. One reason for this is that the amount of noise

in the pulse wave obtained from each band varies depend-

ing on the spectral distribution of the illumination and the

characteristics of the subject’s skin. Therefore, in this study,

signal-to-noise ratio (SNR) is used as a feature to measure

the amount of noise in the two pulse waves obtained from

the two bands. If the spectral sensitivities of the two bands

are close each other, the RoR change when the oxygen sat-

uration changes tend to be small value. This is because the

change in ACDC ratio of the two bands becomes similar

when their spectral sensitivities are close each other. There-

fore, as a feature that indicates the degree to which a pair

of bands of the camera is suitable for oxygen saturation es-

timation, we use the difference in the RoR (normalized at

100% oxygen saturation) when the oxygen saturation de-

creases, which is calculated from the spectral sensitivity of

the two bands. To select the best band using these features,

a regression model is created using the correlation coeffi-

cient between the RoRs of the two bands and the oxygen

saturation as the objective variable. This regression model

is used to estimate the correlation coefficients of each of

the nC2 pattern pulse wave combinations in the multi-band

video image, and the optimal bands are the combination that

yields the highest correlation.

3.1. Simulation of pulse waves on a computer

To select the optimal bands, it is necessary to investi-

gate what characteristics of the pulse wave are optimal for

oxygen saturation estimation. In this study, we used the

Monte Carlo model of light transport in multi-layered tis-

sues (MCML) to simulate the pulse waves during changes

in oxygen saturation [7]. It is necessary to set the param-

eters of the skin to use MCML. The melanin concentra-

tion and hemoglobin concentration were assumed to vary

by 3% and 0.4%–0.6%, respectively, and the oxygen satu-

ration was assumed to vary by 80%–100%. For the spec-

tral reflectance change of the skin obtained by MCML, the

spectral sensitivity of the camera was set to 51 patterns from

400–900 nm in 10 nm steps, and the pulse waves were sam-

pled. The sampling process is illustrated in Figure 3. In ad-

dition, the actual measured pulse wave is subject to noise.

Noise from the camera’s sensor and noise from changes

in ambient light and other light sources are examples in

this study. However, we focus on the noise caused by the

camera’s sensor, without considering the noise caused by

changes in light in this paper, since we are using only Gaus-

sian noise. For this reason, a white Gaussian noise was

added to the pulse wave. An outline of this process is shown

in Figure 4. The processing described in the following sec-

tions was performed on the pulse waves obtained through

this simulation.

3.2. Simulation of pulse waves on a computer

In this study, the SNR is used as a measure of the amount

of noise in a pulse wave. The SNR is the ratio of signal to

noise; if the SNR is high, the influence of noise is small,

and if it is low, the influence of noise is large. In general,

the SNR is expressed using the common logarithm. If the

power of the signal is PS and the power of the noise is PN,
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Figure 3. Overview of pulse wave simulation

Figure 4. Adding noise to the simulated pulse wave

the SNR can be calculated as follows.

SNR = 10log

(

PS

PN

)

(2)

In this study, the human heart rate is set to be 30–180 bpm

(0.5–3.0 Hz), the peak of the frequency component in the

interval of 0.5–3.0 Hz] is defined to be the heart rate, and

the sum of the frequency components in the interval of that

frequency ±0.1 Hz] is considered to be the signal compo-

nent. To take harmonics into account, the second and third

harmonics of the heart rate frequency are also considered as

signal components, and the sum of the frequency compo-

nents in the interval of the frequency of the second and third

harmonics ±0.1 Hz is also considered to be a signal com-

ponent. The noise component is the frequency component

other than the signal component in the range of 0.5–10 Hz.

Figure 5 shows how the signal and noise components were

determined. The difference between the normalized RoR

when the oxygen saturation is 100% and when the oxygen

saturation is 80% is used as a feature to indicate how suit-

able a pair bands of the camera is for oxygen saturation es-

timation. The larger this difference, the larger the change in

RoR when the oxygen saturation decreases, indicating that

the combination is suitable for oxygen saturation estima-

tion. A larger difference in the ACDC ratios of the two pulse

waves when the oxygen saturation changes means that the

difference in normalized RoR is larger, and these bands are

hence more suitable for estimating oxygen saturation. Con-

versely, if the difference in the ACDC ratio of the two pulse

waves when the oxygen saturation changes is small, the dif-

ference in the normalized RoR is small, and these bands are

not suitable for oxygen saturation estimation. To calculate

the difference in normalized RoR, MCML is used in the

same way as it is in pulse wave simulation. The calculation

of the difference in normalized RoR is presented in Figure

6, where the spectral reflectance of the skin, which is the re-

sult of six simulations, is calculated by combining three pat-

terns of hemoglobin concentration (0.4%, 0.5%, and 0.6%)

and two patterns of oxygen saturation (80% and 100%) us-

ing MCML. The AC component corresponding with the

amplitude of the pulse wave is obtained by subtracting the

signal value obtained for 0.6% hemoglobin concentration

from the signal value obtained for 0.4% hemoglobin con-

centration. Although the hemoglobin concentration varies

depends on person, it is generally about 0.2-1.0%, there-

fore, in this study, the baseline of the hemoglobin concen-

tration is set to be 0.5%[8] as the typical value. In the a

future issue, it is necessary to verify the change of baseline

of hemoglobin concentration with other values because it

varies depends on person. The ACDC ratio is calculated

by dividing this AC component by the DC component. The

ACDC ratio can be calculated for each pair of bands, and

the RoR can be calculated by dividing the ACDC ratio of

the second band by the ACDC ratio of the first band. This

RoR is calculated at both 100% and 80% oxygen saturation,

and the difference in normalized RoR, d ˆRoR, which is the

difference between the RoR at 100% and the RoR at 80%
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Figure 5. SNR calculation for the pulse wave

Figure 6. Overview of the difference in normalized RoR calcula-

tion

normalized by the RoR at 100%, is calculated as follows.

d ˆRoR =
RoR100% − RoR80%

RoR100%

(3)

If the difference in normalized RoR is positive, the RoR

at 100% oxygen saturation is greater than the RoR at 80%

oxygen saturation. Therefore, when the oxygen saturation

is 100%, the RoR is large, and when the oxygen saturation is

80%, the RoR is small, therefore it has a positive correlation

with the oxygen saturation.

3.3. Calculation of the correlation coefficient be­
tween the RoR and oxygen saturation

The correlation coefficient between the RoR and oxygen

saturation is the objective variable used to create the regres-

sion model. In this study, 51 pulse wave patterns were sim-

ulated, and the number of all combinations of two of the

51 patterns is 51C2 = 1, 275 combinations. Because seven

patterns of noise were added to these two pulse waves, a

total of 1, 275 × 7 × 7 = 62, 475 patterns of pulse waves

were obtained. From these patterns, the RoR was calcu-

lated and its correlation coefficient with respect to oxygen

saturation was calculated. There are various methods for

calculating the AC and DC components of the pulse wave

used in the RoR, but in this study, the pulse wave envelope

and trend are used. The trend is used as the DC component,

and the method proposed by Tarvainen et al. is used to cal-

culate it [9]. Next, after the pulse wave has been detrended,

a bandpass filter is applied to the pulse wave to remove the

high-frequency noise component that was not removed by

detrending. The bandpass filter passes signals with frequen-

cies in the range of 0.5–10 Hz. The AC component is the

periodic variation component of the pulse wave, and can

be calculated by determining the pulse wave amplitude. To

determine this amplitude, the pulse wave envelope is cal-

culated for the upper and lower sides of the pulse wave.

By subtracting the lower envelope from the upper envelope,

the amplitude is determined, and this is the AC component.

The AC component is then divided by the DC component

to obtain the ACDC ratio, and the ACDC ratio of the first

band is divided by the ACDC ratio of the second band to

calculate the RoRs. The correlation coefficient between the

calculated RoR and the oxygen saturation is used obtain the

objective variables necessary for creating the model. Figure

7 shows an overview of the calculation of the RoR. In Fig-

ure 7, the frame on the x-axis represents the number of the

image since this graph is the result of processing one image

at a time.

3.4. Development of model for optimal band selec­
tion

A regression model was created using the three informa-

tion variables (the SNR of the first band, the SNR of the

second band, and the difference in normalized RoR) as ex-

planatory variables and the correlation coefficient between

the RoR and oxygen saturation as the objective variable.
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Figure 7. Overview of the calculation of the RoR

The data obtained from the simulation were divided into

two parts, one for model creation and the other for test-

ing, and the model was created and verified. Support vector

regression (SVR) was used for the regression. To imple-

ment SVR, we used scikit-learn, a Python library for ma-

chine learning that provides the radial basis function (RBF)

as the default function kernel for SVR. In this study, we

chose this RBF to create the regression model. The tuning

parameter C which determines how much misclassification

is allowed, and parameter gamma, which specifies the size

of the RBF kernel, can also be set to determine the degree

of error tolerance. The optimal values of these parameters

C and γ depend on the data set and need to be adjusted by

cross-validation or similar procedures. In this study, cross-

validation and grid search were used to optimize the pa-

rameters. Figure 8 shows the optimization process for the

parameters by grid search and the verification procedure us-

ing the test data. Grid search is a method to determine the

optimum parameters of the model. In this method, the coef-

ficient of determination R2 is obtained for all combinations

while changing the parameters, and the parameter with the

best result is adopted. The coefficient of determination was

used as the evaluation index of the model for optimization

in this process. The model is validated using test data that

is not used for parameter optimization.

4. Model development and validation results

Table 1 shows the results of the verification with the test

data for each parameter. A graphical representation of the

results is shown in Figure 9. For the model with the highest

coefficient of determination (0.8664), the mean absolute er-

ror is 0.1329, indicating that the correlation coefficient can

be estimated with good accuracy. This result suggests that

the optimal bands can be selected by choosing the pair with

Figure 8. Optimization of the parameters by grid search, and the

verification procedure

the highest correlation coefficient from all possible pairs.

This approach should enable oxygen saturation to be accu-

rately estimated.

5. Conclusion and future work

In this study, we proposed a method to select the op-
timal bands for oxygen saturation estimation from multi-
band video images. Pulse waves were generated by simu-
lation, and the information necessary for selecting the op-
timal band was obtained from the pulse waves. From this
information, a model was developed to estimate the corre-
lation coefficient between the oxygen saturation and RoR.
The model was validated using test data to check the predic-
tion accuracy and confirm its effectiveness. In future work,
we will need to verify the applicability of this method to real
data by conducting actual measurement experiments. It is
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Table 1. Verification results using the data for testing for each pa-

rameter
C γ R2

0.01 0.0001 0.0026

0.01 0.001 0.0582

0.01 0.01 0.4168

0.01 0.1 0.7790

0.01 1 0.5784

0.01 10 0.1348

0.1 0.0001 0.0587

0.1 0.001 0.4436

0.1 0.01 0.7537

0.1 0.1 0.8305

0.1 1 0.8366

0.1 10 0.5095

1 0.0001 0.4458

1 0.001 0.7190

1 0.01 0.8096

1 0.1 0.8366

1 1 0.8597

1 10 0.7514

C γ R2

10 0.0001 0.7137

10 0.001 0.7472

10 0.01 0.8215

10 0.1 0.8475

10 1 0.8544

10 10 0.7197

100 0.0001 0.7090

100 0.001 0.8064

100 0.01 0.8246

100 0.1 0.8519

100 1 0.8307

100 10 0.6365

1000 0.0001 0.7448

1000 0.001 0.8148

1000 0.01 0.8276

1000 0.1 0.8534

1000 1 0.7680

1000 10 0.3654

Figure 9. Verification results using the test data for each parameter

necessary to conduct simulations assuming an environment
where ambient light and other factors change with more re-
alistic noise statics.
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